In this work, an efficient method for the rapid extraction and separation of antioxidant phenols was developed and optimized. The method was then applied to extract and separate nine phenols from 37 varieties of raspberry, in which their antioxidant activities were further investigated. First, the extraction was conducted using ultra-sonication, which was then further separated using reversed-phase high-performance liquid chromatography/ultraviolet (RP-HPLC/UV) analysis. In this step, several key parameters (volume of the extraction reagent, time of extraction, and the temperature of extraction) affecting its efficiency were investigated and optimized using the response surface methodology (RSM) combined with the Box-Behnken design (BBD) so that the optimal conditions were obtained. According to the overall results of the optimization study, the optimal conditions were chosen as follows: volume of extraction reagent = 2.0 mL, time of extraction = 50.0 min, and temperature of extraction = 50 °C. The optimal conditions were then applied to extract nine phenols, including gallic acid, catechin, chlorogenic acid, vanillic acid, syringic acid, cumaric acid, ferulic acid, rosemary acid, and quercetin from 37 raspberry varieties. The extracted phenols were characterized and their antioxidant activities, including DPPH- and ABTS- free radical scavenging and intracellular reactive oxygen species (ROS) activity, using HepG2 cells as the model, were subsequently studied. The findings suggested that although their contents varied among most raspberry varieties, these phenols significantly contributed toward their antioxidant capacity and scavenging intracellular ROS activities. This study provides a scientific and theoretical basis for the selection of raspberry varieties and product development in Qinghai province.
Keywords: RP-HPLC/UV; RSM; antioxidant activity; phenols; raspberry.