584 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015

A Synergetic Use of Bloom Filters for Error Detection and Correction

Pedro Reviriego, Salvatore Pontarelli, Juan Antonio Maestro, and Marco Ottavi

Abstract— Bloom filters (BFs) provide a fast and efficient way to check
whether a given element belongs to a set. The BFs are used in numerous
applications, for example, in communications and networking. There is
also ongoing research to extend and enhance BFs and to use them in
new scenarios. Reliability is becoming a challenge for advanced electronic
circuits as the number of errors due to manufacturing variations,
radiation, and reduced noise margins increase as technology scales. In this
brief, it is shown that BFs can be used to detect and correct errors in
their associated data set. This allows a synergetic reuse of existing BFs to
also detect and correct errors. This is illustrated through an example of
a counting BF used for IP traffic classification. The results show that the
proposed scheme can effectively correct single errors in the associated set.
The proposed scheme can be of interest in practical designs to effectively
mitigate errors with a reduced overhead in terms of circuit area and
power.

Index Terms— Bloom filters (BFs), error correction, soft errors.

I. INTRODUCTION

Bloom filters (BFs) provide a simple and effective way to check
whether an element belongs to a set [1]. They are used in many
networking applications [2] as well in computer architectures [3].
The BFs are also used in large databases (e.g., Google Bigtable uses
it to reduce the disk lookups [4]).

The basic structure of BFs has also been extended over the years.
For example, counting BFs (CBFs) were introduced to allow removal
of elements from the BF [5]. To optimize the transmission over the
network, another extension known as compressed Bloom filters was
proposed [6]. Recently Bloom filter (Biff) codes that are based on
BFs have been proposed to perform error correction in large data
sets [7].

In most cases, BFs are implemented using electronic
circuits [8], [9]. The contents of a BF are commonly stored
in a high speed memory and required processing is done in a
processor or in dedicated circuitry. The set used to construct the BF
is also commonly stored in a lower speed memory [10].

The reliability of electronic circuits is becoming a challenge as
technology scales. Errors caused by interferences, radiation, and other
effects become more common. Therefore, mitigation techniques are
used at different levels to ensure that the circuits continue to operate
reliably [11]. For BF implementation, memories are a critical element.
For memories, permanent errors and defects are commonly corrected
using spare rows and columns [12]. However, soft errors caused for
example by radiation can affect any memory cell changing its value
during circuit operation. Soft errors do not produce damage to the

Manuscript received September 6, 2013; revised January 23, 2014; accepted
March 10, 2014. Date of publication March 27, 2014; date of current version
February 20, 2015. This work was supported in part by the Spanish Ministry of
Science and Education under Grant AYA2009-13300-C03. This brief is part of
a collaboration in the framework of COST ICT Action 1103 “Manufacturable
and Dependable Multicore Architectures at Nanoscale”.

P. Reviriego and J. A. Maestro are with the Universidad Antonio de Nebrija,
Madrid E-28040, Spain (e-mail: previrie @nebrija.es; jmaestro@nebrija.es).

S. Pontarelli is with the National Interuniversity Consortium for Telecom-
munications, Rome 00133, Italy (e-mail: pontarelli@ing.uniroma?2.it).

M. Ottavi is with the University of Rome Tor Vergata, Rome 00133, Italy
(e-mail: ottavi@ing.uniromaZ2.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLS1.2014.2311234

memory device that continues to operate correctly but has the wrong
value in the affected cell [13]. To deal with soft errors, the use of a
per word parity bit or more advanced error correction codes (ECCs)
has been common in memories for many years [14].

The BFs have also been proposed to mitigate errors in electronic
circuits. For example, in [15], a BF is used to identify the faulty
words in a nanomemory. In [16], the use of a CBF is proposed to
detect and correct errors in content addressable memories (CAMs).
In this case, the CBF is used in parallel with a CAM and the objective
is to detect errors in the CAM entries. This is done by checking the
results of the CAM and the CBF to ensure that they are consistent.
Once an error is detected, a correction procedure is initiated to restore
the correct value in the affected CAM entry using an external copy
of its contents. In both cases, the BFs are added explicitly and only
to detect and/or correct errors and are not present in the original
design. The same applies to Biff codes in which the extended BFs
are only used for error correction. That is in those cases, the BF is
not in the original system and it is explicitly added to protect against
errors. This is different from the reuse of existing BFs that are already
present in the system to also provide error correction which to the
best of our knowledge has not been studied.

In this brief, a scheme to exploit existing CBFs to additionally
implement error detection and correction in the elements of the set
associated with the CBF is presented. The approach is based on the
concept of algorithmic-based fault tolerance (ABFT), which proposes
to reuse existing properties or elements of the system to implement
fault tolerance with a lower cost [17]. In the line of ABFT, the
proposed scheme enables a synergetic reuse of existing CBFs for
error detection and correction. The scheme assumes that the elements
of the set are stored in a memory protected with a per word parity
bit and the CBF is used to implement the correction of single bit
errors. The effectiveness of the scheme is illustrated using a traffic
classification case study.

The basic ideas behind the proposed technique can also be applied
when the elements of the set are stored in a memory protected
with more advanced ECCs. In addition, a simplified version of the
proposed approach can also be used for traditional BFs but in that
case, the percentage of errors that can be corrected is much lower.
The exploration of the scheme extension to these cases is left for
future work.

The rest of this brief is organized as follows. In Section II, an
overview of BFs and CBFs is provided. In Section III, the proposed
scheme is presented. Then, in Section IV, a case study of traffic
classification is used to illustrate the effectiveness and benefits of the
scheme. Finally, conclusions are drawn in Section V.

II. OVERVIEW OF BFS

A BF is constructed using a set of k& hash functions to access an
array of m bits. The hash functions iy, hy,...,h; map an input
element x to one of the m bits. The following two operations are
defined in a BE.

1) Insertion: To insert an element x in the BF, the bits in the array
that correspond to the positions A1 (x), hp(x), ..., hx(x) are set
to one.

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015 585

2) Query: To query for an element x in the BF, the bits in the
array that correspond to the positions 1 (x), hy(x),..., hi(x)
are read and if and only if all of them are one, the element is
considered to be in the BF.

This operation guarantees that if an element has been added to
the BF, it will be found when a query for it is done. However, a BF
can produce false positives when a query for an element that has
not been added to the BF is done. That is an element is incorrectly
classified as being stored in the BF when in fact is not in the element
set. This can occur if other elements have set to one the positions
that correspond to the hash values of that element.

As discussed in [2], assuming that the hash functions are uniformly
distributed, after inserting n elements in the BF, the probability pg(n)
that a given bit in the array is zero can be approximated as

1 kn k-n
po(n) = (1 - Z) e m,)

Therefore, the probability of a false positive can be
approximated as
~ b~ _kn\k
Prp) = (1= pom) = (1=)" @)

It can be observed that p g, depends on (1 — po(n)) and k. The
first expression gives the probability that an element in the CBF has a
value different than zero and is commonly known as the load factor.
The load factor gives an indication of how many elements have been
inserted in the CBF and also of the false positive probability. The
load factor will be used in the experiments presented in this brief
and is defined as

lf == po). S

A problem with BFs is that elements cannot be easily removed.
This is because a position with a one in the array can be shared
by several elements and thus clearing the A (x), ho(x),..., hr(x)
positions for an element x may also affect other elements in the BF.
To address this issue, CBFs which are a generalization of BFs were
introduced. In a CBF, the array of m bits is replaced with an array
of integers of b bits and the operations are defined as follows.

1) Insertion: To insert an element x in the CBF, the integers in the
array that correspond to the positions %1 (x), hy(x),..., hi(x)
are incremented by one.

2) Query: To query for an element x in the CBF the integers in the
array that correspond to the positions %1 (x), hp(x), ..., hg(x)
are read and if and only if all of them are larger than zero the
element is considered to be in the CBF.

3) Removal: To remove an element x from the CBF, the inte-
gers in the array that correspond to the positions hj(x),
ho(x), ..., hi(x) are decremented by one.

The use of integers instead of bits allows the removal of elements
as now each position in the array stores the number of elements that
share that position. The false positive rate of a properly dimensioned
CBEF is the same as that of a standard BF.

ITII. PROPOSED SCHEME

The proposed scheme is based on the observation that a CBF,
in addition to a structure that allows fast membership check to an
element set, is also in a way a redundant representation of the element
set. Therefore, this redundancy could possibly be used for error
detection and correction.

To explore this idea, a common implementation of CBFs where
the elements of the set are stored in a slow memory and the CBF is
stored in a faster memory is considered. In particular, it is assumed

that the elements of the set are stored in DRAM while the CBF is
stored in a cache [10]. The reasoning behind this is that the CBF
is accessed frequently and needs a fast access time to maximize
performance, while the elements of the set are only accessed when
elements are read, added or removed and therefore the access time is
not an issue. It should also be noted that when the entire element set
is stored in a slow memory, no incorrect deletions can occur as they
would be detected when removing the element from the slow memory.
Therefore, the false negatives issue in CBFs discussed in [18] is not
a concern in our case.

Typically, memories are protected with a per word parity bit or
with a single bit error correction code [14]. This is based on the
observation that most errors affect a single bit or even if they affect
multiple bits, the errors can be spread among different words by
the use of interleaving [19]. In addition, soft errors are rare events
so that the time between errors is typically large [13]. The arrival rate
for terrestrial applications is in the order of at least days or weeks and
therefore, it is commonly assumed that errors are isolated. That is, by
the time a soft error arrives any previous soft error has been corrected
or detected. This is an assumption that is needed, for example, when
single bit error correction codes are used.

In the following, one of these two most common protection options
is used. In particular, it is assumed that both the DRAM and the cache
are protected with a per word parity bit that can detect single errors.
As when using single bit error correction codes, it is also assumed
that errors are isolated.

The goal for this implementation is to achieve the correction of
single bit errors using the CBF. That is, the CBF would enable single
bit error correction without incurring in the cost of adding an ECC
to the memories.

The first step to achieve error correction is to detect errors. This is
done by checking the parity bit when accessing either the DRAM or
the cache. To ensure earlier detection of errors, the use of scrubbing
to periodically read the memories could be considered [20]. Once an
error is detected, a correction procedure is triggered.

If the error occurs in the CBF, it can be corrected by clearing the
CBF and reconstructing it using the element set. If the error occurs
in the element set, the procedure is more complex and can be divided
in two phases that are described in the following sections. The idea is
that the simpler and faster procedure is used first and only when it is
unable to correct the error, the second more complex error correction
procedure is used subsequently.

A. Simple Procedure for the Correction of Errors
in the Element Set

To present the simple correction procedure, let us assume that a
single bit error affects element x and that it is detected using the
parity bit. Therefore, x. is read from the memory. The correct value
x has to be x, if the error affected the parity bit. If the error affected
the ith data bit, the correct value will be xep; (i) where xep (i) is
the value read (x.) with the ith bit inverted. To determine which of
those is in fact the correct value x, the candidates [x, and all the
xem(i)] can be tested for membership to the CBF. If only one of the
candidates is found in the CBF, then no false positives have occurred
and the value found is the correct one. Instead, if more than one
candidate is found, the procedure is unable to find the correct value
due to the occurrence of false positives. In this case, the advanced
procedure described in Section III-B must be used. This simple and
fast procedure requires only / + 1 queries to the CBF, where [is the
number of bits in each element of the set. However, the correction
rate that can be achieved depends on the false positive rate of the
CBF. In particular, the probability that an error can be corrected using

586 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015

this procedure can be approximated as

~ !
Peorrection = (1 - pfp))

which is the probability that none of the / candidates that are not
x return a false positive on a query. The above formula does not
take into account that some elements on the set may only differ in
one or two bits from another element in the set. In that case, the
proposed correction procedure may fail as one of the candidates may
also be a valid element and therefore, the advanced procedure must
be used. This effect will be heavily dependent on the properties of
the elements in the set and will therefore be application dependent.
In any case, to account for it, the probability given by (4) should be
used as an upper bound rather than an approximation.

B. Advanced Procedure for the Correction of Errors
in the Element Set

When the simple procedure described in Section III-A cannot
correct an error, a more advanced technique can be used. The
correction process starts by making a copy of the CBF in DRAM
memory. Then, all the elements in the set except for the erroneous
one are removed from the CBF. This will leave a CBF with only the
values that correspond to the original value of the element x. Once
that is done, the candidates [x, and all the x,; ()] can be queried over
the CBF that has only x as an entry. As in the previous procedure, if
only one of the candidates matches the CBF, that is the correct value.
If more than one candidate matches the CBF then the error cannot be
corrected. The probability that a given value x and another value y

produce exactly the same values of the hash functions Ay, hp, ..., hi
can be approximated as
k!
PCBF(x)=CBEF(y) = vl)

Therefore, the correction probability for this advanced procedure
can be approximated as

K
Peorrection = (1 - _) (6)

mk
which will be very close to 100% in many practical scenarios as
m is typically large.

The increased correction rate comes at the cost of a more complex
correction procedure that needs the replication of the CBE, the
removal of all the entries except the erroneous one (n— 1), and finally
the query for the / 4+ 1 candidates. However, as soft errors are rare
events, and the procedure is only needed when the simple procedure
presented before cannot correct an error, the scheme can be useful
in real applications.

Finally, it must be noted that when the CBF experiences overflows
in the counters, this second technique cannot be used. This should
not be a big issue as the overflow probability is typically very low
when four bits per counter are used [21]. In any case, since overflows
are detected once that occurs, this second procedure can be disabled.

The same scheme could be applied to a memory protected with
a single error correction double error detection (SEC-DED) code to
correct double errors. In that case, the simple procedure would be of
little use in most cases as the number of candidates to test is (’E !)
and therefore, it is unlikely that none of them gives a false positive.
The advanced correction procedure on the other hand will be able
to correct the errors with a probability close to one. The detailed
evaluation of this scenario is left for future work.

IV. EVALUATION

The proposed scheme has been evaluated using a real example of
a CBF used to speed-up traffic classification. Pairs of IP addresses

0.99f ******* Tt I
E4 | | |
UL RECECEEEEPEERTE e
| | |
So097f - Fem oo Ao e
© | | |
g | | I
Lo e e [
- | | |
oo T o]
"‘5 | | |
| | |
£0.94 77777777 === B == == === —
g | I I
Bogs -~ - -l : |
o ! ! ¥ m=64K
| | _
0.92f — — — — — — - T A m=32K ||
| | x m=16K
091F — =~ — — =~ ¢ Theoretical | |
| | |
Og | | |
4 5 6 7 8

Number of hashes (k)

Fig. 1. Probability of error correction using the simple procedure for different
values of m and k and comparison with (4) when load is 0.12.

! i p 7
| ¥ |
| | |
| | |
095~~~ - I T mm—mm -
¥x | |
c | | |
S | | |
g 09—~~~ il AT [
E | | I
S | | |
“‘;‘) | | |
S oogsf - L A e
"‘5 | | |
> | | |
% | | |
© | | |
S 08F - [l
E | |
| | * m=64K
! ! = 32K
075F — — — — — = m -
B N < m=16K
| | ¢ Theoretical
| | T
07— N B L
4 5 6 7 8

Number of hashes (k)

Fig. 2. Probability of error correction using the simple procedure for different
values of m and k and comparison with (4) when load is 0.25.

(source and destination host) are stored in a multiple hash table [10],
and a set of CBFs allows to know in which table the element is
stored, providing a fast retrieve of the value associated to the element.
Since IP version four is considered, the size of the elements is
64 bits. To test the effectiveness of the scheme, the CBF is filled
using values from real data traces that are publicly available [22].
Different CBF sizes and load factors were tested. In particular, values
of m = 16,32 and 64K were considered and for each of them
load factors of 0.12, 0.25 and 0.5 were tested. The number of hash
functions k was also varied between 4 and 8. As explained before, the
load factor here refers to the probability that a position in the CBF is
different from zero that is 1 — pg given in (1). For each configuration,
once the CBF was filled to the desired load level, a single bit error was
introduced in one of the elements and the error correction procedures
described in Section III were applied. This process was repeated
10000 times so that 10000 random single bit errors were tested in
each case. First, the simple error correction procedure and if it is
unable to correct the error, the advanced procedure is used. In all
cases, the single bit errors were corrected. This can be explained
as the probability that an error is not corrected for the advanced
procedure is in the worst case (m = 16K and k = 4) approximately
2.1 x 10714 [obtained using (6)]. This shows that in practical terms
most errors will be corrected. The effectiveness of the simple error
correction procedure greatly depends on the load of the CBF and it is
shown in Figs. 1-3 (note that errors not corrected by this procedure

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 3, MARCH 2015 587

i
|
09F ——— - -~ T AT [
| | |
o8 - -l L
| | |
| | |
.5 07—~~~ t-— === H-- - == == == ===
g | | |
1= ! ! A
§ OB~ e e
% | | |
EO.S ,,,,,,,, Lo T -
5 | | |
> | | |
Zo4 T SR e
) | ¥ |
o3l - L !
C 03
a ! ! * m=64K
| |
02 - - - - - - - E e 4H-—-— - m=32K L]
! | m = 16K
01F-----—-- \‘5————————: —————— Theoretical ||
| | |
ot I I I
4 5 6 7 8

Number of hashes (k)

Fig. 3. Probability of error correction using the simple procedure for different
values of m and k and comparison with (4) when load is 0.50.

are subsequently corrected by the advanced procedure as described
before). It can be observed that for low loads the scheme can correct
most errors while at a load of 0.5 it is only effective when the number
of hashes is large. In all the cases, the upper bound given by (4) is
close to the actual results obtained in simulation. These observations
suggest a possible enhancement of the correction procedure.
Namely, when the load is high a number of entries can be removed
and when a low load is achieved, the simple procedure can be used
to correct the errors. In this way, the complete advanced procedure
will be used only for a small fraction of the errors. The study of this
refinement is left for future work.

It can be observed that the results do not depend on m. This can be
explained as for values of m much larger than one, as those commonly
used in practical applications, the CBF is close to the asymptotic
behavior in all cases [2].

Finally, the cost savings obtained by using the proposed scheme
can be estimated as the implementation of an SEC code on a 64 bit
element requires 7 bits. Therefore, as with only a parity bit and the
CBF SEC can be achieved, the savings would be 6 bits per element set
or roughly 10% of the memory storage required for the element set.
A different way to look at the benefits is that SEC can be implemented
in the element set when the system memory is protected only with
a per word parity bit. That is, reliability can be increased without
adding new hardware resources.

V. CONCLUSION

In this brief, a new application of BFs has been proposed. The idea
is to use the BFs in existing applications to also detect and correct
errors in their associated element set. In particular, it is shown that
CBFs can be used to correct errors in the associated element set. This
enables a cost efficient solution to mitigate soft errors in applications
which use CBFs.

The configuration considered in this brief is that of a memory
protected with a per word parity bit for which it is demonstrated
that the CBF can be used to achieve single bit error correction.
This shows how existing CBFs can be used to achieve error cor-
rection in addition to perform their traditional membership checking
function.

The general idea can also be used when the memory is protected
with more advanced codes. For example, if an SEC-DED code is
used, the CBF could be used to correct double errors. In addition,
the simplest part of the error correction scheme can also be applied
to traditional BFs to achieve some degree of error detection and
correction. The exploration of these alternative configurations is left
for future work.

REFERENCES

[1] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” in Proc. 40th Annu. Allerton Conf., Oct. 2002, pp. 636—646.

[3] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary, “Jetty: Filtering

snoops for reduced energy consumption in SMP servers,” in Proc. Annu.

Int. Conf. High-Perform. Comput. Archit., Feb. 2001, pp. 85-96.

C. Fay et al., “Bigtable: A distributed storage system for structured data,”

ACM TOCS, vol. 26, no. 2, pp. 1-4, 2008.

[5] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,

“An improved construction for counting bloom filters,” in Proc. 14th

Annu. ESA, 2006, pp. 1-12.

M. Mitzenmacher, “Compressed bloom filters,” in Proc. 12th Annu. ACM

Symp. PODC, 2001, pp. 144-150.

[71 M. Mitzenmacher and G. Varghese, “Biff (Bloom Filter) codes: Fast error

correction for large data sets,” in Proc. IEEE ISIT, Jun. 2012, pp. 1-32.

S. Elham, A. Moshovos, and A. Veneris, “L-CBF: A low-power, fast

counting Bloom filter architecture,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 16, no. 6, pp. 628-638, Jun. 2008.

[9] T. Kocak and 1. Kaya, “Low-power bloom filter architecture for deep
packet inspection,” IEEE Commun. Lett., vol. 10, no. 3, pp. 210-212,
Mar. 2006.

[10] S. Dharmapurikar, H. Song, J. Turner, and J. W. Lockwood, “Fast hash
table lookup using extended bloom filter: An aid to network processing,”
in Proc. ACM/SIGCOMM, 2005, pp. 181-192.

[11] N. Kanekawa, E. H. Ibe, T. Suga, and Y. Uematsu, Dependability in
Electronic Systems: Mitigation of Hardware Failures, Soft Errors, and
Electro-Magnetic Disturbances. New York, NY, USA: Springer-Verlag,
2010.

[12] D. Bhavsar, “An algorithm for row-column self-repair of RAMs and
its implementation in the alpha 21264,” in Proc. Int. Test Conf., 1999,
pp- 311-318.

[13] M. Nicolaidis, “Design for soft error mitigation,” IEEE Trans. Device
Mater. Rel., vol. 5, no. 3, pp. 405418, Sep. 2005.

[14] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for semiconductor
memory applications: A state-of-the-art review,” IBM J. Res. Develop.,
vol. 28, no. 2, pp. 124-134, 1984.

[15] G. Wang, W. Gong, and R. Kastner, “On the use of bloom filters for
defect maps in nanocomputing,” in Proc. IEEE/ACM ICCAD, Nov. 2006,
pp. 743-746.

[16] S. Pontarelli and M. Ottavi, “Error detection and correction in content
addressable memories by using bloom filters,” IEEE Trans. Comput.,
vol. 62, no. 6, pp. 1111-1126, Jun. 2013.

[17] A. Reddy and P. Banarjee, “Algorithm-based fault detection for sig-
nal processing applications,” IEEE Trans. Comput., vol. 39, no. 10,
pp. 1304-1308, Oct. 1990.

[18] D. Guo, Y. Liu, X. Li, and P. Yang, “False negative problem of
counting bloom filter,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 5,
pp. 651-664, May 2010.

[19] P. Reviriego, J. A. Maestro, S. Baeg, S. J. Wen, and R. Wong,
“Protection of memories suffering MCUs through the selection of the
optimal interleaving distance,” IEEE Trans. Nucl. Sci., vol. 57, no. 4,
pp. 2124-2128, Aug. 2010.

[20] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of scrubbing
recovery-techniques for memory systems,” I[EEE Trans. Rel., vol. 39,
no. 1, pp. 114-122, Apr. 1990.

[21] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area Web cache sharing protocol,” in Proc. ACM
SIGCOMM, Sep. 1998, pp. 254-265.

[22] (2012). CAIDA Anonymized Internet Traces [Online].
http://www.caida.org/data/passive/passive_2012_dataset.xml

[4

=

[6

)

[8

[t

Available:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

