There has been increasing interest on the development of clinically acceptable, more sensitive and specific methods for non-invasive diagnosis in Periodontics. In this pilot study, the performance of an Optical Coherence Tomography (OCT) system in imaging periodontal structures in humans was evaluated. Gingival sulcus depth measurements were obtained and compared with traditional probes. In total, 445 sites of 23 periodontally healthy individuals were measured by 3 instruments: North Carolina manual probe, Florida automated probe and OCT at 1325 nm. To obtain quantitative measurements from OCT images, the gingival refractive index was also determined. Discomfort/pain perception and the duration of examinations were compared among the instruments. The analysis of OCT images allowed the identification of relevant anatomic dental and periodontal regions. The average sulcus depth measured by OCT, 0.85 ± 0.27 mm and 0.87 ± 0.28 mm, was lower than the values obtained by manual and automated probing. Discomfort/pain were prevalent for traditional probes, which are invasive methods, than for the non-invasive OCT technique. OCT has the potential to be a reliable tool for in vivo periodontal tissues evaluation and for reproducible sulcus depth measurements in healthy sites. Further technological advances are required to reduce the procedure time and promote evaluation of posterior oral regions. Photonic assessment of periodontal tissue with OCT (top) in a clinical environment, showing tooth/gingiva features (bottom).
Keywords: Diagnostic Imaging; Gingiva; Optical Coherence Tomography; Periodontal Diseases.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.