Regions at high latitudes and high altitudes are undergoing a more pronounced winter warming than spring warming, and such asymmetric warming will affect chilling and forcing processes and thus the spring phenology of plants. We analyzed winter chilling and spring forcing accumulation in relation to the spring phenology of three tree species (Ulmus pumila, Populus simonii, and Syringa oblata) growing in a cold region (CR) compared with trees in a warmer reference region (WR), using the Dynamic Model and the Growing Degree Hour (GDH) model. We tested that forcing rather than chilling affects the spring phenology of trees in CR (hypothesis I), and that trees in CR have both lower mean chilling and forcing temperature and thus longer accumulation periods than trees in WR (hypothesis II). The modeling results confirmed that chilling and forcing occur simultaneously during the early spring when temperature gradually increases. In line with our hypotheses, forcing played a crucial role in spring phenology in CR, but chilling and forcing combined to determine spring phenology in WR. The temperature during the chilling and forcing periods was lower and the accumulation period started earlier and ended later in CR than in WR. Moreover, the chilling accumulation was broken into two periods by the low deep winter temperature in CR, and that interruption will be removed by future strong winter warming. Future asymmetric warming, with a stronger temperature increase in winter than in spring, could decrease the forcing accumulation effects and increase the chilling effects on the spring phenology of plants in CR. This change in the balance between chilling and forcing will lead to a shift in plant phenology, which will further have major impacts on biogeochemical cycles and on ecosystem functions and services.
Keywords: Bud burst; Flowering; Forcing accumulation; Spring warming; Tree phenology; Winter warming.
Copyright © 2020 Elsevier B.V. All rights reserved.