Mission planning for multiple unmanned aerial vehicles (UAVs) is a complex problem that is expected to be solved by quantum computing. With the increasing application of UAVs, the demand for efficient conflict management strategies to ensure airspace safety continues to increase. In the era of noisy intermediate-scale quantum (NISQ) devices, variational quantum algorithms (VQA) for optimizing parameterized quantum circuits with the help of classical optimizers are currently one of the most promising strategies to gain quantum advantage. In this paper, we propose a mathematical model for the UAV collision avoidance problem that maps the collision avoidance problem to a quadratic unconstrained binary optimization (QUBO) problem. The problem is formulated as an Ising Hamiltonian, then the ground state is solved using two kinds of VQAs: the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA). We select conditional value-at-risk (CVaR) to further promote the performance of our model. Four examples are given to validate that with our method the probability of obtaining a feasible solution can exceed 90% based on appropriate parameters, and our method can enhance the efficiency of a UAVs' collision avoidance model.
Keywords: collision avoidance of UAVs; conditional value-at-risk; quantum approximate optimization algorithm; variational quantum algorithms; variational quantum eigensolver.