The evaluation of receptor ligand interactions is important in the field of drug discovery and development. Currently these interactions are typically measured with cumbersome (low throughput) radiolabels. Higher throughput screens are available such as fluorescent measurements of G-protein coupled receptor-induced Ca2+ increases or fluorescence anisotropy, yet these have limited applicability and/or low signal to noise. Hence, there is a need to develop more widely applicable and more sensitive labels that can be used to monitor ligand-receptor interactions. Lanthanides provide an attractive alternative to the traditional labels used for monitoring ligand-receptor interactions. The incorporation of lanthanide labels into traditional assays used to assess receptor-ligand interactions can make these assays more affordable, less time consuming and amenable to automation. Lanthanides can be coupled to ligands and provide strong luminescent signals that can be detected using time-resolved fluorescence (TRF) methods. This approach takes advantage of the long fluorescence lifetime of the lanthanide and can detect less than one attomole of europium in a multiwell plate sample. This short review provides a basic introduction into lanthanides and TRF and describes some of the recent assays which have utilized lanthanides as labels to assess ligand-receptor interactions.