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Abstract—Conventional speaker recognition systems use Gaus-
sian mixture models (GMM) to model a speaker’s voice based on
the speaker’s acoustic characteristics. This method is categorized
as a non-discriminative training process, as the model-building
process does not take into account the negative examples of the
speaker. To increase the discriminative properties of a GMM
for each speaker, a new approach that includes both positive
and negative examples during the speaker training process is
proposed. In this approach, speaker models are trained by
moving the mixture model’s means in such a way as to maximize
the likelihood of speaker data while also minimizing the likelihood
of negative examples for the speaker. The effectiveness of this
approach on classification accuracies on speaker recognition tasks
is tested on the NTIMIT database and NIST SRE 2003 corpora.
The results indicate improvements in the performance of the
system built using this new approach when compared to the
traditional GMM-based speaker recognition systems.

Index Terms—discriminative training, Gaussian mixture mod-
els, speaker recognition

I. INTRODUCTION

The goal of a speaker recognition system is to identify a

speaker based on his/her voice-characteristics. This task typi-

cally involves two phases - training and testing. In the training

phase, a speaker registers with the system by providing sample

utterances and statistical models based on those examples are

then built. During testing, an utterance is identified (a) as

belonging to a particular speaker (identification) or (b) the

utterance along with a claim is authenticated (verification). A

speaker recognition system is said to be text-independent when

the text corresponding to an utterance does not influence the

decisions made by the system.

A common way to model a speaker’s voice in text-

independent speaker recognition systems is to build a Gaussian

Mixture Model [1] with the distinctive features extracted from

the training samples. Mel-scale cepstral co-efficients are ubiq-

uitous features in speaker recognition that are extracted from

the training data by performing a filter bank analysis on a mel-

scale. When a test utterance is supplied, the features extracted

from it are used to compute the probability that the test sample

belongs to a particular speaker. This kind of modelling is a

non-discriminative way to build speaker models as it does

not take into account the negative examples of a class. We

refer to negative data as those samples that do not belong to

the speaker and thus should not be classified as belonging

to him/her. GMMs, however, are good approximations of

speaker classes [2] and easier to compute. This encourages

the development of a new approach for discriminative training

within the GMM framework of speaker recognition.

To offset the lack of discriminative qualities of Gaus-

sian mixture models, several approaches have been proposed.

UBM-GMM (Universal Background Model - Gaussian Mix-

ture Model) is a popular one among them. UBM is a base

model from which all speaker models are adapted by a form

of Bayesian adaptation [3]. A UBM is generally built from a

large data set containing all probable speakers. During training,

every speaker model is adapted from this UBM by performing

MAP adaptation on the UBM with the training samples of the

speaker. A model of the speaker is thus obtained and testing

is done as in any GMM-based speaker recognition system [4].

UBM-GMMs are also common in speaker verification sys-

tems, where the likelihood ratio between the claimed speaker’s

model and the UBM for a test utterance is computed. This ratio

is compared to a common or per-speaker threshold.

In [5], discrimination among GMMs have been introduced

using the MCE (minimum classification error) criterion. [6]

and [7], discuss a Maximum Model Distance algorithm for

HMMs (Hidden Markov Models) that has been extended to

GMMs in [8]. This approach tries to maximize the distance

between each model and a set of competitive speakers’ models.

All the aforementioned approaches tend to use GMMs built

the traditional way and discrimination is performed only across

those GMMs, rather than directly build a GMM that has al-

ready been modelled to be discriminative. In another approach

[9] , GMMs themselves are used as feature vectors, called

supervectors, to train Support Vector Machines (SVM). Our

primary motivation was to develop a discriminative training

technique that still retains the GMM framework for speaker

recognition. In the proposed approach, GMMs are built for

each speaker discriminatively based on the available positive

and negative examples for each speaker. Clearly, the objective

would now be to both maximize the likelihood of positive

speaker data, as in the existing modelling techniques, and also

minimize the likelihood of negative data samples.

The rest of the paper is organized as follows : Section II

contains a general introduction to Gaussian mixture models,

their application to text-independent speaker identification, and

also introduces our approach of discriminative training for

GMMs . Experimental results are discussed in Section III and

Section IV discusses our conclusions.



II. PROPOSED APPROACH

A. Background : Gaussian Mixture Models

Gaussian Mixture Models (GMM) are popular statistical

models due to their ability to form good approximations of

data and the ease involved in computation. It is a linear com-

bination of multiple Gaussian distributions. They are expressed

as

p(x̄) =

K∑

k=1

πkN(x̄|µ̄k,Σk) (1)

where
x̄ : a d-dimensional feature vector

πk : weight of kth mixture,

N(x̄|µ̄k,Σk) : Unimodal Gaussian distribution with

parameters µ̄k,Σk

µ̄k and Σk : mean vector and covariance matrix

of kth mixture respectively

K : number of mixtures per model

It should be noted that

K∑

k=1

πk = 1

The parameters of a GMM for a data set

D={x̄1, x̄2, ..., x̄n, ..., x̄N} are chosen such that

θ̄ = arg max
θ̄i

P (D|θ̄i) (2)

where

θ̄ = {θ̄1, θ̄2, ..., θ̄K} and θ̄k = {µ̄k,Σk, πk} (k = 1, 2, ...,K)

Generally, implementations of GMM-based speaker recog-

nition systems assume diagonal covariance matrices.

It is more convenient to maximize the log probability than

(2).

l(θ̄) = lnP (D|θ̄) (3)

The feature vectors are assumed to be independent and

identically distributed. Parameter estimation is done using the

Expectation-Maximization algorithm [10] where likelihood of

the training examples is maximized.

B. Discriminative Training

In this paper, a new objective function to be maximized

is defined. This incorporates a placeholder for likelihood

of negative training samples for a particular speaker. The

objective is to maximize the likelihood of positive training

samples and simultaneously minimize the likelihood of the

negative examples of that class with respect to the same model.

That is, we need to find θ̄, the model, that combines both

approaches of

θ̄ = arg max
θ̄i

lnP (D|θ̄i) (4)

and

θ̄ = arg min
θ̄i

lnP (D
′

|θ̄i)

= arg max
θ̄i

− lnP (D
′

|θ̄i) (5)

where D
′

= { x̄
′

1, x̄
′

2, ...,
¯x
′

N
′ } is the set of negative

examples and N
′

is the number of negative examples.

We combine (4) and (5) as

θ̄ = arg max
θ̄i

{lnP (D|θ̄i) − lnP (D
′

|θ̄i)} (6)

(6), however, requires that the data be balanced. This is

not always the case. To deal better with imbalanced data

a regularization parameter is introduced that removes the

imbalance in data automatically. Our new objective function

to be maximized then becomes

l(θ) = α lnP (D|θ̄) − (1 − α) lnP (D
′

|θ̄) (7)

where 0 < α ≤ 1 is a regularization parameter (a tighter

lower bound for α is discussed later). This eliminates the

imbalance between positive and negative data samples of a

class and the consequent bias.

C. Re-Estimation of Parameters

We now maximize l(θ̄) in (7)

∂l

∂µ̄k

= 0,
∂l

∂Σk

= 0,
∂l

∂πk

= 0

and obtain the following set of equations to re-estimate

parameters

µ̄k =
α

∑N
n=1 γnkx̄n − (1 − α)

∑N
′

n=1 γ
′

nkx̄
′

n

α Nk − (1 − α) N
′

k

(8)

Σk = {α
∑N

n=1 γnk(x̄n − µ̄k)(x̄n − µ̄k)T−

(1 − α)
∑N

′

n=1 γ
′

nk(x̄′
n − µ̄k)(x̄′

n − µ̄k)T }

α Nk − (1 − α) N
′

k

(9)

πk =
α Nk − (1 − α)N ′

k

α N − (1 − α) N
′

(10)

where

γnk =
P (x̄n|µ̄k,Σ̄k)

P

K
j=1

P (xn|µ̄j ,Σj)

γ
′

nk =
P

¯(x′

n|µ̄k,Σk)
P

K
j=1

P (x̄′

n|µ̄j ,Σj)

Nk =
∑N

n=1 γnk

N
′

k =
∑N

′

n=1 γ
′

nk

The parameters in (8), (9) and (10) are estimated in an

iterative fashion. The initial values for these parameters can

be assigned in several ways. K-Means [11] clustering and

the LBG algorithm [12] are common choices for initializing

the model parameters. Once the model is initialized, the

parameters are re-estimated using the above equations until

the algorithm reaches a convergence criterion that there is no

further increase in the likelihood of the data.



D. Choosing α

The choice of the regularization parameter, α, is critical as it

determines the extent to which the negative samples influence

the model-building process. It can be noticed that when α is

1, the technique reverts back to conventional GMM approach.

α has to be chosen dynamically based on the amount of data

available.

A tighter lower bound for α can be obtained using the

condition that all πk values are non-negative and normalized.

That is, by applying
∑K

k=1 πk ≥ 0, we get

α >
N

′

N + N
′

(11)

Even with (11), there is a possibility that some cluster

weights can become negative. This is because, the inequality

does not depend on the effective number of samples (Nk and

N
′

k) belonging to each cluster. We define an even tighter bound

by constraining α such that

α > (
N

′

k

Nk + N
′

k

) (12)

k = 1, 2, ...,K

From (12), we derive

α > max
k

(
N

′

k

Nk + N
′

k

) (13)

Equation (13) ensures that the cluster weights and variance

values are non-negative.

E. Speaker Identification

Given a test utterance DT = {x̄T
1 , x̄T

2 , ..., x̄T
t }, a class label,

the identity of the speaker, is assigned according to the Bayes’

decision rule

i = arg max
j

P (j|DT ) (14)

where i and j are class labels. The Baye’s decision rule

ensures that the risk involved in classifying is minimal [11].

F. Speaker Verification

The speaker verification task involves validating a claim

attached to a test utterance. The utterance is tested against the

claimed speaker’s model and the score obtained is compared to

a threshold for the claim to be validated. Practically, this task

is not simple because of the natural variability in the scores.

This encourages the need to normalize the scores. Several

score normalization techniques have been proposed [13]. T-

Norm is a commonly used technique. Given a score, T-Norm

normalization is given as

S =
log(P (θ|DT )) − µI

σI

(15)

where

S : normalized score

θ : model corresponding to the claim

µI : mean of scores obtained from the cohort set

σI : standard deviation of scores obtained

from the cohort set

III. EXPERIMENTAL RESULTS

The new approach discussed in the previous section was

tested for it’s accuracy in speaker identification on a subset of

200 speakers from the NTIMIT database [14] and on a subset

(all 149 male speakers) of NIST SRE 2003 corpora [15].

In the NTIMIT subset chosen for experimentation, each

speaker had 10 utterances in the database. Six utterances were

used for training; all utterances in sa#, si# and one utterance

from sx# were used training. The rest of the utterances in

sx# were tested on the models built. For the NIST SRE 2003

corpora chosen, as mentioned earlier, the entire male data set

was chosen for experimentation. Further, speaker verification

experiments were also conducted on the NIST SRE 2003 data

set.

A. Baseline system

Traditional GMM-based speaker identification system was

used as the baseline system. MFCC features with 23 cepstral

co-efficients per feature vector were extracted. The utterances

were bandlimited in the range (100 - 4000 Hz). 32-mixture

GMMs were built and the models were tested against the

test utterances for each of the speakers. The system had a

classification accuracy of 41.375% on NTIMIT database,

while a classification accuracy of 45.04% was obtained on

NIST SRE 2003 database. The baseline system’s performance

on NTIMIT does not compare to that mentioned in [2] due

to the differences in composition of training and test data.

B. Proposed System

Models built using the proposed approach had the same

training data as the baseline system. A critical step while

building the models was setting a value for α. Clearly, the

effective number of positive examples per cluster (Nk) and

it’s negative counterpart (N
′

k) need to be balanced. Thus, α

was evaluated for each cluster, and their maximum was chosen

for the entire training process for each speaker (refer section

II.D for details). This is essential in order for the variances

and cluster weights to remain positive.

The choice of negative examples for a speaker play an

important role in the training process. The entire of the rest

of training data was chosen as anti-speakers (199 speakers

for each speaker in NTIMIT database and 148 speakers for

each speaker in NIST SRE 2003 data set) for the intial set of

negative examples. This was dynamically filtered by applying

a threshold on the probability that a negative sample belongs

to a Gaussian mixture of the class. This was necessary as

a larger amount of negative samples could induce unintended

movement of cluster means. Also, farther the negative samples

are from the class, lesser their likelihood; obviating a necessity

to include them in the negative data set. Negative data were
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Fig. 1. Comparison of histograms of (averaged) log probabilities for test

utterances from anti-speakers for a speaker i (in the NTIMIT database)

between the traditional and the proposed approach. The distribution from

proposed approach is in the left and to it’s right is that from the traditional

GMM-based approach.

chosen such that their likelihood corresponding to the class

was high. Again, the value of this threshold is critical as it

influences the regularization parameter, α. A larger threshold

would induce a bias on cluster means towards the negative

samples, while a smaller distance threshold will include very

little negative data.

C. Analysis

Figure (1) shows a probability density histogram of average

log probabilities of speaker j (j = 1, 2, ..., 200 and j 6= i)

with speaker models of i built with the NTIMIT data set. It

shows decrease in probability values of test utterances from

anti-speaker , j(6= i), compared to that in the traditional GMM

approach. It was observed that the distortion values of test

utterances of speakers closer to speaker i in the feature space

decreased more with respect to i than for others. Such a

decrease in probability value implies that the possibility of a

test utterance being classified to speaker i that does not belong

to him/her is lesser.

1) Effect of Threshold: As mentioned earlier, a large nega-

tive data set might influence unnecessary movement of cluster

means. Thus a need for subset selection from the negative data

set arises. This was done by constraining a threshold on the

probability that a negative sample belongs to the class. Figure

2 shows the effect of the threshold on distortion values of test

utterances. The threshold and it’s effect on the classification

accuracy are, of course, dependent on the data set at hand as

the range of applicable threshold values could differ based on

the data set and the type of distortion measure applied.

The value of the threshold was obtained empirically by

performing a line search in the range of -39 to -15 (where each

threshold value denotes log probabilities) in steps of 1. Figure

2 shows how the distortion value changes with respect to

threshold for one particular speaker (in the NTIMIT database)
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Fig. 2. Illustration of changes in distortion values (log probabilities) with

threshold for a speaker for a single utterance (from an anti-speaker)

and a fixed test utterance (not belonging to the speaker). The

Y-axis corresponds to the log probability that a data point

belongs to a cluster. Clearly, from the figure, one can observe

that the best threshold corresponds to a local minimum. The

choice of the threshold consequently affects the number of

negative examples chosen to discriminate while training. A

large number of examples can introduce an undue bias and can

hurt the system’s performance. Therefore, a judicious choice

of the set of negative examples must be made.

We also tested a dynamic threshold selection strategy where

the thresholds were set at cluster levels. For each cluster, we

selected negative data whose responsibility values (γ
′

nk) for

that cluster were at most the maximum of responsibility values

of the positive data (γnk) in that cluster. This selection strategy

showed reasonable performance improvements, too.

2) Results: The baseline system’s accuracy is given in

Table I. The results of the system built using the proposed

approach at some of thresholds are given in Table II (NTIMIT)

and Table III (NIST SRE 2003).

TABLE I
Baseline performances of the traditional GMM system

Database Classification Accuracy (%)

NTIMIT (200 speakers) 41.375

NIST SRE 2003 male speakers 45.04

TABLE II
Summary of results of the proposed approach on NTIMIT database for some

threshold values (distortion values are log probabilties)

Distortion value Classification Accuracy (%)

-24.0 42.00

-25.0 42.875

-26.0 42.75

-27.0 42.25

-28.0 41.75

Dynamic threshold 42.625

A significant performance gain was observed after training

speaker models discriminatively although the results are highly

influenced by the subset selection strategy on the negative data

set.

Further expermentation was conducted to observe the in-

fluence of the proposed discriminative training approach on



TABLE III
Summary of results of the proposed approach on NIST SRE 2003 database

for some threshold values (distortion values are log probabilties)

Distortion value Classification Accuracy (%)

-27 45.5696

-28 46.3887

-29 46.2398

speaker verification tasks. The NIST SRE 2003 database’s

subset used in speaker identification task previously was again

used for this purpose. The baseline system was once again

the traditional GMM system that was used in the speaker

identification task previously. Additionally, a UBM-GMM

system (as mentioned in [3]) was developed on the NIST data

set. 1024-mixture UBM was built from the entire training data

set and speaker models were adapted from it. All means, co-

variances and mixture weights were adapted. This system’s

performance was also compared with that of the proposed

sytem.

Evaluation key in the NIST SRE 2003 database was used

to generate claims for each utterance in the test set. T-Norm

based score normalization was performed on the likelihood

scores obtained for each test utterance. A cohort set of 50

speakers was chosen for this purpose. The performances of

the baseline, proposed and the UBM-GMM system were

compared using DET curves [16]. Figure 3 compares the

DET curves of these systems. Clearly, the proposed approach

shows improvements over the baseline system and matches

the performance of UBM-GMM system. It can further be

inferred that at higher false alarm probabilities the proposed

approach outperforms the UBM-GMM system. It should be

emphasized that the proposed approach used only 32-mixutre

models while models in the UBM-GMM framework had 1024

mixtures. Consequently, the proposed system required much

lesser computation time than the UBM-GMM approach.

IV. CONCLUSION AND FUTURE WORK

The discriminative training approach proposed for mod-

elling speaker data using GMMs performs better than con-

ventional GMM-based speaker recognition systems for appro-

priate choices of regularization parameters. The choice and the

amount of negative examples used while training the speaker is

critical in determining the model’s performance in the system.

In this approach, negative data samples that were close to

the speaker model were chosen using two different strategies

(a) static threshold and (b) dynamic threshold selection. Both

selection strategies displayed performance improvements.

The proposed approach can also be brought under UBM-

GMM framework of discriminative training. Further analysis

of such a methodology will be the focus of future work.
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