
On the Soundness Property for SQL Queries of Fine-grained Access Control in
DBMSs

Jie Shi, Hong Zhu, Ge Fu, Tao Jiang

College of Computer Science & Technology
Huazhong University of Science and Technology

Wuhan, Hubei, 430074, P.R. China
{shijie1123,whzhuhong,fuge2006}@gmail.com

Abstract

The fine-grained access control approaches in DBMSs
should satisfy soundness property which requires the answer
of a query returned by the approach under the control of fine-
grained access control is consistent with the answer when
there is no fine-grained access control. However, existing
techniques cannot guarantee soundness property for all SQL
queries. Therefore, for an approach, there is a practical need
to state that, for which kinds of SQL queries, soundness
property can be guaranteed by this approach. In this paper,
we present our initial effort for this objective. We firstly
proposed a new algorithm with query modification. Then,
we refine, extend and enhance the theory about soundness
property, and state that, for which kinds of SQL queries, the
soundness property is guaranteed by the proposed algorithm.
Finally, we implement the algorithm using query modifica-
tion and performance evaluation has also been conducted,
which indicates this approach is feasible.

Keywords: database security, access control, fine-grained
access control

1. Introduction

Fine-grained access control (FGAC) allows accessing to

a table at the granularity of individual rows, columns and

the cells within rows. In recent years, there are many new

techniques which have been investigated to integrate FGAC

into Database Management Systems(DBMSs) [1], [2], [3],

[4], [5].

The soundness property for FGAC was proposed in

[6]. An algorithm is sound if the answer returned by it

is consistent with the answer when there is no FGAC,

namely, the answer under the control of FGAC can not

return wrong information. In [6], wang et al. pointed out

that the existing approaches could not preserve soundness

property, and presented that when a query contains any

negation, as expressed using the keywords MINUS, NOT

EXISTS or NOT IN, the approach in [7] would violate

1. Hong Zhu is the corresponding author

soundness property. To solve this problem, an algorithm

was proposed in [6] to satisfy soundness property for these

queries containing MINUS. However, the algorithm can’t

directly preserve the soundness property for those queries

containing NOT EXISTS or NOT IN. Additional, there are

still many other queries for which the algorithm dose not

work well too. Let us see the following example.

EXAMPLE 1: Suppose there is a table “Employee” with
four attributes: id, name, age and phone, where id is the
primary key (See Table 1). There is a FGAC policy P1. P1

is over table “Employee” which only allows Andy to read
all information of himself and the information about id and
name of other person, but the whole information about the
person whose id is 4 can not be read. The FGAC policy P1

can be defined as following:
• Policy P1 over table “Employee” for Andy:

– the restriction of the row-level policy: “id � 4”;
– the restriction of the cell-level policy of attribute

age: “id = 1”
– the restriction of the cell-level policy of attribute

phone: “id = 1”
According to the FGAC policies, we mark each cell with

“(Y)” or “(N)”, indicating whether the cell is allowed by
this policy. Suppose there are three queries issued by Andy:
• Q1=“SELECT name FROM Employee WHERE phone

IS NULL”;

• Q2=“SELECT name FROM Employee WHERE id >
(SELECT COUNT(*) FROM Employee)”;

• Q3=“SELECT name FROM Employee WHERE name
NOT IN (SELECT name FROM Employee WHERE

age > 28)”;

For query Q1, when there is no FGAC policy, the answer
is {Peter}. However, under the FGAC policy P1, the answers
with the algorithms in [6], [7] are {John, Peter, Mary}
which include John and Mary whose phone are not NULL.
Apparently, they violate the soundness property. For query
Q2 and Q3, they also can’t hold the soundness property.

From the example above, we found that there are many

queries that the algorithms in [6], [7] still do not satisfy

soundness property. To the best of our knowledge, there is

2009 Eigth IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-3641-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIS.2009.21

469

2009 Eigth IEEE/ACIS International Conference on Computer and Information Science

978-0-7695-3641-5/09 $25.00 © 2009 IEEE

DOI 10.1109/ICIS.2009.21

469

Table 1. Employee

id name age phone
1(Y) Andy(Y) 29(Y) 11111111(Y)
2(Y) John(Y) 30(N) 22222222(N)
3(Y) Peter(Y) 25(N) NULL(N)
4(N) Jack(N) 32(N) 44444444(N)
5(Y) Mary(Y) 27(N) 55555555(N)

no algorithm which preserve soundness property for all SQL

queries in all circumstances.

It is very difficult to find an algorithm to preserve

soundness property for all queries in all situations, because

SQL is an easy-to-use language with a number of high-

level constructs and it allows writing very complex queries.

Therefore, for an algorithm, there is a practical need to

known that , for which kinds of SQL queries in all situations,

soundness property can be certainly preserved. However, the

definition of soundness in [6] is for all queries which is too

rigorous to find an algorithm to satisfy it. Thus, a definition

to define soundness for only a query or a kind of query

should be presented.

The main contributions of this study are summarized as

following:

• we propose an algorithm and implement it with query

modification. Then we refine, extend and enhance the

theory about soundness property. Additional properties

are introduced using expression with relational algebra.

Finally we state that, for which kinds of SQL queries,

soundness property can be satisfied. It also has been

theoretically proved.

• we conduct performance evaluation of our query mod-

ification approach which indicates that the cost of

our query modification is small, and scalable to large

databases which can not be obtained for the only

existing algorithm [6] where the soundness property

was considered.

The remainder of this paper is organized as follows. In

Section 2, we introduce the related works. In Section 3, we

propose an approach with query modification. We enrich the

theory about soundness property , and state that, for which

kinds of SQL queries, soundness property can be guaranteed

in Section 4. Then we present experimental results of the

implementation in Section 5. Finally, we conclude and

present the future work in Section 6.

2. Related Work

The Virtual Private Database (VPD) in ORACLE [5]

supports FGAC through functions which return predicates

according to FGAC policy. When an user issues a query, this

query is modified by attaching the predicates returned from

the corresponding function to the WHERE clause to enforce

FGAC. Sybase row level access control [4] allows users to

define access control policies that restrict users to retrieve the

data over the table. LeFevre et al. firstly presented a model

to enforce FGAC at cell-level granularity in Hippocratic

Databases [7]. Agrawal et al. proposed a framework for

FGAC and they extended SQL statements to describe row

level, column level and cell level access control policy

[2]. Chaudhuri et al. proposed a scheme for fine-grained

authorization based on adding predicates to authorization

grants [1]. The scheme supports predicated authorization to

specific columns, cell-level authorization with nullification,

authorization for function/procedure execution, and grants

with grant option. However, all works above didn’t mention

the soundness property of FGAC.

Wang et al. [6] proposed a formal notion of correctness

for FGAC in databases, which first proposed the soundness

property, and discussed why the existing approaches had

limitations in some circumstances. Then they proposed a

labeling approach for masking unauthorized data items and a

query evaluation algorithm for FGAC in relational databases.

The algorithm resolves the soundness problem caused by

MINUS operation in SQL statement. However, it can’t

preserve soundness property for all SQL queries, and they

also did not state for which kinds of SQL queries their

algorithm can preserve soundness property.

3. Query Modification Algorithm

In the following, for a relation R, we use CR to denote the

set of all attributes in the relation R. Before introducing the

query modification algorithm, we first introduce a definition.

DEFINITION 1 (key attribute of a relation for a query):
For any query Q, R is a relation involved in query Q. For

any attribute A ∈ CR, if A belongs to the set of attributes of

WHERE clause of Q , we say A is a key attribute of R for

Q.

Let us see Q1 in Example 1, the attribute phone is a

key attribute of Employee for Q1 because phone is in the

WHERE clause of Q1. For Q3 in Example 1, name and

age are the key attributes of Employee for Q3 and age is

the only key attribute of Employee for the subquery of Q3.

In the following, the algorithm, which are called key
attribute based algorithm (KAB algorithm), would be

introduced. It has mainly threes steps:

The first step: creating a temporary view for each relation

involved in a SQL query statement. For a query Q, the

key attributes can be found according to Definition 1. Then

the row-level policy and cell-level policies over these key

attributes can be obtained from FGAC policy. Suppose

the relation involved in query is R , the row-level policy

is Prow and the cell-level policy of key attribute is Pcell.

A temporary view, called operational relation,would be

created as follows:

(SELECT ∗ FROM R WHERE Prow and Pcell)

470470

The second step: using temporary views to replace these

relations involved in the SQL query respectively.
The third step: each attribute in select list of SQL query

would be modified with “CASE” statement [7].
The KAB algorithm for SQL queries is introduced in

detail in [2].
EXAMPLE 2: There were two SQL queries Q1 and Q3

under FGAC policies P1 which were introduced in Example

1, we will use them to illustrate our modification approach.
For query Q1, phone is the only key attribute, and the

row-level policy is “id � 4”, the cell-level policy of phone
is “id = 1”. So the temporary view is:

(SELECT id, name, age, phone FROM Employee

WHERE id � 4 and id = 1)

Because there is no cell-level policy over name, so in the

modified query, there is no “CASE” statement to replace

name. The final modified query Q1modi f ied is shown below.

The query Q3 can be modified into Q3modi f ied using the same

approach. Suppose there is a cell-level policy over the

attribute name: “id = 1”, then the modified query of Q1

is Q1′modi f ied
.

• Q1modi f ied=“SELECT name FROM (SELECT id, name,

age, phone FROM Employee WHERE id � 4 and id =
1) WHERE phone IS NULL”;

• Q3modi f ied=“SELECT name FROM (SELECT id, name,

age, phone FROM Employee WHERE id � 4 and

id = 1) WHERE name NOT IN (SELECT name FROM

(SELECT id, name, age, phone FROM Employee
WHERE id � 4 and id = 1) WHERE age > 28)”

• Q1′modi f ied
=“SELECT CASE WHEN id = 1

THEN name ELSE NULL

END AS name
FROM (SELECT id, name, age, phone FROM

Employee WHERE id � 4 and id = 1)

WHERE phone IS NULL”;

In [7], to preserve security, these rows which maybe break

security are removed from the result by means of replacing

the values of the key attributes of these rows with NULL

and the evaluation rules “NULL � NULL” and “NULL � c”

for any constant value c. The proposed algorithm directly

remove these rows which maybe break security according to

FGAC policy to create the temporary view, so the proposed

approach can preserve security too.

4. Soundness Property

In this section, we will point out that, for which kinds of

SQL queries, the KAB algorithm can guarantee soundness

property.
The definition of soundness was firstly proposed in [6].

However, it can’t be used to judge whether an algorithm is

sound for a query or a kind of queries. So, it is necessary

to define such notion.

4.1. Soundness Definition

Without loss of generalities, we will substitute unautho-
rized value with “Φ” which is a special symbol introduced

in our model. In previous work, NULL is used to replace

the unauthorized value. The reason of using “Φ” but NULL

is that some truth values of attributes are NULL.By using

“Φ”, we can distinguish the truth values NULL from the

values which are used to hide the truth data items. The “Φ”

has the following properties:

• Φ � Φ;

• for any constant value c, Φ � c;

DEFINITION 2: Given two tuples tx =< x1, x2, · · · , xn >
and ty =< y1, y2, · · · , yn >, we say that tx is subsumed by
ty (and write tx �t ty) if and only if ∀i ∈ [1 . . . n] such that
(xi = yi ∨ xi = Φ).

Based on the definition above, the following property is

correct obviously:

PROPERY 1: t1 = t2 ⇒ t1 �t t2.
The notation can be extended to the relations as follows:

DEFINITION 3: Given two simple relations R1 and R2,

we say that R1 is subsumed by R2 (denote as R1 � R2) if

and only if for ∀ t1 ∈ R1, ∃ t2 ∈ R2 such that t1 �t t2.

According the definitions above, the following lemmas

would be proved. However, due to the limitation of pages,

we omit all proof details in this paper which can be found

in [8].

LEMMA 1: R1 and R2 are two relations, such that

R1 ⊆ R2 ⇒ R1 � R2.

LEMMA 2: R1,R′1,R2 and R′2 are relations, such that

(R′1 � R1) ∧ (R′2 � R2)⇒ (R′1 ∪ R′2) � (R1 ∪ R2).

Based on the preparative definition above, we will address

the notion of soundness property.

DEFINITION 4: Given a query processing algorithm A,
takes as a database D, a FGAC policy P, and a query
Q, and outputs a result R = A(D, P,Q). Let S denote the
standard query answering procedure and S (D,Q) the result
of answering the query Q when the database state is D and
there is no fine-grained access control policy. Then a query
processing algorithm A is sound for the query Q, written as
S ound(A,Q) = true, if and only if

∀D∀PA(D, P,Q) � S (D,Q).

and, if A does not preserve soundness for Q, we denote it
as S ound(A,Q) = f alse.

From the definition above, the definition of soundness for

algorithm A which is defined in [6] is equivalent to the one

as follow:

DEFINITION 5: Given a query processing algorithm A
and a query Q, the query processing algorithm A is sound,
written as S ound(A), if and only if for ∀Q, S ound(A,Q) =

true.

471471

The definition of soundness and lemmas have been de-

scribed above. In the following section, we would ana-

lyze soundness property using relational algebra expressions

which are the basis of query statements. Then, theorems are

obtained which are the basis that, for which kinds of SQL

queries, the KAB algorithm can guarantee the soundness

property.

4.2. Soundness for Relational Algebra Expression

In the following, we will use σ and π to express query

which represent the the relational algebra operations selec-
tion and projection respectively [9]. The π is extended to

π(A,F,Φ) :

• π(A,F,Φ)(R) =

{t′[A]| if F(t) then t′[A] = t[A] else t′[A] = Φ, t ∈ R}.
• π(A1,F1,Φ),···,(An,Fn,Φ)(R) =

{(t′[A1], · · · , t′[An])| if Fi(t) then t′[Ai] = t[Ai]

else t′[Ai] = Φ, i ∈ [1, · · · , n], t ∈ R}.
For simplicity, we firstly introduce following notations:

• D : Database; R : Relation; t : tuple; A : Attribute; F,

F′, F1 · · · Fn, F′1 · · · F′n : Predicates

• π(A,true,Φ)(R) = πA(R) and

π(A1,true,Φ),(A2,true,Φ),···,(An,true,Φ)(R) = πA1,A2,···,An (R)

A definition about predicate is introduced as follows,

which will simplify our descriptions.

DEFINITION 6: F and F′ are two predicates, we say F′
is predicate-subsumed by F, written as F′ ≤ F, if

∀t, F′(t) = true⇒ F(t) = true.

LEMMA 3: ∀F, F′, F′ ≤ F ⇒ σF′ (R) � σF(R).

Based on Lemma 3, we have the following two corollaries.
COROLLARY 1:

∀F1, F2 ⇒
{
σF1∧F2

(R) � σF1
(R)

σF1∧F2
(R) � σF2

(R)

COROLLARY 2: ∀F, σF(R) � R.
LEMMA 4: π(A,F,Φ)(R) � πA(R).

In essence, the mean of Lemma 4 is that when the values

of an attribute of any rows in a relation R are replaced with Φ

to form another relation R′, R′ is subsumed by R (R′ � R).

Apparently, when an attribute is extended to many attributes,

the lemma is also correct. So, the following corollary is

correct too.

COROLLARY 3: A1, A2, · · · , An are different attributes of
R, then

π(A1,F1,Φ),(A2,F2,Φ),···,(An,Fn,Φ)(R) � πA1,A2,···,An (R).

According to the Lemmas and corollaries above, the

following Lemma is correct.

LEMMA 5: A1, A2, · · · , An are different attributes of R,
then

F′ ≤ F ⇒
π(F′

1
,A1,Φ),···,(F′n,An,Φ)(σF′ (R)) � πA1,···,An (σF(R)).

Based on the Lemma 5, the following Theorem 1 is right

which would be used in this paper.

THEOREM 1: A1, A2, · · · , An are different attributes of R,

then

R′ ⊆ R⇒
π(F1,A1,Φ),···,(Fn,An,Φ)(σF(R′)) � πA1,···,An (σF(R)).

According to the analysis above, the Lemma 5 and

Theorem 1 are extended to the following lemma and theorem

which include multiple tables.

LEMMA 6: A1, A2, · · · , An are different attributes of

R1,R2, · · · ,Rm, then

F′ ≤ F ⇒
π(F′

1
,A1,Φ),···,(F′n,An,Φ)(σF′ (R1 × R2 × · · · × Rm)) �
πA1,···,An (σF(R1 × R2 × · · · × Rm)).

THEOREM 2: A1, A2, · · · , An are different attributes of

R1,R2, · · · ,Rm, then

R′1 ⊆ R1, · · · ,R′m ⊆ Rm ⇒
π(F1,A1,Φ),···,(Fn,An,Φ)(σF(R′1 × R′2 × · · · × R′m)) �

πA1,···,An (σF(R1 × R2 × · · · × Rm)).

Relational algebra is the basis of SQL query, so these

properties presented in this section are the basic work for

the further research.

4.3. Soundness Property of KAB Algorithm

Using relational algebra, there are four forms of queries

because there are five basic operations such as “π”, “σ”,

“×”, “∪”, “−” and the other operations can be derived from

them [10]. The first one only involves one table, the second

involves multiple tables and the others are combined with

the first and second form using set operations such as: “∪”

and “−” . They are expressed as follows:

• Form1 :Qf orm1 = π(A1,A2,···,An)(σF(R1));

• Form2 :Qf orm2 = π(A1,A2,···,An)(σF(R1 × · · · × Rm));

• Form3 :Qf orm3 = Q1 ∪ Q2, Q1 and Q2 have the Form1

or Form2;

• Form4 :Qf orm4 = Q1 − Q2, Q1 and Q2 have the Form1

or Form2.

In [10], a translator, which translates a relevant subset of

SQL queries into relational algebras, was proposed. Using

that, we can map a SQL queries to a relational algebra.

Namely, given a SQL query Q, we can find an expression

472472

with relational algebra Q′ which is equivalent to Q. Then

the following Lemma is presented.
LEMMA 7: A SQL query Q is equivalent to a relational

algebra expression Q′, if relations R1, · · · ,Rn involved in Q
are replaced with other relations R′1, · · · ,R′n to form SQL
query Q1 and R′i ⊆ Ri, i ∈ [1 · · · n], then there is a query
expressed by relational algebra Q′1 which is obtained from
Q′ using R′1, · · · ,R′n to replace the relations R1, · · · ,Rn in Q′,
and Q1 is equivalent to Q′1.

We know that the relational algebra expression is only

affected by the schema of relation, the tuples in the relation

has nothing to do with the relational algebra. Thus, when R′i⊆ Ri, i ∈ [1 · · · n], the Q is same to Q1 and Q′ is same to

Q′1 because of the same schema of Ri and R′i , i ∈ [1 · · · n].

Of course, when Q is equivalent to Q1, Q′ is equivalent to

Q′1 too.
In Section 3, we modify the SQL queries to implement

FGAC according to the KAB algorithm. In essence, for any

SQL query Q involving relations R1, · · · ,Rn, the modified

query Q′ is formed from Q using the temporary views

R′1, · · · ,R′n to replace R1, · · · ,Rn respectively, where R′i ⊆
Ri, i ∈ [1 · · · n]. Thus, according to the Lemma 7, if a SQL

query Q is equivalent to relational algebra expression with

Form1, Form2, Form3 or Form4, then the modified query

according to the KAB algorithm Q′ is equivalent to the

following forms respectively, where R′i ⊆ Ri, i ∈ [1 · · ·m]:

• Form1’ :Qf orm1′ = π((F1,A1,Φ),(F1,A2,Φ),···,(F1,An,φ))(σF(R′1));

• Form2’ :Qf orm2′ = π((F1,A1,Φ),(F1,A2,Φ),···,(F1,An,φ))(σF(R′1 ×· · · × R′m));

• Form3’ :Qf orm3′ = Q′1∪Q′′2 , Q′1 and Q′′2 have the Form1

or Form2;

• Form4’ :Qf orm4 = Q′1−Q′′2 , Q′1 and Q′′2 have the Form1

or Form2.

According to Theorem 1 and Theorem 2, we can get

Qf orm1′ � Qf orm1,Qf orm2′ � Qf orm2. According to Lemma

2, we can get Qf orm3′ � Qf orm3. Namely, Q′ � Q. So the

following theorem is right.
THEOREM 3: For any SQL query which is equivalent

to a relational algebra expression with Form1, Form2 or
Form3, the KAB algorithm can preserve the soundness
property.

The Theorem 3 not only include the simple SQL queries

and also include some complex SQL queries, because there

are many complex SQL queries which can be translated into

equivalent relational algebra expression with Form1, Form2

, Form3 [10], such as Q3 in Example 1. But, unfortunately,

when a SQL query is equivalent to a relational algebra

expression which has Form4, the soundness property can’t

be satisfied in all situations by the KAB algorithm.
In Example 1, we point out that for query Q1 and Q3, the

algorithm in [7] can not hold soundness property. However,

using the KAB algorithm to modify the two query, the

soundness property can be preserved because they can be

translated into the equivalent relational algebra expression

with Form1 and Form3 respectively. For Q1, the result is

{Peter} without FGAC policy. When there is FGAC policy

P1, Q1 is modified into Q1modi f ied to execute over the table

“Employee” and the result is empty. So, it don’t violate the

soundness property. For Q3 which is a complex SQL, when

there is no FGAC policy, the answer is {Peter, Mary}. When

the FGAC policy P1 is working, by using the KAB algorithm

Q3 would be modified to Q3modi f ied , the result is empty. The

soundness property is preserved.

5. Experiments

We briefly describe here the results of experiments study-

ing the performance of the KAB algorithm. More com-

prehensive results can be found in [8]. However, only the

approach in [6] can preserve soundness property for queries

containing MINUS, so we mainly compare the performance

of our KAB algorithm with the algorithm in [6]. In the

following, we mainly make use of the experimental method

in [6] to compare the performance. First, we introduce the

experimental parameters:

• Table Size: The number of tuples in a table;

• Selectivity: The percentage of tuples in a table that are

selected by an issued query;

• Disclosure Probability: The probability that a cell in

a sensitive attribute can be disclosed;

• Operational Relation Probability: The percentage of

tuples in a table that are in the operational relation for

an issued query.

5.1. Experimental Setup

We measure the performance with the table (described in

[8]) which is generated based on the Wisconsin Benchmark

[11] and is same to the table in [6]. We implemented our

query modification approach in Java. The test environment

includes a desktop computer with 2.8GHz Intel Pentium (R)

D CPU, 1GB of RAM and 120GB disk and Windows XP

operating system, Oracle 10g DBMS.

The approach in [6] modifies a query in the same way as

the approach in [7], when there is no negation in the query.

And it can only guarantee soundness property for those

queries containing MINUS. Therefore, in our experiments,

we only use queries contain MINUS to measure performance

. To measure the cost of executing queries, every query

was run 6 times, flushing the buffer pool and query cache

between any two executions of query. The results below give

the average warm performance numbers for each query.

5.2. Experimental Results and Analysis

For convenience, we refer to KAB algorithm as KAB, the

approach in [6] as S ound , the approach in [7] as Hippo

473473

0 2 4 6 8 10

x 10
5

0

500

1000

1500

2000

2500

3000

3500

4000

Table Size

T
im

e
(m

ill
is

ec
on

d)

Unmodified
Hipp
Sound
KAB

Figure 1. Scalability over Table Size. Parameters: Se-
lectivity =100%, Disclosure probability=75%, Operational
Relation probability=100%.

and the normal query evaluation (without access control

policies) as Unmodi f ied. We only describe the scalability of

algorithm here; the Impact of Selectivity, Impact of Dis-
closure Probability and Impact of Operational Relation
Probability are shown in [8].

The scalability of our query modification algorithm is

measured by varying table sizes. To measure this cost, we

consider the scenario, where selectivity is 100% , disclosure

probability is 25% and operational relation probability is

100%. The experimental result is reported in Figure 1. From

the figure, we observe that, KAB scales as well as Hipp and

Unmodi f ied, and better than S ound. For S ound approach,

when the table size is 100000, the cost is 2833 millisecond

and when the table size is varied to 200000, the cost is

34495 millisecond (this is not described in the Figure 1).

The reason of non-scalability of S ound is that, it introduces

a join operation for providing sound answers to MINUS .

However, aim to preserving soundness property, we only

add predicates to the where clause of the query. Therefore,

KAB is better than S ound when the table size grows, and is

similar to Hipp which can not preserve soundness property.

6. Conclusions

In this study, We firstly proposed an algorithm to guar-

antee soundness property to certain types of SQL queries.

Then we extended and enhanced the theory about soundness

property, and introduced new properties about soundness

property using relational algebra expression. The queries ex-

pressed by relational algebra can be divided into four forms

which were analyzed respectively for soundness property.

Base on these theory, we stated that, for which kinds of SQL

queries, the proposed algorithm can guarantee soundness

property. Finally, we conducted the performance evaluation

of the algorithm. The experimental results show that the

proposed algorithm almost doesn’t increase the cost and is

feasible.

In this paper, our focus is only on SELECT operation.

However, the operations controlled by the fine-grained ac-

cess control are SELECT, UPDATE, INSERT and DELETE.

So, in the future work, we will consider the other operations

in fine-grained access control.

7. Acknowledgments

The work presented in this paper is supported by 863 hi-

tech research and development program of China, granted

number: 2006AA01Z430.

References

[1] S. Chaudhuri, T. Dutta, and S.Sudarshan, “Fine grained
authorization through predicated grants,” in Proc. of ICDE,
Istanbul, Turkey, April 2007.

[2] R. Agrawa, P. Bird, T. Grandison, J. Kiernan, S. Logan,
and W. Rjaibi, “Extending relational database systems to
automatically enforce privacy policies,” in Proc. of ICDE,
Tokyo, Japan, April 2005, pp. 1013–1022.

[3] M. Stonebraker and E. Wong, “Access control in a relational
data base management system by query modification,” in
ACM/CSC-ER Proc. of the 1974 annual conference, 1974.

[4] Sybase Adaptive Server Enterprise 12.5, System
Administration Guide.Row Level Access Control,
http://sybooks.sybase.com/onlinebooks.

[5] The Virtual Private Database in Oracle9ir2: An Oracle
Technical White Paper, http://otn.oracle.com/deploy/security/
oracle9ir2/pdf/vpd9ir2twp.pdf.

[6] Q. Wang, T. Yu, N. Li, J. Lobo, and E. Bertino, “On the
correctness criteria of fine-grained access control in relational
databases,” in Proc. of VLDB, September 2007, pp. 23–28.

[7] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan,
Y. Xu, and D. DeWitt, “Limiting disclosure in hippocratic
databases,” in Proc. of VLDB, Toronto, Canada, August 2004.

[8] J. Shi, “On soundness property for sql queries
of fine-grained access control in dbmss,”
http://202.114.1.86/publishcenter/detail.jsp?u=JieShi&p=1&id=1,
Tech. Rep., 2008.

[9] R. Ramakrishnan and J. Gehrke, Database Management Sys-
tems, Second Edition.

[10] S. Ceri and G. Gottlob, “Translating sql into relational alge-
bra: optimization, semantics, and equivalence of sql queries,”
in IEEE Trans. on Software Engineering, vol. SE-11, no. 4,
April 1985, pp. 324–345.

[11] D. J.DeWitt, “The wisconsin benchmark: Past, present, and
future,” Tech. Rep., 1993.

474474

