Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content
Genetics logoLink to Genetics
. 2002 Jun;161(2):661–672. doi: 10.1093/genetics/161.2.661

Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster.

Jingtao Sun 1, Donna Folk 1, Timothy J Bradley 1, John Tower 1
PMCID: PMC1462135  PMID: 12072463

Abstract

A transgenic system ("FLP-out") based on yeast FLP recombinase allowed induced overexpression of MnSOD enzyme in adult Drosophila melanogaster. With FLP-out a brief heat pulse (HP) of young, adult flies triggered the rearrangement and subsequent expression of a MnSOD transgene throughout the adult life span. Control (no HP) and overexpressing (HP) flies had identical genetic backgrounds. The amount of MnSOD enzyme overexpression achieved varied among six independent transgenic lines, with increases up to 75%. Life span was increased in proportion to the increase in enzyme. Mean life span was increased by an average of 16%, with some lines showing 30-33% increases. Maximum life span was increased by an average of 15%, with one line showing as much as 37% increase. Simultaneous overexpression of catalase with MnSOD had no added benefit, consistent with previous observations that catalase is present in excess in the adult fly with regard to life span. Cu/ZnSOD overexpression also increases mean and maximum life span. For both MnSOD and Cu/ZnSOD lines, increased life span was not associated with decreased metabolic activity, as measured by O2 consumption.

Full Text

The Full Text of this article is available as a PDF (131.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arking R., Buck S., Berrios A., Dwyer S., Baker G. T., 3rd Elevated paraquat resistance can be used as a bioassay for longevity in a genetically based long-lived strain of Drosophila. Dev Genet. 1991;12(5):362–370. doi: 10.1002/dvg.1020120505. [DOI] [PubMed] [Google Scholar]
  2. Arking R., Buck S., Wells R. A., Pretzlaff R. Metabolic rates in genetically based long lived strains of Drosophila. Exp Gerontol. 1988;23(1):59–76. doi: 10.1016/0531-5565(88)90020-4. [DOI] [PubMed] [Google Scholar]
  3. Arking R., Burde V., Graves K., Hari R., Feldman E., Zeevi A., Soliman S., Saraiya A., Buck S., Vettraino J. Forward and reverse selection for longevity in Drosophila is characterized by alteration of antioxidant gene expression and oxidative damage patterns. Exp Gerontol. 2000 Mar;35(2):167–185. doi: 10.1016/s0531-5565(99)00094-7. [DOI] [PubMed] [Google Scholar]
  4. Duttaroy A., Meidinger R., Kirby K., Carmichael S., Hilliker A., Phillips J. A manganese superoxide dismutase-encoding cDNA from Drosophila melanogaster. Gene. 1994 Jun 10;143(2):223–225. doi: 10.1016/0378-1119(94)90100-7. [DOI] [PubMed] [Google Scholar]
  5. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000 Nov 9;408(6809):239–247. doi: 10.1038/35041687. [DOI] [PubMed] [Google Scholar]
  6. HARMAN D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956 Jul;11(3):298–300. doi: 10.1093/geronj/11.3.298. [DOI] [PubMed] [Google Scholar]
  7. Honda Y., Honda S. The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J. 1999 Aug;13(11):1385–1393. [PubMed] [Google Scholar]
  8. Huang T. T., Carlson E. J., Raineri I., Gillespie A. M., Kozy H., Epstein C. J. The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann N Y Acad Sci. 1999;893:95–112. doi: 10.1111/j.1749-6632.1999.tb07820.x. [DOI] [PubMed] [Google Scholar]
  9. Kaiser M., Gasser M., Ackermann R., Stearns S. C. P-element inserts in transgenic flies: a cautionary tale. Heredity (Edinb) 1997 Jan;78(Pt 1):1–11. doi: 10.1038/hdy.1997.1. [DOI] [PubMed] [Google Scholar]
  10. Kenyon C. A conserved regulatory system for aging. Cell. 2001 Apr 20;105(2):165–168. doi: 10.1016/s0092-8674(01)00306-3. [DOI] [PubMed] [Google Scholar]
  11. Kirkwood T. B., Austad S. N. Why do we age? Nature. 2000 Nov 9;408(6809):233–238. doi: 10.1038/35041682. [DOI] [PubMed] [Google Scholar]
  12. Mackay W. J., Bewley G. C. The genetics of catalase in Drosophila melanogaster: isolation and characterization of acatalasemic mutants. Genetics. 1989 Jul;122(3):643–652. doi: 10.1093/genetics/122.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Martin G. M., Austad S. N., Johnson T. E. Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet. 1996 May;13(1):25–34. doi: 10.1038/ng0596-25. [DOI] [PubMed] [Google Scholar]
  14. Miquel J., Lundgren P. R., Bensch K. G., Atlan H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech Ageing Dev. 1976 Sep-Oct;5(5):347–370. doi: 10.1016/0047-6374(76)90034-8. [DOI] [PubMed] [Google Scholar]
  15. Mockett R. J., Orr W. C., Rahmandar J. J., Benes J. J., Radyuk S. N., Klichko V. I., Sohal R. S. Overexpression of Mn-containing superoxide dismutase in transgenic Drosophila melanogaster. Arch Biochem Biophys. 1999 Nov 15;371(2):260–269. doi: 10.1006/abbi.1999.1460. [DOI] [PubMed] [Google Scholar]
  16. Mockett R. J., Orr W. C., Rahmandar J. J., Sohal B. H., Sohal R. S. Antioxidant status and stress resistance in long- and short-lived lines of Drosophila melanogaster. Exp Gerontol. 2001 Mar;36(3):441–463. doi: 10.1016/s0531-5565(00)00258-8. [DOI] [PubMed] [Google Scholar]
  17. Orr W. C., Sohal R. S. Effects of Cu-Zn superoxide dismutase overexpression of life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys. 1993 Feb 15;301(1):34–40. doi: 10.1006/abbi.1993.1111. [DOI] [PubMed] [Google Scholar]
  18. Orr W. C., Sohal R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  19. Orr W. C., Sohal R. S. The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch Biochem Biophys. 1992 Aug 15;297(1):35–41. doi: 10.1016/0003-9861(92)90637-c. [DOI] [PubMed] [Google Scholar]
  20. Parkes T. L., Elia A. J., Dickinson D., Hilliker A. J., Phillips J. P., Boulianne G. L. Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet. 1998 Jun;19(2):171–174. doi: 10.1038/534. [DOI] [PubMed] [Google Scholar]
  21. Partridge L., Barton N. H. Optimality, mutation and the evolution of ageing. Nature. 1993 Mar 25;362(6418):305–311. doi: 10.1038/362305a0. [DOI] [PubMed] [Google Scholar]
  22. Phillips J. P., Campbell S. D., Michaud D., Charbonneau M., Hilliker A. J. Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2761–2765. doi: 10.1073/pnas.86.8.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reveillaud I., Niedzwiecki A., Bensch K. G., Fleming J. E. Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance of oxidative stress. Mol Cell Biol. 1991 Feb;11(2):632–640. doi: 10.1128/mcb.11.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  25. Seto N. O., Hayashi S., Tener G. M. Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4270–4274. doi: 10.1073/pnas.87.11.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sohal R. S., Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996 Jul 5;273(5271):59–63. doi: 10.1126/science.273.5271.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stadtman E. R. Protein oxidation and aging. Science. 1992 Aug 28;257(5074):1220–1224. doi: 10.1126/science.1355616. [DOI] [PubMed] [Google Scholar]
  28. Tower J. Aging mechanisms in fruit files. Bioessays. 1996 Oct;18(10):799–807. doi: 10.1002/bies.950181006. [DOI] [PubMed] [Google Scholar]
  29. Tower J. Transgenic methods for increasing Drosophila life span. Mech Ageing Dev. 2000 Sep 1;118(1-2):1–14. doi: 10.1016/s0047-6374(00)00152-4. [DOI] [PubMed] [Google Scholar]
  30. Wallace D. C. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482–1488. doi: 10.1126/science.283.5407.1482. [DOI] [PubMed] [Google Scholar]
  31. Wheeler J. C., King V., Tower J. Sequence requirements for upregulated expression of Drosophila hsp70 transgenes during aging. Neurobiol Aging. 1999 Sep-Oct;20(5):545–553. doi: 10.1016/s0197-4580(99)00088-3. [DOI] [PubMed] [Google Scholar]
  32. Yan L. J., Levine R. L., Sohal R. S. Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11168–11172. doi: 10.1073/pnas.94.21.11168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yan L. J., Sohal R. S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12896–12901. doi: 10.1073/pnas.95.22.12896. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES