Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.