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Abstract 

We examine the empirical implications of learning under ambiguity for the cross-section of stock 

returns. We introduce a theoretically-motivated ambiguity measure and find that ambiguity is 

priced in the cross-section of average stock returns.  Ambiguity is not subsumed by state 

variables known to predict stock returns, nor by value, size, and momentum factors.  In R-

squared comparative tests, a model that takes ambiguity into account performs better than 

empirical implementations of the Bayesian learning model, the Intertemporal CAPM, and the 

four-factor model of Fama and French (1993) and Carhart (1997).  

 

JEL Classification:  G12. 

Keywords: Dynamic Asset Pricing; Ambiguity; Knightian uncertainty; Learning; Cross-section 

of expected returns. 
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Conditional asset pricing models based on rational expectations perform poorly empirically 

(Lewellen and Nagel 2006; Kan, Robotti, and Shanken 2013).  While the rational expectations 

hypothesis assumes investors know the probability law governing asset returns, authors such as 

Knight (1921), Keynes (1921), Shackle (1949), and Roy (1952) have emphasized that investors 

form expectations based on vague information that cannot be quantified precisely.  Related 

evidence from experimental studies (Ellsberg 1961) has confirmed that individuals are averse not 

only to uncertainty regarding the outcome of events with known probabilities (risk), but also 

uncertainty regarding the outcome of events with unknown probabilities (Knightian uncertainty 

or ambiguity).1  Consequently, a body of literature has emerged that examines the implications of 

ambiguity for portfolio selection and asset pricing.2  So far, most of the literature has been 

theoretical, partly due to the difficulty in measuring ambiguity empirically. 

We investigate the asset pricing implications of ambiguity regarding the state of the 

economy.  Our goal is two-fold.  First, we investigate whether ambiguity is priced in the cross-

section of expected stock returns.  To this end, we derive a conditional asset pricing model 

assuming investors do not know the process driving the evolution of the investment opportunity 

set.  Second, we examine the performance of the model compared to the Bayesian learning 

model of Ozoguz (2009), the intertemporal capital asset pricing (ICAPM) model of Petkova 

(2006), and the four-factor model of Fama-French (1993) and Carhart (1997). 

                                                
1  Following the literature, we use Knightian uncertainty and ambiguity interchangeably.  The use of the 

word ambiguity helps distinguish Knightian uncertainty from the common use of uncertainty as risk. 

 
2   A partial list of the growing asset pricing literature includes articles by Epstein and Wang (1994), Kogan 

and Wang (2003), Chen and Epstein (2002), Epstein and Schneider (2007, 2008), Leippold, Trojani, and 

Vanini (2008), Hansen (2008), Hansen and Sargent (2008, 2010, 2011), and Anderson, Ghysels, and 

Juergens (2009). A partial list of portfolio selection articles includes Uppal and Wang (2003), Maenhout 

(2004), and Garlappi, Uppal, and Wang (2007).  Recent surveys include Epstein and Schneider (2010) 
and Guidolin and Rinaldi (2013). 
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The theoretical motivation for our investigation comes from the recent literature on 

learning under ambiguity.  In this literature, investors seek to simultaneously learn the hidden 

state of the time-varying investment opportunity set, and the model driving the evolution of the 

hidden state.  Investors’ beliefs are represented by a set of conditional distributions across future 

states of the world. As it is the case in the learning literature, investors use a signal to discover 

the hidden state but, under ambiguity, investors evaluate the signal under the likelihood that puts 

the lowest possible conditional probability of being in the good economic state in the next 

period.  That is, ambiguity averse investors always discount bad news more heavily than good 

news, which leads to an ambiguity premium that is time-varying and dependent upon the worst 

consumption state.3 

Our particular theoretical framework is a specialization of the general recursive multiple-

priors approach of Epstein and Wang (1994) and Epstein and Schneider (2003).  We consider the 

investor consumption-investment problem when there is ambiguity about the probability of a 

shift in the economy from the “good” to the “bad” state.  The solution to this problem leads to a 

fundamental pricing equation in which investors form expectations relative to the worst case 

probability measure.  Empirically, we estimate the pricing equation as a conditional asset pricing 

model that includes three-factors:  the market portfolio, and two additional factors that reflect the 

impact of systematic ambiguity on asset returns.   

A major contribution of this paper is the introduction of an ambiguity measure that is 

theoretically motivated and empirically tractable.  Anderson, Ghysels, and Juergens (2009) 

measure ambiguity using the dispersion of market return forecasts constructed from professional 

                                                
3  The literature distinguishes between cases in which the source of uncertainty is the signal investors use to 

learn the hidden state and the data generating process (“structured” uncertainty), and cases in which the 

source of uncertainty cannot be specified (“unstructured” uncertainty).  Taking learning into account is 

important as Barillas, Hansen, and Sargent (2009) indicate that under unstructured uncertainty, ambiguity 
averse beliefs are equivalent to standard Bayesian beliefs with augmented risk aversion. 
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forecasts of aggregate corporate profits.  Williams (2009) uses changes in the VIX index to 

measure changes in ambiguity.  Our measure is based on the intuition in Epstein and Schneider 

(2008) that when investors are concerned with model misspecification, they 1) simultaneously 

consider multiple likelihoods for the “good” state of the economy, 2) form an interval of 

plausible values for the a priori imprecise probability of good economic times, and 3) select the 

minimum value within the interval.   

The construction of our ambiguity measure involves three steps.  First, we make an 

assumption about the investor’s ex-ante minimum confidence level for his forecast of the state of 

the economy in the next period.  Second, we estimate a regime-switching model to obtain the 

“reference” transition probability driving the dynamics of the time-varying investment 

opportunity set.  Finally, we compute the asymptotic interval around the regime-switching 

forecast given the investor’s minimum confidence level.  Our ambiguity measure, denoted as 

KUNC, is equal to the difference between the reference probability estimate and the lower bound 

probability estimate (the “distorted” probability), scaled by the reference probability.  As we 

explain in a later section, KUNC is the first order approximation of the log-likelihood ratio 

between the reference probability and the distorted probability and displays properties desirable 

in an empirical measure of ambiguity. 

Using our proposed ambiguity measure, we find that ambiguity is priced in the cross-

section of stock returns and constitutes an extra dimension of systematic uncertainty distinct 

from time-varying systematic risk.  This result holds for the long sample period from 1927 to 

2007, as well as for the post-COMPUSTAT period 1962-2007, and it is robust to errors-in-

variables and to model misspecification.  The test assets are the Fama-French 25 portfolios 

sorted by size and book-to-market or the augmented set that also includes 30 industry portfolios.   
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We also contrast our approach with the Bayesian approach to model uncertainty.  Zhang 

(2003) and Ozoguz (2009) propose a conditional capital asset pricing model to test the Bayesian 

learning model of Veronesi (1999).  Empirically, both Zhang (2003) and Ozoguz (2009) find 

support for the models and report that the Fama-French factors become insignificant after 

controlling for (Bayesian) model uncertainty.  In contrast, we find that the Bayesian proxy for 

uncertainty is not significant once model misspecification is taken into account.  Furthermore, 

using R-squared comparative tests (Kan, Robotti, and Shanken, 2013), we find that the Bayesian 

proxy for uncertainty has no incremental explanatory power relative to the learning under 

ambiguity asset pricing model.  

In additional tests, we find that the learning under ambiguity model: 1) survives model 

misspecification, unlike the empirical Bayesian learning model and the ICAPM of Petkova 

(2006), and 2) performs better than the four-factor model of Fama-French (1993) and Carhart 

(1997) to explain the cross-section of average stock returns. 

Before proceeding, we should note that Roy’s (1952) principle of safety-first provides 

further motivation and meaning to our investigation.4  Roy introduces his safety-first principle in 

the context of a portfolio problem under ambiguity.  The principle of safety-first assumes that 

investors seek to minimize the effects of the worst case scenario.  Thus, investors solve a 

MaxMin portfolio problem maximizing utility under the lowest plausible consumption state.  

This same argument is the main intuition of the ambiguity literature in economics and finance.  

Consequently, we adopt the safety-first principle as a plausible explanation for investors’ 

conservative behavior when facing ambiguity in financial markets. 

                                                
4  Lintner (1965, footnote 21, page 243) acknowledges the pioneering work of Roy in asset pricing under 

Knightian uncertainty. 
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The rest of the paper proceeds as follows. In Section 1, we derive the fundamental 

dynamic asset pricing equation in beta regression form under ambiguity and learning.  In Section 

2, we introduce an empirically tractable ambiguity measure and compare it with the Bayesian 

proxy for uncertainty.  In Section 3, we present the data and empirical methodology used in the 

empirical analyses.  Section 4 investigates whether ambiguity is priced, while Section 5 uses 

robust comparative tests to evaluate model performance.  We discuss the results of robustness 

checks in Section 6 and provide our conclusions in Section 7.  Technical details and proofs are 

collected in appendices. 

 

1.  The Consumption-Investment Problem of the Ambiguity-Averse Investor 

In this section, we first revisit the investor consumption-investment problem when there is 

ambiguity concerning the probability of a shift in the economy from the “good” to the “bad” 

state.  The solution to this problem leads to a fundamental pricing equation in which investors 

form expectations relative to the worst case probability measure.  Our theoretical framework is a 

specialization of the general recursive multiple-priors approach5 introduced by Epstein and 

Wang (1994) and formalized by Epstein and Schneider (2003).  Epstein and Schneider (2010) 

survey the related literature. 

 Additionally, we link the investor problem and the multiple-priors set to a classic result in 

statistics by Goodman (1965).  This link explains the construction of the ambiguity measure 

KUNC that we use in the empirical analysis.  Finally, we present the fundamental pricing 

equation in beta regression form.  To obtain a testable unconditional model, we follow the 

                                                
5  A major advantage of the recursive multiple-priors modeling approach is that it is designed to ensure 

consistency in dynamic programming: plans made at date t for decisions at subsequent dates remain 
optimal when those dates arrive. 
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conditional asset pricing literature and impose a linear factor restriction on the stochastic 

discount factor; the result is a three-factor model of learning under ambiguity. 

 

1.1 The fundamental asset pricing equation 

We assume that the economy evolves switching between the good state, one,  and the bad state, 

zero.  For each path 𝜔𝑡 (a random sequence of 0 and 1 moves), the investor chooses his level of 

consumption 𝐶𝑡, as well as the proportions 𝜉𝑖,𝑡 of his wealth 𝑊𝑡 , to allocate to 𝑖  risky assets (𝑖 =

1, … , 𝑛 ) and to the risk-free asset.  At time 𝑡 + 1, the investor’s conditional wealth is 𝑊𝑡+1
𝑠 , 

where  𝑠𝑡 = {0,1} represents the bad (and, respectively, good) transition of the economy from 

prior state 𝜔𝑡. 

The investor is ambiguous about the true one-step-ahead conditional probabilities that he 

should attach to the good and bad state. 6  He holds some prior beliefs 𝜋𝑡(𝜔𝑡), possibly derived 

from historical analysis, which we refer to as his reference model.  However, he also 

acknowledges that this reference model 𝜋𝑡(𝜔𝑡) may be surrounded by a cloud of alternative 

models 𝜋𝑡
∗(𝜔𝑡) , also known in the literature as the multiple-priors set.  The investor only 

considers alternative models that are close to the reference model.  Thus, we restrict the 

statistical “distance” between any alternative model 𝜋𝑡
∗ and the reference model 𝜋𝑡 by imposing: 

 

𝐷𝑡(𝜋𝑡
∗‖𝜋𝑡) ≤ 𝜂𝑡,                                                      (1) 

 

                                                
6 For dynamic consistency, it is critical that the one-step-ahead conditional probability be considered. 

Epstein and Schneider (2003) pp. 16-17 discuss the technical requirements needed to ensure dynamic 

consistency in the Entropy framework.  We thank the referee for bringing this to our attention.  We 

simplify notation by setting 𝜋𝑡
∗(𝜔𝑡) ≡ 𝜋𝑡

∗ and  𝜋𝑡(𝜔𝑡) ≡  𝜋𝑡 . 
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where 𝐷𝑡(𝜋𝑡
∗‖𝜋𝑡) denotes the Kullback-Leibler divergence or “Relative Entropy” and 𝜂𝑡 is an 

exogenous state-dependent ambiguity parameter that restricts what Epstein and Schneider (2010) 

call the entropy-constrained ball containing all alternative measures 𝜋𝑡
∗ that are statistically close 

to the reference model 𝜋𝑡.7  Intuitively, the ambiguity coefficient 𝜂𝑡 is related to the level of 

confidence that the investor places in his model.  This is the interpretation that underlies the 

construction of the ambiguity measure KUNC we use in our empirical analysis. 

Next, the ambiguity averse investor solves the following version under ambiguity of the 

standard Bellman backward dynamic recursion subject to the usual budget constraint:8 

 

𝐽(𝑊𝑡 , 𝑡) = 𝑀𝑎𝑥𝐶
𝑡,{𝜉𝑖,𝑡}

(𝑈(𝐶𝑡) + 𝑀𝑖𝑛𝜋𝑡
∗𝐸𝑡[𝜋𝑡

∗𝐽(𝑊𝑡+1
1 , 𝑡 + 1) + (1 − 𝜋𝑡

∗)𝐽(𝑊𝑡+1
0 , 𝑡 + 1)]),  (2) 

 

where 𝐸𝑡(. ) is the conditional expectation operator at time 𝑡 = (0,1, . . , 𝑇 − 1), 𝑈(𝐶𝑡) is 

increasing and concave, and 𝐽(𝑊𝑡 , 𝑡) denotes the usual derived utility of wealth function. 

The economic interpretation of the above dynamic MaxMin problem is as follows.  The 

ambiguity averse investor first solves an inner constrained minimization problem to identify the 

worst case scenario among all of the alternative models 𝜋𝑡
∗.  The solution is a conditional 

measure that intuitively allows the investor to calculate the ambiguity certainty equivalent of the 

continuation value function  𝐽(𝑊𝑡+1
𝑠 , 𝑡 + 1).  We refer to this conditional measure as the 

distorted probability 𝜋𝑡
𝐿.  The constrained minimization problem reflects the notion that while 

the ambiguity averse investor attempts to determine the worst case scenario by taking the most 

                                                
7 The Kullback-Leibler divergence arises in statistics as the expected logarithm of the likelihood ratio 

between two distributions (see Cover and Thomas, 1991, Chapter 2).  It is not a true distance as it is not 

symmetric and does not satisfy the triangular inequality. 

 
8  Details are noted in Appendix A. 
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pessimistic view of the transition probabilities, he must respect the entropy constraint specified 

by (1). 

We emphasize that our use of Relative Entropy is not an arbitrary formalism.  In the field 

of information theory, Topsøe (1979) considers a density estimation game between two players: 

the malevolent “Nature” and a decision maker.  Nature is allowed to choose any distribution 

𝜋𝑡
∗ that satisfies a set of constraints.  The decision maker only knows of the constraints, but not 

the distribution chosen by Nature.  As such, his best strategy consists of selecting the 

distribution 𝜋𝑡
𝐿 that maximizes the worst log likelihood with respect to his reference model 𝜋𝑡.  

Topsøe (1979) determines that this distribution is also the one that minimizes the relative 

entropy 𝐷𝑡(𝜋𝑡
∗‖𝜋𝑡) under constraints.  We will return to this interpretation when we introduce 

our empirical proxy for ambiguity. 

Once the worst case scenario measure 𝜋𝑡
𝐿 has been identified, the investor proceeds to 

solve the usual outer utility maximization problem, albeit under the distorted probability measure 

𝜋𝑡
𝐿.  Solving the MaxMin problem yields the fundamental pricing equation under ambiguity.  

Proposition 1 states the solution to the MaxMin problem (2).  Appendix A includes the proof. 

 

Proposition 1:  The fundamental asset pricing equation under ambiguity is given by: 

 

1 = 𝐸𝑡
𝜋𝐿

(𝑚𝑡,𝑡+1𝑅𝑖,𝑡+1),                                                          (3) 

 

where 𝑅𝑖,𝑡+1denote the gross return of asset 𝑖 and mt,t+1 ≡
UC(Ct+1

∗ ,t+1)

UC(Ct
∗,t)

 is the marginal rate of 

substitution under the worst case scenario probability πL with πt
L = πt − √2ηtπt(1 − πt). 
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According to Proposition 1, the ambiguity averse investor forms a conditional expectation 𝐸𝑡
𝜋𝐿

 

across future states of the economy using the state probabilities associated with the worst case 

scenario probability measure 𝜋𝑡
𝐿.  In contrast, a Bayesian investor would first estimate the 

conditional probability 𝜋𝑡 of being in the good state, and then evaluate the conditional 

expectation under this very same measure. For a Bayesian investor, there is no ambiguity; hence, 

𝜂𝑡 = 0 resulting in 𝜋𝑡
𝐿 = 𝜋𝑡. 

To clarify, investors must first solve a signal extraction problem using past data to 

estimate the conditional probability of the good state 𝜋𝑡.  This step is common to both the 

Bayesian and ambiguity literature with learning.9  Empirically, the Bayesian literature typically 

uses variants of the Markov regime-switching model of Hamilton (1989, 1990) for the hidden 

state of the economy (e.g., Ozoguz, 2009).  However, in the ambiguity literature, which puts the 

investor and the econometrician on the same footing, the regime-switching model (RSM) is only 

a reference model.  The separation of the step of solving the signal extraction problem using a 

reference model and the step of using the estimated signal as an input into the solution to the 

investor problem is common in the literature. 

 

1.2 Recovering the worst case scenario probability measure  

As described previously, the ambiguity averse investor solves the minimization problem before 

maximizing utility.  To solve the minimization problem, the ambiguity averse investor acts as if 

he follows a three-step process.  First, he selects, ex-ante, a minimum confidence level for his 

forecast of the state of the economy in the next period, 𝜋̂𝑡.  The minimum confidence level 

determines how big the “cloud” of alternative models is.  Next, he simultaneously considers 

                                                
9 See, for example, Veronesi (1999), David and Veronesi (2001), Ozoguz, (2009), Hansen and Sargent 

(2010, 2011) and Epstein and Schneider (2008). 
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several possible empirical likelihoods of the state of the economy 𝜋𝑡
∗. Additionally, he distorts 

the conditional expectation for the good state of the economy 𝜋̂𝑡 conservatively (i.e., slanting his 

beliefs toward the bad economic state, 𝜋𝑡
𝐿).  The uniform interval of possible values for the state 

of the economy is time-varying conditional upon the realization of the signal. 

More formally, investors have an irreducible set of priors Π0 for the objective transition 

probability 𝜋𝑡 of a good state represented by the uniform interval [𝜋𝑡
𝐿, 𝜋𝑡

𝐻] constructed around 

the quasi-maximum likelihood estimate (Q-MLE) 𝜋̂𝑡 obtained from the reference model.  We 

define (1 − 𝜍)
 as the investors' ex-ante minimum confidence level on the Q-MLE forecast 𝜋̂𝑡.  

Thus, we interpret (1 − 𝜍) as an inverse proxy for the theoretical coefficient 𝜂𝑡; an increase in 𝜍 

implies lesser confidence in the reference model.10  In Appendix B, we show that minimization 

of the Kullback-Leibler divergence (i.e., the expected log ratio) is equivalent to a statistical result 

in Goodman (1965) with solution given by a quadratic equation with the following roots: 

 

Proposition 2: Let π̂t be the subjective Q-MLE of the probability of transitioning to the good 

economic state; then, given some minimum confidence level 100(1 − ς)% on π̂t,  investors will 

entertain a uniform interval of alternative possible values for the objective probability defined 

by: 

 

[𝜋𝑡
𝐿, 𝜋𝑡

𝐻] = [
𝐵−Δ

1
2

2𝐴
,

𝐵+Δ
1
2

2𝐴
] ,

 

                                                   (4) 

 

                                                
10 The parameter α in Epstein and Schneider (2007, p. 1294) may also be interpreted as a confidence 

interval related to the interval within which a theory would be excluded from the set of multiple beliefs.  

Kogan and Wang (2003) and Garlappi, Uppal, and Wang (2007) also characterize the level of ambiguity 
in terms of a “conservative” confidence interval. 
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where 𝐴 = 𝒳2(1 − 𝜍 𝐼, 1⁄ ) + 𝑇 denotes the quantile of order 1 − 𝜍 𝐼⁄  of a chi-squared 

distribution with one degree of freedom with I number of intervals and sample size 𝑇 = ∑ 𝑡𝑖
𝐼
𝑖=1 ; 

𝐵 = 𝒳2(1 − 𝜍 𝐼, 1⁄ ) + 2𝑡𝑖 ; and 𝛥 = 𝐵2 − 4𝐴𝐶
 
with 𝐶 = 𝑡{𝜔=𝑔}

2 𝑇⁄ .
 
 

 

Proposition 2 provides a feasible approach to empirically estimate the distorted probability 𝜋𝑡
𝐿.  

The approach involves i) forming a uniform interval around the reference model forecast and ii) 

selecting the lower bound. This is the approach we take to measure ambiguity empirically, as 

further explained in Section 2. 

 

1.3 Model specification in beta regression form 

While Proposition 1 delivers an intuitive asset pricing equation under ambiguity, it does not 

place enough restrictions on the marginal rate of substitution 𝑚𝑡−1,𝑡  for 𝑡 = (1,2, . . , 𝑇) to 

proceed empirically.  Therefore, we follow the conditional asset pricing literature and impose an 

affine factor structure on 𝑚𝑡−1,𝑡 before “conditioning down” using the worst case scenario 

probability measure 𝜋𝑡
𝐿.11  More specifically, we assume: 

 

𝑚𝑡−1,𝑡 = 𝜙𝑡−1
0 + 𝜙𝑡−1

𝑓
′𝑓𝑡 , 

 

where the column vector of fundamental asset pricing factors 𝑓𝑡 = (𝑅𝑀𝐾𝑇,𝑡
𝑒 , 𝑅

𝑑𝜋𝑡
𝐿

𝑒 , 𝑅𝑑𝐾𝑈𝑁𝐶𝑡

𝑒  ) 

includes the excess market (MKT) return and excess returns of tracking portfolios proxying for 

                                                
11 We incorporate conditioning information into the pricing kernel using “scaling factors”. Ludvigson 

(2012), Section 5.2, discusses various approaches for conditioning in the empirical asset pricing 

literature.  Following Ferson and Harvey (1999), we use excess returns as factors tracking orthogonalized 
innovations in order to address the “spurious regression” problem discussed in Ferson et al. (2003). 
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innovations in the distorted conditional probability (𝜋𝑡
𝐿) and the measure of ambiguity (KUNC).  

We follow Cochrane (1996, section 6.3) and Singleton (2006, section 11.4 p. 296) and assume 

that the time-varying coefficients 𝜙̃𝑡−1
′ = (𝜙𝑡−1

0 , 𝜙𝑡−1
𝑓

′) are affine functions of innovations in 

state variables lagged one period  𝑧𝑡−1 driving the investment opportunity set:  

 

𝜙𝑡−1
0 = 𝒶0 + 𝒷0𝑑𝑧𝑡−1, and 

 

𝜙𝑡−1
𝑓 = 𝒶𝑓 + 𝒷𝑓𝑑𝑧𝑡−1. 

 

In our setting, innovations in the worst case scenario probability measure 𝑑𝑧𝑡−1 = 𝑑𝜋𝑡−1
𝐿  

are used as the “scaling” variable to “condition down” the conditional multi factor model under 

ambiguity. Substitution into Equation (3) leads to the following unconditional moment 

conditions:  

 

𝐸[(𝒶0 + 𝒷0𝑑𝜋𝑡−1
𝐿 + 𝒶𝑓𝑓𝑡 + 𝒷𝑓𝑑𝜋𝑡−1

𝐿 𝑓𝑡)𝑅𝑖,𝑡] = 1, for all risky assets 𝑖 = 1, ⋯ , 𝑛. 

 

When pricing factors are orthogonal and the scaling variable is white noise,12 then, it is 

straightforward to show that the above moment conditions jointly applied to the risk-free asset as 

well as the three portfolios tracking the pricing factors13 yield the following unconditional 

multifactor representation in beta regression form for all risky assets i = 1, ⋯ , 𝑛: 

                                                
12 More specifically, we require 𝐸(𝑑𝜋𝑡−1

𝐿 ) = 0 and 𝑑𝜋𝑡−1
𝐿  be independent of all factors 𝑓𝑡 , hence 

𝐶𝑜𝑣(𝑑𝜋𝑡−1
𝐿 , 𝜑(𝑓𝑡 )) = 0 where 𝜑(𝑓𝑡 ) denotes any measurable function of factor 𝑓𝑡 . 

 
13  The previous result is intuitive since, under our assumptions, the three factors along with risk-free rate exactly 

span the expected return space of all risky assets. 
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𝐸[𝑅𝑖,𝑡+1] = 𝜆0 + 𝛽𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽𝑖,𝜋𝐿 𝜆𝜋𝐿+𝛽𝑖,𝐾𝑈𝑁𝐶 𝜆𝐾𝑈𝑁𝐶 ,                               (5) 

 

where 𝐸[𝑅𝑖,𝑡+1] is the expected return on the 𝑖th risky asset, the β’s denote factor loadings 

defined as before,  𝜆0 = 𝐸[𝑅𝑓,𝑡−1] is the constant return of the zero beta portfolio (excess returns 

are relative to the risk free rate), and the rest of the λ’s are the market prices of the factors 

measuring the three dimensions of systematic uncertainty: 1) systematic risk, 2) uncertainty 

regarding the state of the economy (i.e., learning under ambiguity), and 3) uncertainty regarding 

the data generating process driving stock returns (i.e., the direct effect of ambiguity on the equity 

premium). 

The learning under ambiguity model described by Equation (5) predicts that an ambiguity 

averse investor will demand an additional premium to hold stocks that are heavily affected by 

negative news from an ambiguous signal, independent of the state of the economy.  Furthermore, 

the investor prefers stocks whose payoffs co-vary negatively with his level of confidence in the 

reference model.  Thus, he will require higher compensation to hold stocks that perform 

relatively worse when his confidence in the model is lower.  A major goal of this paper is to 

provide empirical evidence regarding these predictions. 

We highlight the following special cases of Equation (5). When the signal is not 

ambiguous (but there is learning), the scaling variable is the reference model 𝜋̂𝑡 .  Equation (5) 

becomes the Bayesian C-CAPM of Veronesi (1999), Zhang (2003), and Ozoguz (2009).  We 

empirically compare the Bayesian and ambiguity approaches to uncertainty in Section 4.3. 

Further, if we replace the distorted probability 𝜋𝑡
𝐿 for economic-wide state variables 

driving 𝜋̂𝑡, Equation (5) becomes a version under ambiguity of Petkova’s (2006) implementation 
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of the ICAPM of Merton (1973).  This empirical specification can be understood as a modified 

version of the learning model of Epstein and Schneider (2007, 2008) when the investor uses 

news on a set of ambiguous macroeconomic state variables as the signal.  We provide empirical 

evidence on this implementation in Section 4.4. 

In the next section, we describe the empirical version of the reference model 𝜋̂𝑡, and 

introduce our proxies for the learning and ambiguity factors in (5).  

 

2.  Measuring Ambiguity 

2.1 Estimating the conditional probability of the good state of the economy 

We adopt the Smooth Transition Autoregressive (STAR) model to measure the investor’s beliefs 

regarding the future state of the economy (i.e., the reference model 𝜋̂𝑡).  A STAR model is a type 

of regime switching model particularly appropriate when the transition variable is observable and 

forward looking, switching between states smoothly and endogenously, given some threshold 

values for the good/bad state.14  Our adoption of a STAR model is consistent with the 

assumption that the investor-econometrician “learns” the hidden state of the economy using 

stock market returns as signals of the future state of the economy. 

The standard Bayesian setting assumes investors know the data generating process but 

not the future state of the economy (i.e., the transition variable is unknown and driven by a 

hidden Markov process).  In this setting, the Markov switching model of Hamilton (1989, 1990) 

is the natural choice to model state dependent risk and expected returns.  For example, in 

Ozoguz’s (2009) empirical implementation of Veronesi’s (1999) learning model, the economy 

                                                
14 STAR models have been used to describe the asymmetric behavior of macroeconomic time series, such as 

output and unemployment, conditional on the phase of the business cycle.  STAR models are discussed in 

detail in Teräsvirta (1998) and surveyed in Granger and Teräsvirta (1993) and van Dijk, Teräsvirta, and 
Franses (2002). 
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switches discretely between good and bad states driven by a hidden Markov process.  The STAR 

model, however, is more appropriate in our case because we assume the investor learns the 

future state of the economy using an observable forward looking transition variable that switches 

smoothly between states. 

More formally, we model the market return as a self-exciting ARMA(1,1)-GARCH(1,1) 

dynamic stochastic process with smooth “double” transition function in the interval [0,1].  

Regime 1 denotes the good state, while Regime 0 represents the bad state.  The transition 

function is defined as a continuous logistic function defined in the interval bounded between zero 

and one: 

 

𝐺(𝜔𝑡;  𝜓, 𝛅) =
1

1+𝑒𝑥𝑝{−𝜓(𝑅𝑀𝐾𝑇,𝑡−1
𝑒 −𝛿1,0−𝛅′𝟏,𝟏𝑑𝑧𝑡−1)(𝑅𝑀𝐾𝑇,𝑡−1

𝑒 −𝛿0,0−𝛅′𝟎,𝟏𝑑𝑧𝑡−1)}
,  (6) 

 

where 𝜓 ≥ 0 is the smoothness parameter, and 𝑑𝑧𝑡−1 denotes innovations in a parsimonious 

group of state variables 𝑧𝑡 = [𝐷𝐼𝑉𝑡, 𝑅𝐹𝑡, 𝑇𝐸𝑅𝑀𝑡, 𝐷𝐸𝐹𝑡]′ from the return predictability literature 

(defined in the next section). 

Consistent with the notion that stock returns are forward looking, the switching indicator 

variable defining the state 𝜔𝑡  is the one-period lagged market return 𝑅𝑀𝐾𝑇,𝑡−1
𝑒 . This specification 

is the self-exciting (SETAR) model, which is a special case in the class of STAR models 

discussed in detail by Tong (1990).  When 𝜓 → 0, the logistic function approaches a constant 

equal to one-half, and when 𝜓 = 0, the STAR model collapses to a linear ARMA process.  The 

double transition function with a state dependent vector of coefficients δ defines an interval of 

values for 𝑟𝑀𝐾𝑇,𝑡−1
𝑒 , where the model is predominantly in Regime 1; or in Regime 0 otherwise. 
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The self-exciting smooth transition GARCH (ST-GARCH) model for the excess market 

return 𝑅𝑀𝐾𝑇,𝑡
𝑒 , which is observed by investors at 𝑡 = 0,1, ⋯ , 𝑇 − 1, 𝑇 is given by: 

 

𝑅𝑀𝐾𝑇,𝑡
𝑒 = (𝜙1,0 + 𝜙1𝑅𝑀𝐾𝑇.𝑡−1

𝑒 )(𝐺(𝜔𝑡; 𝜓, 𝛅)) +  (𝜙0,0 + 𝜙1𝑅𝑀𝐾𝑇.𝑡−1
𝑒 )(1 − 𝐺(𝜔𝑡; 𝜓, 𝛅)) + ⋯ 

⋯ + (𝜀𝑡 − 𝜁𝜀𝑡−1),  (7) 

 

where 𝜙1,0, 𝜙0,0 are state dependent intercepts, 𝜙1 and 𝜁 are the autoregressive and moving 

average parameters of the data generating process, respectively, and 𝜀𝑡 = √𝒽𝑡𝑣𝑡 
with 𝒽𝑡 =

 (𝐺(𝜔𝑡; 𝜓, 𝛅))𝒽1,𝑡 + (1 − 𝐺(𝜔𝑡; 𝜓, 𝛅))𝒽0,𝑡, 𝒽1,𝑡 = 𝑎1,0 + 𝑎1𝜀𝑡−1
2 + 𝑏𝒽1,𝑡−1, 𝒽0,𝑡 = 𝑎0,0 +

𝑎1𝜀𝑡−1
2 + 𝑏𝒽0,𝑡−1, with 𝑎0 as the only state dependent parameter in the variance return equation.  

We emphasize that under ambiguity, the STAR model is only a reference model.  The 

next section connects the reference model, the worst-case probability, and the ambiguity 

measure. 

 

2.2 A theoretically-motivated and empirically tractable ambiguity measure  

The learning under ambiguity model described by Equation (5) predicts there are three 

priced dimensions of uncertainty: 1) systematic risk, 2) uncertainty regarding the state of the 

economy (i.e., learning under ambiguity), and 3) uncertainty regarding the return generating 

process (i.e., ambiguity or Knightian uncertainty).  In this section, we introduce our empirical 

proxies for the two dimensions of uncertainty related to ambiguity. 

Our proxy for learning under ambiguity is the distorted probability 𝜋𝑡
𝐿.  Asset pricing 

models that include learning often lead to a “learning factor” that is measured by the probability 

forecast of the good economic state, such as the one derived from a regime switching model (i.e., 
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𝜋̂𝑡).  However, when investors are ambiguity averse, they will doubt their forecast, consider a set 

of plausible alternative forecasts and associated likelihoods, and assume the most pessimistic 

forecast to make investment decisions.  Therefore, we use the distorted probability rather than 

the reference forecast as our measure of ambiguity regarding the future state of the economy. 

Our proxy for ambiguity regarding the stock return data generating process, denoted by 

KUNC (for Knightian uncertainty), is the first order approximation of the log-likelihood ratio 

between the reference probability and the distorted  probability: 

 

𝐾𝑈𝑁𝐶 = − ln (
𝜋𝑡

𝐿

𝜋̂𝑡
) ≈ (𝜋̂𝑡 − 𝜋𝑡

𝐿) 𝜋̂𝑡⁄ .                                         (8) 

 

This ambiguity measure has both intuitive appeal and desirable technical properties.  

Intuitively, the distance between the reference and distorted probabilities is a reasonable measure 

of investor’s uncertainty about the true model for 𝜋𝑡.15  Indeed, the minimization problem of the 

ambiguity averse investor may be equivalently stated as the problem of maximizing the expected 

negative of the log likelihood ratio between the worst case scenario and the reference model, 

 𝐸𝑡 [− ln (
𝜋𝑡

𝐿

𝜋̂𝑡
)]. 

In Table 1, we present summary statistics for the two empirical measures associated with 

ambiguity, 𝜋𝑡
𝐿 and 𝐾𝑈𝑁𝐶.  For comparative purposes, we also include the standard Bayesian 

uncertainty index defined as 𝑈𝐶 = 𝜋̂𝑡(1 − 𝜋̂𝑡) (Ozoguz, 2009).  We plot the two uncertainty 

measures in Figure 1, for different values of 𝜋̂𝑡 shown in the horizontal axis. Our proposed 

                                                
15 In Appendix A, we present the exact connection between the proposed proxy and the investor’s 

constrained minimization problem.  In Appendix B, we demonstrate how the empirical proxy is 

motivated by the frequentist interpretation of entropy introduced by Topsøe (1979), and formalized in 

Harremoës and Topsøe (2001), Grünwald and Dawid (2004), and Topsøe (2007). 
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ambiguity measure displays some desirable properties, particularly when compared to the 

Bayesian uncertainty index UC.  First, KUNC is asymmetric, leaning toward the recession state 

as suggested by theory (Epstein and Schneider, 2008).  Ambiguity aversion implies that stocks 

should be discounted more in the “bad” economic state.  Intuitively, ambiguity averse investors 

fear stocks not because stocks do poorly in recessions, but because investors seek safety first, 

especially during economic recessions.  Additionally, KUNC is well behaved, taking values 

between zero and one.16  In contrast, the Bayesian index is symmetric and achieves a maximum 

value of 0.25 when the probability 𝜋̂𝑡 goes to 0.5.  Further, Table 1 shows that UC displays 

significantly less variability than KUNC (Panel A); and that UC and KUNC are negatively 

correlated (Panel B).17   

Insert Table 1 and Figure 1 about here. 

 

 We further illustrate the differences between UC and KUNC with two contrasting 

examples.  Consider first an investor with a Q-MLE of only 0.86% for the transition probability 

to the good economic state next period.  This may be typically the case when the economy is in 

the trough of the business cycle, such as during the recession in in the year 1990.  The investor’s 

probability estimate is obtained by fitting a sample of 1,000 monthly market returns 

(approximately the size of our data sample from 1927-2007) and the STAR reference model.  If 

the investor has a minimum confidence level in his reference model of 50%, he will form an 

interval of possible values for the hidden objective transition probability between 0.31% and 

2.41%.  The ambiguity averse investor will then select the lower bound of 0.31% rather than the 

                                                
16 In Appendix B, we note that the distorted probability moves to zero faster than the reference probability 

as long as 𝜋𝑡  is non-degenerate.  Empirically, we need to force the ratio to be bounded in about ten data 

points around the Great Depression. 

 
17 The negative association is expected based on Equation (B.3) in Appendix B. 
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estimate of 0.86% as the conditional probability of transitioning to the good economic state next 

period.  The value of the ambiguity measure KUNC obtained using Equation (8) is equal to 

0.6452.  In contrast, the corresponding value of the Bayesian uncertainty index UC is equal to 

0.0086. Uncertainty is higher as measured by KUNC because the ambiguity averse investor 

doubts his initial forecast and acts conservatively.    

At the other extreme, if the Q-MLE of the transition probability to the good economic 

state next period is 96% (i.e., the economy is at the peak of the business cycle, such as in the late 

1990s), the ambiguity averse investor will now form an interval of possible values for the hidden 

transition probability between 93% to 97%, selecting the lower bound of 93% rather than the 

estimate of 96% as the relevant probability of transitioning to the good state.  The value of 

KUNC is 0.0312, while the value of UC is 0.0384. 

The distinction between KUNC and UC is further illustrated in Figure 1.  Panel A 

confirms the result of the numerical examples.  While UC is symmetric, KUNC is asymmetric 

and more sensitive at lower levels of the probability of transitioning to a good state.  In Panel B, 

we plot KUNC at two different confidence levels regarding the reference probability.  As 

expected, KUNC is lower and less sensitive when the investor has more confidence in the 

reference model. 

In Figure 2, we plot the time series behavior of KUNC measured as the return of a 

tracking portfolio as explained in the next section.  The figure shows that KUNC rises 

significantly during NBER-dated economic recessions, as conjectured in the literature (e.g., Ju 

and Miao, 2012).  Further, there is substantial variability in both sample periods, with an 

indication of a negative long run trend from 1927-1961.  A possible explanation for the observed 

negative trend may be related to the impact of the Great Depression at the beginning of the 
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sample period, and possibly the subsequent implementation of fiscal and monetary policies to 

smooth out the effects of the business cycle. 

 

Insert Figure 2 About Here. 

 

Overall, we conclude that our ambiguity measure is not only theoretically motivated but 

also displays characteristics that would be desirable in an empirical measure of ambiguity. 

 

3.  Empirical Methodology and Asset Pricing Tests 

3.1 Data 

3.1.1 Test assets. The set of test assets used in the empirical analysis includes the value-

weighted monthly returns on the 25 Fama-French portfolios sorted by size and book-to-market 

obtained from Kenneth French’s website, and the 30 industry-sorted portfolios (Lewellen, Nagel, 

and Shanken 2010).  Results are presented for two sample periods, 1927-2007 and the post-

COMPUSTAT period 1962-2007.18 

 

3.1.2 Asset pricing factors. According to Equation (5), there are three asset pricing factors: 1) 

systematic risk, 2) uncertainty regarding the state of the economy, and 3) uncertainty regarding 

the return generating model.  We measure systematic risk using the excess return 𝑟𝑀𝐾𝑇,𝑡
𝑒  on the 

Center for Research in Security Prices (CRSP) value-weighted stock market index.  We calculate 

𝜋𝑡
𝐿 and KUNC as explained in the previous section. 

                                                
18 Kenneth French’s website is at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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In Subsection 1.2, we formally present the connection between ambiguity and the 

investor’s minimum confidence level in his reference model.  Empirically, we focus on the case 

of an ambiguity averse investor that has a minimum confidence level of 50% in his model and a 

forecasting window of T=36 months in his time series predictive regressions (i.e., the rolling 

regressions).  However, in robustness checks at the end of the paper, we present results for a 

range of confidence levels from a minimum of 50% to a maximum of 90%, and for forecasting 

windows from 36 months to 180 months 

Campbell (1996) emphasizes that only the unexpected component of an asset pricing 

factor should command a premium.  Accordingly, we measure the factors as orthogonal 

innovations from a vector autoregressive (VAR) system of equations.  More specifically, we 

assume the demeaned vector of state variables 𝑧𝑡 = [𝑟𝑀𝐾𝑇.𝑡
𝑒 , 𝜋𝑡

𝐿, KUNC]’ follows a first order 

VAR: 19 

𝑧𝑡= 𝐴𝑧𝑡−1 + 𝑑𝑧𝑡.                                                       (9) 

 

The residuals in the vector 𝑑𝑧𝑡 are the innovations that proxy for asset pricing factors, 

and A is a matrix of fixed coefficients. 

We also present results for an alternative empirical specification of Equation (5) that 

follows Petkova’s (2006) empirical implementation of the ICAPM of Merton (1973).  The 

alternative specification replaces the distorted probability 𝜋𝑡
𝐿 as a scaling factor with the vector 

of innovations 𝑑𝑧𝑡 from a set of macroeconomic variables used as instruments in the estimation 

of the reference model 𝜋̂𝑡.  The set of state variables includes the market dividend yield, DIV, 

which serves as a proxy for time varying expected stock returns (Campbell and Shiller 1988); the 

                                                
19 Campbell and Shiller (1988) find that any high order VAR can be collapsed to its first order (companion) 

VAR. 
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one-month T-bill yield, RF, that proxies for the level of interest rates (Fama and Schwert 1977); 

the difference between the average yield of a portfolio of long-term government bonds and the 

one-month T-bill, TERM, which measures the slope of the yield curve (Campbell 1987); and the 

difference between the average bond yield of a portfolio of long-term corporate bonds (Aaa/Baa) 

and a portfolio of long-term government bonds, DEF, as proxy for default risk (Fama and French 

1989). 

In the alternative specification, the first order VAR is given by the following 

modification to Equation (9): 

 

𝑧𝑡= [𝑟𝑀𝐾𝑇.𝑡
𝑒 , 𝑅𝐹𝑡, 𝐷𝐼𝑉𝑡 , 𝑇𝐸𝑅𝑀𝑡, 𝐷𝐸𝐹𝑡, 𝐾𝑈𝑁𝐶𝑡]′.                                 (10) 

 

The alternative specification serves two purposes.  First, it provides evidence as to 

whether any possible explanatory power of KUNC is subsumed by the information contained in 

variables associated with the evolution of systematic risk. Additionally, the alternative 

specification is consistent with a version of the model in Epstein and Schneider (2008) in which 

investors use (ambiguous) macroeconomic news to learn the hidden state of the investment 

opportunity set.  Thus, the results of the alternative specification provide additional evidence 

concerning the relevance of the model in Epstein and Schneider (2008) to explain stock returns. 

Furthermore, we also investigate whether the explanatory power of KUNC is subsumed 

by the risk factors SMB and HML of Fama and French (1993), and the momentum risk factor 

UMD of Jegadeesh (1990) and Jegadeesh and Titman (1993).  We measure SMB, HML, and 

UMD as innovations obtained from an augmented version of the VAR in the alternative 

implementation in Equation (10). 
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3.1.3 Tracking portfolios. According to Lamont (2001), returns from tracking portfolios may 

be used to measure risk premia and reveal which state variables are important determinants of 

expected returns.  Additionally, tracking portfolios may be interpreted as hedging tools against 

unexpected changes in economic state variables.  Ferson, Seigel, and Xu (2006) discuss the 

benefits of the approach suggested by Lamont (2001), compared to the standard mimicking 

portfolio approach, when the return generating process is not known.  Lamont’s (2001) economic 

tracking portfolios are different from mimicking portfolios and from the maximum correlation 

portfolios of Breeden, Gibbons, and Litzenberger (1989).  In particular, Lamont’s (2001) 

approach is designed to track future rather than current changes in economic state variables. 

Asset pricing tests based on two-pass cross-sectional regressions do not require asset 

pricing factors to be tradable portfolios.  However, the factors described in the previous 

subsection are based on variables of three very different types.  The ambiguity proxies are not 

only not tradable, but also not observable.  In contrast, the variables from the return predictability 

literature are observable and have an intuitive economic interpretation. The Fama-French factors 

are mimicking portfolios whose meaning is still controversial.  Thus, we transform all factors 

into returns following the procedure in Lamont (2001).20  Measuring the factors in the common 

return space has the added benefit that the GLS cross-sectional regression is identical to a time-

series regression asset pricing test (Cochrane, 2001, page 244); hence, we can directly assess the 

economic significance of the CSR estimates without any further calculation.   

                                                
20 In robustness checks, we report results using the state variables as innovations, rather than tracking 

portfolios. We also report results based on the raw measures of the state variables. 
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Specifically, we construct time-series of (unexpected) portfolio returns tracking the 

orthogonalized innovations of the state variables 𝜋𝑡
𝐿, KUNC, DIV, RF, TERM, and DEF.  The 

procedure involves running the following OLS regression for each state variable:21 

 

𝑑𝑧𝑡+12= 𝒃𝑹𝑡−1,𝑡 + 𝒄𝒀𝑡−1 +  𝑒𝑡,𝑡+12,                                         (11) 

 

where 𝑑𝑧𝑡+12 is the 12-month ahead realized future value of orthogonalized innovations of each 

economic state variable, 𝑹𝑡−1,𝑡 is a vector of period t excess returns of 30 industry portfolios, 

and 𝒀𝑡−1 is a vector of control variables that includes the period t-1 inflation, the market excess 

return, and the innovations in the state variables lagged one period. 

Alternatively, we also run the OLS regressions using SMB, HML, and UMD portfolios 

instead of the 30 industry portfolios.  The results are quantitatively and qualitatively similar.22  

To save space, we report the results for tracking portfolios based on SMB, HML, and UMD, 

which is the more parsimonious approach.  Lamont (2001) notes that adding variables to 𝑹𝑡−1,𝑡 

and 𝒀𝑡−1 may lead to overfitting and spurious inferences. 

 

4. Cross-Sectional Regression Estimates and Asset Pricing Test Results 

4.1 The reference STAR model 

In Table 2, we report the estimates of the STAR model for the excess market return.  Under 

ambiguity, the STAR model is only a reference model.  In Panel A, we present the estimates 

                                                
21 By using orthogonalized innovations, we address the potential problem of multicollinearity induced by 

construction of the beta regression form of the conditional CAPM. 
22 The fact that results are similar is not surprising.  By construction, tracking portfolio returns have 

minimum variance, maximum correlation with the innovations in each economic state variable, and the 

highest R2 among any other alternative portfolio constructed using univariate OLS regressions (Lamont, 
2001). 
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corresponding to the stock market return Equation (7) and the corresponding variance return 

equation.  In Panel B, we report the vector of estimates 𝛿̂ in the logistic function G, Equation (6) 

that may be interpreted as the time-varying transition probability of the good state as a function 

of the innovations in the vector of economic state variables [𝐷𝐼𝑉𝑡,  𝑅𝐹𝑡,  𝑇𝐸𝑅𝑀𝑡,  𝐷𝐸𝐹𝑡].  The 

estimates in Panel A are consistent with well-known features of stock returns documented in the 

empirical asset pricing literature.23  

 

Insert Table 2 About Here. 

 

The results in Panel B confirm the expected theoretical associations between the 

innovation in the parsimonious set of state variables and the state transition probability for the 

market.  The results are also consistent with previously reported results in the asset pricing 

literature (Petkova and Zhang 2005; Petkova 2006).  News regarding DEF and TERM in the 

good economic state and RF, DIV, and TERM in the bad economic state are statistically 

significant at a 5% level.  The standard interpretation of the TERM spread is that it indicates that 

expected market returns are low during expansions and high during recessions (Fama and French 

1989).  Thus, positive innovations in TERM are associated with bad news about the economy, 

which explains the negative estimated coefficient in Panel B.  This is consistent with the 

literature that explores the correlation between the slope of the yield curve and future economic 

growth (Chen 1991; Estrella and Hardouvelis 1991).  Bad economic times are preceded by a 

flattening of the yield curve, hence the higher expected market return. 

                                                
23 Researchers have found that stock returns are persistent and subject to low frequency jumps in their drift 

and/or volatility, which can generate fat-tailed and skewed marginal distributions (for a survey of this 
literature see Singleton 2006). 
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Negative innovations in DEF tend to coincide with high market returns and, as such, will 

predict lower expected market returns in the good economic state.  In that case, even a relatively 

small realized stock market return is sufficient to remain in the good economic state in the next 

period.  Alternatively, negative innovations on dividends and the level of nominal interest rates 

are associated with higher expected market returns during a bad economic state.  Thus, the 

probability of transitioning to the good economic state in the next period increases/decreases 

depending upon the magnitude of the realized shock in the stock market return. 

 

4.2 The asset pricing model under learning and ambiguity 

In this section, we examine whether ambiguity is priced in the cross-section of stock returns as 

predicted by Equation (5).  We follow the two-pass cross-sectional regression method 

(henceforth CSR) of Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). In the 

first-pass, we run the following time-series regression for each asset: 

 

𝑅𝑒
𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑅𝑒

𝑀𝐾𝑇,𝑡 + 𝛽𝑖,𝜋𝐿𝑅𝑒
𝜋𝐿,𝑡 +  𝛽𝑖,𝐾𝑈𝑁𝐶 𝑅𝑒

𝐾𝑈𝑁𝐶,𝑡 + 𝜀𝑖,𝑡,                (12) 

 

where 𝑅𝑒
𝑖,𝑡 represents the excess returns on asset 𝑖, 𝑅𝑒

𝑀𝐾𝑇,𝑡  is the stock market return, 

𝑅𝑒
𝜋𝐿,𝑡 , 𝑅𝑒

𝐾𝑈𝑁𝐶,𝑡 represents the estimated tracking portfolio excess returns of the innovations in 

the ambiguity factors 𝜋𝑡
𝐿, KUNC, respectively, and 𝜀𝑖,𝑡 is the error term. 

In the second-pass, average excess returns on test assets are related to the factor 

exposures estimated in the first-pass.  We run the following cross-sectional regression each 

month: 
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𝐸[𝑅𝑒
𝑖,𝑡+1] = 𝜆0 + 𝜆𝑀𝐾𝑇𝛽𝑖,𝑀𝐾𝑇  + 𝜆𝜋𝐿𝛽𝑖,𝜋𝐿 + 𝜆𝐾𝑈𝑁𝐶  𝛽𝑖,𝐾𝑈𝑁𝐶 + 𝑣𝑖,                  (13) 

 

where 𝐸[𝑅𝑒
𝑖,𝑡+1] represents the time series average of excess returns 𝑅𝑒

𝑖,𝑡+1, the 𝛽′𝑠 denote 

factor loadings obtained from the first-pass time-series regressions, 𝜆0 is the intercept, 𝜆𝑀𝐾𝑇  is 

the market price of systematic risk, 𝜆𝜋𝐿 , 𝜆𝐾𝑈𝑁𝐶  are the market prices of uncertainty related to the 

innovations in the two dimensions of ambiguity, and 𝑣𝑖 are pricing errors. If loadings with 

respect to factors related to ambiguity are important determinants of stock returns, then the 

estimated coefficients for 𝜆𝜋𝐿 , 𝜆𝐾𝑈𝑁𝐶  should be significantly different from zero. 

We estimate the first-step factor loadings every 36 months based on rolling regressions.24  

We follow Shanken (1992) to address the well-known errors-in-variables (EIV) problem 

associated with using estimated loadings from the first step as independent variables in the cross-

sectional regressions.  The correction only affects the standard errors of the CSR coefficients.  

As such, the point estimates may still be affected by errors in the variables.  We also apply 

Jagannathan and Wang’s (1998) adjustment for the EIV problem under heteroskedasticy and 

autocorrelation.  Additionally, the VAR innovations and transition probabilities are also 

generated regressors used in the first-pass time-series regressions causing a second EIV problem.  

Moreover, model misspecification may be severe, particularly when measuring unobservable 

macroeconomic risk factors.  Consequently, we also report robust standard errors and cross-

sectional goodness of fit R-squared statistics 𝜌2 adjusted following the general approach in Kan, 

Robotti, and Shanken (2013). 

                                                
24 In robustness checks at the end of the article, we report results for alternative window lengths. 
 



30 

We report the estimates from generalized least squared (GLS) cross-sectional regressions 

in Table 3.25   The test assets are the monthly excess returns on 25 portfolios sorted by size and 

book-to-market augmented with 30 portfolios sorted by industry, as suggested by Lewellen, 

Nagel, and Shanken (2010).  Results based on the 25 portfolios only are entirely similar.  In 

Panel A, we report the results for the full sample period from 1927-2007, while in Panel B, we 

provide the results for the post-COMPUSTAT period, 1962-2007.  The goal is to determine 

whether an asset’s exposure to ambiguity in the return generating process is an important 

determinant of its average return.  Further, we are also interested in whether an asset exposure to 

ambiguity in the forecast of the economic state (i.e., learning) affects its return. 

 

Insert Table 3 About Here. 

 

We find that KUNC is priced in both sample periods.  Over the 1927-2007 period (Panel 

A), the coefficient estimate on the KUNC beta is 0.36%, which is statistically significant at the 

1% level.  Over 1962-2007 (Panel B), the coefficient is 0.46% and remains significant at the 1% 

level.  In the lower section of both Panel A and Panel B, we provide the results of model 

specification robust tests, including the robust cross-sectional goodness of fit R-squared statistics 

 𝜌2 of Kan, Robotti, and Shanken (2013).  In both sample periods, we reject the null hypothesis 

𝐻0: 𝜌2 = 1 as well as 𝐻0: 𝜌2 = 0 at the 1% level.  

We conclude that exposure to ambiguity in the return generating process is a priced factor 

in the cross-section of expected stock returns.  Further, the learning under ambiguity asset 

pricing model is (asymptotically) correctly specified.   However, the statistical significance of 

                                                
25 Following Kan, Robotti, and Shanken (2013), we also run the empirical analyses using weighted least-

squared (WLS) obtaining similar results.  We do not report these results to save space. 
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the intercept suggests possible misspecification in finite samples.  We discuss the results of a 

model that does not include an intercept term in robustness checks at the end of the article. 

In Table 3, 𝜋𝑡
𝐿 is never statistically significant.  We suspect this may be the result of 

including the intercept in the CSR while using excess returns as dependent variables.  We present 

evidence supporting this view in the robustness checks section.  However, even if not priced, the 

learning factor may still help explain variation in stock returns.  We examine whether this is the 

case in Table 4, where we follow Kan, Robotti, and Shanken (2013) and report results of the 

second-pass CSR using covariances rather than betas as regressors in first-pass time-series 

regressions.  We find that coefficient estimates on the covariances of 𝜋𝑡
𝐿 and KUNC are both 

statistically significant.  Thus, the learning factor improves the explanatory power of the 

expected return model.  Following Kan, Robotti, and Shanken (2013), the problematic 

interpretation of the learning factor using multiple regression betas is due to the dependence of 

the factor with the other factors included in the first-pass time-series regressions.  Depending 

upon the severity of the model misspecification, the difference between CSR estimates using 

multiple regression betas or covariances may be significant, especially if the correlation of the 

factor with the asset returns is very low. 

 

Insert Table 4 About Here. 

 

Overall, we conclude that an asset pricing model that includes a market risk factor and 

two additional factors associated with learning under ambiguity is asymptotically correctly 

specified and helps explain the cross-section of expected stock returns. 
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4.3 Comparison with the three factor Bayesian asset pricing model  

In this section, we assess the incremental explanatory power of KUNC compared to Bayesian 

uncertainty.  Ozoguz (2009) and Zhang (2003) investigate whether investors’ beliefs and 

investors’ uncertainty about the economy are state variables that describe changes in the 

investment opportunity set.  In particular, Ozoguz (2009) finds that an asset pricing model that 

includes the market portfolio, the conditional probability of the good economic state, and a factor 

related to Bayesian uncertainty (UC) help explain the cross-section of average stock returns.  

Ozoguz (2009) measures the two Bayesian factors using a two-state Markov-switching model; 

𝜋̂𝑡 serves as a proxy for learning and UC = 𝜋̂𝑡(1 − 𝜋̂𝑡) for uncertainty. 

In Table 5, Panel A, we report estimates and model specification robust tests for the 

three-factor standard Bayesian model from 1927 to 2007.  In Panel B, we include estimates and 

model specification robust tests for the augmented version of the model that includes the 

ambiguity factor KUNC.  The set of test assets includes the augmented set of 25 Fama-French 

portfolios sorted by size and book-to-market and 30 portfolios sorted by industry.26  We find that 

the Bayesian proxy for model uncertainty UC is never significantly different from zero.  In 

contrast, the ambiguity factor KUNC is statistically significant at the 1% level even after a 

battery of corrections on the standard errors that account for errors-in-variables and model 

misspecification problems.  The coefficient estimate of 0.27% is economically meaningful.  

Further, the results of the Wald test and the model misspecification test for the null 𝐻0: 𝜌2 = 0 

suggest the three-factor Bayesian model cannot explain the cross-section of expected stock 

returns and is asymptotically misspecified.  The Wald test, however, is known to reject too often 

in finite samples. 

                                                
26 Ozoguz (2009) does not use tracking portfolio returns on orthogonalized innovations, so results in the two 

articles are not directly comparable. 
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Insert Table 5 About Here. 

 

The Bayesian model performs better over the recent COMPUSTAT period 1962-2007, as 

can be seen in Table 6. This is consistent with the results in Ozoguz (2009).  Nevertheless, once 

KUNC is included, none of the Bayesian variables are significant, while KUNC is significant at 

the 1% level with an estimated monthly premium of 0.25%.  The ambiguity factor KUNC 

improves the robust cross-sectional R-squared goodness of fit statistic 𝜌2 of the three-factor 

Bayesian model from 0.14 to 0.30 over the period 1927-2007, and from 0.28 to 0.41 over 1962-

2007.  Furthermore, we cannot reject the null hypothesis 𝐻0: 𝜌2 = 1 at the 1% level for the 

model that includes KUNC over the recent period.  Thus, a four-factor Bayesian model that also 

includes the ambiguity factor KUNC has good explanatory power for the cross-section of stock 

returns and is asymptotically correctly specified over the 1962-2007 sample period. 

 

Insert Table 6 About Here. 

 

Overall, we reach two major conclusions.  First, ambiguity is distinct from Bayesian 

uncertainty and is statistically and economically more meaningful.  Additionally, an augmented 

Bayesian model that accounts for ambiguity aversion performs better than the standard three-

factor Bayesian model of Zhang (2003) and Ozoguz (2009). 

 

4.4 Is the impact of ambiguity subsumed by risk-driven intertemporal effects?  
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In this section, we consider an alternative empirical specification of the learning under ambiguity 

model.  We are interested in investigating whether the ambiguity factor KUNC is distinct from 

the intertemporal risk effects associated with changes in future investment opportunities (Merton 

1973). Thus, we replace the distorted transition probability 𝜋𝑡
𝐿 with the state variables driving the 

dynamics of the investment opportunity set (Petkova 2006).  We run first-pass time-series 

regressions of the form: 

 

𝑅𝑒
𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖,𝑀𝐾𝑇𝑅𝑒

𝑀𝐾𝑇,𝑡 + 𝛽𝑖,𝑅𝐹𝑅𝑒
𝑅𝐹,𝑡 + 𝛽𝑖,𝐷𝐼𝑉𝑅𝑒

𝐷𝐼𝑉,𝑡 + 𝛽𝑖,𝑇𝐸𝑅𝑀𝑅𝑒
𝑇𝐸𝑅𝑀,𝑡 + 𝛽𝑖,𝐷𝐸𝐹 𝑅𝑒

𝐷𝐸𝐹,𝑡    

+ 𝛽𝑖,𝐾𝑈𝑁𝐶 𝑅𝑒
𝐾𝑈𝑁𝐶,𝑡 + 𝜀𝑖,𝑡 ,  (14) 

 

where 𝑅𝑒
𝑖,𝑡 is the excess return on asset 𝑖 = 1, ⋯ , 𝑛; 𝑅𝑒

𝑀𝐾𝑇,𝑡  is the stock market return and the 

rest of the 𝑅𝑒
𝑡′𝑠 represent the estimated tracking portfolio excess returns of the innovations in 

the state variables MKT, RF, DIV, TERM, DEF, and KUNC; and 𝜀𝑖,𝑡 is the error term. 

After estimating (14), we run the following second-pass cross-sectional regression:  

 

𝐸[𝑅𝑒
𝑖,𝑡+1] = 𝜆0 + 𝛽𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇  + 𝛽𝑖,𝑅𝐹𝜆𝑅𝐹  + 𝛽𝑖,𝐷𝐼𝑉𝜆𝐷𝐼𝑉  + 𝛽𝑖,𝑇𝐸𝑅𝑀𝜆𝑇𝐸𝑅𝑀  + 𝛽𝑖,𝐷𝐸𝐹𝜆𝐷𝐸𝐹  + 

 + 𝛽𝑖,𝐾𝑈𝑁𝐶 𝜆𝐾𝑈𝑁𝐶 + 𝑣𝑖  (15) 

 

where 𝐸[𝑅𝑒
𝑖,𝑡] represents the time series average of excess returns 𝑅𝑒

𝑖,𝑡, the 𝛽′𝑠
 
denote factor 

loadings obtained from first-pass time-series regressions, 𝜆0 
is the intercept, 

𝜆𝑀𝐾𝑇 , 𝜆𝑅𝐹 , 𝜆𝐷𝐼𝑉 , 𝜆𝑇𝐸𝑅𝑀 , 𝑎𝑛𝑑 𝜆𝐷𝐸𝐹  are market prices of risk for market beta and intertemporal 

effects, 𝜆𝐾𝑈𝑁𝐶  denotes the ambiguity premium, and 𝑣𝑖 are the pricing errors. 
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In Table 7, we present results using the set of test assets that includes 25 Fama-French 

portfolios sorted by size and book-to-market and 30 portfolios sorted by industry.   

 

Insert Table 7 About Here. 

 

Loadings on TERM and KUNC are positive and statistically significant in both sample 

periods.  The coefficient on RF is negative and marginally significant in the longer sample 

period.  Further, the results of model specification robustness tests suggest the alternative 

empirical implementation of the learning under ambiguity model, although asymptotically 

misspecified, provides a reasonable description of the cross-section of expected stock returns.  

The performance of the alternative specification is similar to that of the initial specification based 

on 𝜋𝑡
𝐿 and KUNC provided in Table 3. 

A reasonable concern regarding the results reported in Table 7 is that our use of tracking 

portfolios, rather than the initial orthogonal innovations, may suffer from model specification.  

To alleviate this concern, we repeat the analysis done in Table 7 using innovations rather than 

tracking returns.  The results, reported in Table 8, do not change in any material way.  Both 

TERM and KUNC are positive and significant in both sample periods, while RF is negative and 

significant, but only in the longer sample.  Petkova (2006, Table V) reports the results of a 

specification similar to the one in Table 8, but without including KUNC.  Over 1963-2001, she 

reports the coefficient on TERM to be significantly positive and RF to be significantly negative.  

None of the other variables are significant.  We report similar findings after including KUNC. 

 

Insert Table 8 About Here. 
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Overall, we conclude that the impact on the cross-section of stock returns of unexpected 

changes in ambiguity regarding the (unknown) return generating process is distinct and separate 

from any intertemporal effects related to unexpected changes in future investment opportunities.  

Stated differently, our previous result that loadings on KUNC can help explain the cross-section 

of average stock returns does not seem to stem from a spurious association between our 

ambiguity measure and unexpected changes in variables known to predict stock returns.  

Furthermore, we find that the two empirical implementations of the learning under ambiguity 

model perform similarly well, offering support for the broad implications of the literature (e.g., 

Epstein and Schneider 2008). 

 

4.5 Incremental explanatory power of the Fama-French-Carhart factors  

In this section, we examine whether KUNC remains significant after controlling for the size and 

value factors of Fama and French (1993) and the momentum factor of Carhart (1997).  We 

present the results of two types of analyses.  In Table 9, the asset pricing factors are based on 

tracking portfolios.  The factors considered include both 𝜋𝑡
𝐿 and KUNC, in addition to MKT, RF, 

DIV, TERM, and DEF, as well as SMB, HML, and UMD.  In Table 10, the factors are based on 

innovations rather than tracking portfolios.  The factors considered include KUNC, MKT, RF, 

DIV, TERM, DEF, SMB, HML, and UMD.  

 

Insert Table 9 and 10 About Here. 
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In Table 9, KUNC is significantly positive in both sample periods even after including 

loadings on SMB, HML, and UMD.  In addition, loadings on HML, UMD, and TERM are 

significantly positive.  In Table 10, using innovations as in Petkova (2006), both KUNC and 

TERM remain positive and significant.  In contrast, none of the other variables are significant 

based on the robust t-statistics of Kan, Robotti, and Shanken (2013).  Petkova (2006) reports 

similar results with respect to TERM and the Fama-French factors.  We conclude that the firm-

specific factors of Fama and French (1993) and Carhart (1997) do not subsume the information 

contained in KUNC regarding uncertainty in the cross-section of average stock returns. 

 

5.  A Comparison of Empirical Asset Pricing Models  

We compare the performance of the learning under ambiguity model against three prominent 

empirical asset pricing models: 1) the Bayesian model of Ozoguz (2009), 2) the ICAPM model 

of Petkova (2006), and 3) the four-factor model of Fama and French (1993) and Carhart (1997).  

We use the robust pair-wise comparative tests developed by Kan, Robotti, and Shanken (2013) 

for cross-sectional regressions 𝜌2 of nested and non-nested models.  The null hypothesis is that 

the difference in the 𝜌2 statistics between the two models is not statistically significant. 

In Table 11, we compare the 𝜌2 of the empirical implementation of the Learning Under 

Ambiguity Model that includes loadings on MKT, RF, DIV, TERM, DEF, and KUNC versus the 

Augmented Model that also includes the Bayesian proxy for uncertainty UC = 𝜋̂𝑡(1 − 𝜋̂𝑡).  The 

objective is to evaluate whether Bayesian uncertainty has incremental explanatory power relative 

to the learning under ambiguity model.  The table reports the difference between the sample 

cross-sectional 𝜌2 of the Augmented Model minus the Learning Under Ambiguity Model, and 

the associated p-values. 
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Insert Table 11 About Here. 

 

Although the difference is negative, we cannot reject the null that the two models have 

similar explanatory power over the longer sample period.  Over the shorter period, there is 

marginal evidence that the augmented model performs worse than the model without the 

Bayesian proxy.  Thus, adding the Bayesian uncertainty measure does not increase the 

explanatory power of the learning under ambiguity model. 

Kan, Robotti, and Shanken (2013) report that in the post-COMPUSTAT period, the 

empirical implementation of the ICAPM of Petkova (2006) does not pass asset pricing tests 

robust to model misspecification, in contrast to the four-factor model (FF4) of Fama-French 

(1993) and Carhart (1997).  Therefore, in Table 12, we compare the following three models: 1) 

the FF4 model that includes estimated loadings on MKT, SMB, HML, and UMD; 2) the empirical 

ICAPM of Petkova (2006) that includes MKT, RF, DIV, TERM, and DEF; and 3) the empirical 

implementation of the learning under ambiguity model that includes MKT, RF, DIV, TERM, 

DEF, and KUNC. 

 

Insert Table 12 About Here. 

 

The empirical implementation of the learning under ambiguity model outperforms the 

FF4 once model misspecification is taken into account.  The 𝜌2 of FF4 is about 0.26 lower than 

the 𝜌2 of the ambiguity model, and the difference is significant at the 1% level.  The learning 

under ambiguity model performs as well as the standard ICAPM.  Furthermore, when compared 
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against the FF4 model over the 1962-2007 period, the learning under ambiguity model survives 

model misspecification tests, unlike the empirical model of Petkova (2006).  The results of the 

comparative analyses confirm the findings of the previous sections that ambiguity helps explain 

the cross-section of stock returns better than alternative models, particularly after model 

misspecification is taken into account. 

 

6.  Robustness Checks  

We present the results of four types of robustness checks.  First, we previously speculated that 

the loading on 𝜋𝑡
𝐿 was not statistically significant due to the inclusion of the intercept in the 

regressions.  Thus, we now assess the impact that the inclusion of the intercept has on the CSR 

estimates of the first empirical implementation of the learning under ambiguity model.27  To 

evaluate the null hypothesis of zero mispricing, we cannot use the cross-sectional R-squared 

statistic
2 .  Instead, we use the composite pricing error 𝑇𝛂̅′𝚲−𝟏𝛂̅, where T is the size of the 

sample period, 𝛂̅ denotes the average residual vector in the second-pass cross-section regression,

  is a symmetric positive weighting matrix that is equal to Λ = 𝑉̂22
−1 under generalized least 

squares (GLS), and (
𝑉11 𝑉12

𝑉21 𝑉22
) is the variance-covariance matrix of the composite vector of risk 

factors and test asset returns.  This cross-sectional test has an asymptotic chi-squared 

distribution.  As a second robustness check, we present results using the raw values of the 

factors, as opposed to innovations from the VAR model or tracking portfolios of the innovations. 

                                                
27 Introducing the intercept in the CSR with excess returns as dependent variables may introduce 

misspecification in the CSR (Cochrane 2001, Section 12.2, page 235; Brennan, Xia, and Wang 2004).  

Alternatively, the absence of the intercept in the CSR will bias estimates upward.  In the empirical asset 
pricing literature, one can find results with and without the CSR intercept. 
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Moreover, our theoretically motivated factors 𝜋𝑡
𝐿 and KUNC vary with the minimum 

confidence level that investors have in their Q-MLE forecasts (i.e., in the reference model).  

Thus, to assess the impact that different confidence levels have on our results, we repeat the 

econometric estimation and asset pricing tests assuming different minimum confidence levels 

(CL).  More specifically, we consider a range of minimum confidence levels from 50% to 90%.  

The results in Zhang (2003) and Ozoguz (2009) correspond to the special case of a Bayesian 

investor with a 90% minimum confidence level in his reference model. 

Finally, we also assess the impact that time-varying betas have on our results.  

Specifically, we repeat the estimations and asset pricing tests increasing the window length (WL) 

of the first-pass rolling regressions from 36 months to 180 months.   

The results of the robustness checks are presented in Table 13.  To save space, we report 

the results for the longer sample period from 1927-2007; results for 1962-2007 are entirely 

similar.  The market price of beta risk is positive and statistically significant with an estimate of 

around 0.7% per month across different minimum confidence levels and rolling regression 

windows.  The empirical asset pricing literature has shown that exclusion of the intercept in CSR 

leads to equity risk premium estimates closer to the historical average.   

The learning component of the uncertainty premium is positive and statistically 

significant, but only when the ambiguity averse investor uses relatively short predictive 

regressions (i.e., when the forecast horizon is less than 96 months).  The difference between the 

initial results reported in Table 3 and the results in Table 13 suggest that estimates on both 𝜋𝑡
𝐿 

and MKT are very sensitive to model misspecification. 

 

Insert Table 13 About Here. 
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In contrast, the premium on KUNC is positive and statistically significant.  Premium 

estimates vary from 0.70% to 3.0%, rising as minimum confidence levels decrease.  The 

magnitude of these estimates cannot be compared with those obtained in Table 3 because the 

factors in Table 13 are not returns from tradable portfolios.  Consequently, the estimate is not 

equal to the average return of the factor.  We conclude that our previous results on KUNC are 

robust to model misspecification.  Additionally, we provide chi-squared test results at the bottom 

of Table 13.  We cannot reject the null hypothesis of zero mispricing at the 10% level.  Although 

not shown, we cannot reject the null at the 1% level over the post-COMPUSTAT period. 

 

7.  Conclusion 

We consider a dynamic framework of learning under ambiguity as a specialization of the more 

general recursive multiple-priors setting of Epstein and Schneider (2003).  In this framework, the 

solution to the investor problem leads to a fundamental pricing equation in which investors form 

expectations relative to the worst case probability measure.  In beta regression form, the result is 

a model of learning under ambiguity that includes three-factors: 1) systematic risk, 2) uncertainty 

regarding the state of the economy (i.e., learning under ambiguity), and 3) uncertainty regarding 

the data generating process driving stock returns (i.e., ambiguity). 

To test the model empirically, we propose a novel ambiguity measure that arises 

theoretically when the recursive multiple-priors set is constrained based on relative entropy.  

Using classic statistical results on simultaneous confidence levels, the measure is defined as the 

first order approximation of the worst log-likelihood ratio between any alternative model and the 

reference model.  
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We find that ambiguity is priced in the cross-section of average stock returns, and that the 

explanatory power of the ambiguity measure is not subsumed by the introduction of other asset 

pricing factors.  Furthermore, the learning under ambiguity model performs better than the three-

factor Bayesian learning model of Ozoguz (2009), the empirical implementation of the ICAPM 

of Petkova (2006), and the standard Fama, French (1993) and Carhart (1997) model.  Altogether, 

our empirical results provide support for the broad predictions of the learning under ambiguity 

literature (Epstein and Schneider 2008) and suggest that ambiguity aversion can help explain the 

cross-section of stock returns. 

An interesting open question is whether ambiguity can explain well known anomalies 

such as the value premium.  The existing literature finds it difficult to explain why the “riskier” 

growth stocks tend to underperform value stocks.  We conjecture that an ambiguity averse 

investor may have a preference for growth stocks because they perform relatively better when 

the investor’s confidence in the return generating model is lower.  More broadly, ambiguity 

aversion has the potential to explain the many apparently unrelated anomalies that have been 

reported.  

More technically, an important extension of the paper would recover jointly (as opposed 

to in separate steps) both the reference probability and the worst case scenario probability.  This 

is left for future research.  
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Appendix A 

We start by modifying the standard dynamic programming consumption-investment problem to 

account for ambiguity in the transition probabilities describing the state of the economy.  

Assume the representative agent is endowed with a standard time-additive separable Von 

Neumann Morgenstern utility of consumption. Let 𝑅𝑖,𝑡+1
𝑠 denote the conditional gross return of 

asset 𝑖 over the period starting at time 𝑡 and ending up at time 𝑡 + 1. Also, let 𝑅𝑓,𝑡−1 represent 

the gross return of a dollar invested in the risk-free asset.  Then, the conditional wealth constraint 

is given by: 

 

𝑊𝑡+1
𝑆 = (𝑊𝑡 − 𝐶𝑡)(𝑅𝑓,𝑡−1 + ∑ 𝜉𝑖,𝑡(𝑅𝑖,𝑡+1

𝑠 − 𝑅𝑓)𝑛
𝑖=1 ).                         (A.1) 

 

Starting from date 𝑇, we iterate backward period by period to obtain the dynamically constrained 

Bellman Equation in (2):  

 

𝐽(𝑊𝑡 , 𝑡) = 𝑀𝑎𝑥𝐶
𝑡,{𝜉𝑖,𝑡}

(𝑢(𝐶𝑡) + 𝑀𝑖𝑛𝜋𝑡
∗𝐸𝑡 [𝜋𝑡

∗𝐽(𝑊𝑡+1
1 , 𝑡 + 1) + (1 − 𝜋𝑡

∗)𝐽(𝑊𝑡+1
0 , 𝑡 +

1)+
1

2
𝜃𝑡(𝐷𝑡(𝜋𝑡

∗‖𝜋𝑡) − 𝜂𝑡)]),    (A.2) 

 

where 𝜃𝑡 ≥ 0 is a Lagrange multiplier for the ambiguity constraint in Equation (1). Next, we 

insert the approximation (B.3) in Appendix B into (A.2) to generate the necessary first order 

condition for optimality of the inner minimization problem: 

 

𝜋𝑡 − 𝜋𝑡
∗ =

(𝐸𝑡(𝐽(𝑊𝑡+1
1 ,𝑡+1))−𝐸𝑡(𝐽(𝑊𝑡+1

0 ,𝑡+1)))𝜋𝑡(1−𝜋𝑡)

 𝜃𝑡
.                                   (A.3) 
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From Equation (1) express the complementary slackness condition of the entropy constraint as: 

 

1

2
 𝜃𝑡 (

(𝜋𝑡−𝜋𝑡
∗)2

𝜋𝑡(1−𝜋𝑡)
− 𝜂𝑡) = 0.                                                (A.4) 

 

Substitute (A.3) into (A.4) to obtain: 

 

 𝜃𝑡 =
(𝐸𝑡(𝐽(𝑊𝑡+1

1 ,𝑡+1))−𝐸𝑡(𝐽(𝑊𝑡+1
0 ,𝑡+1)))𝜋𝑡(1−𝜋𝑡)

√2𝜂𝑡
.                                  (A.5) 

 

Finally, inserting (A.5) back into (A.3) yields: 

 

𝜋𝑡
𝐿 ≡ 𝜋𝑡

∗ = 𝜋𝑡 − √2𝜂𝑡𝜋𝑡(1 − 𝜋𝑡).                                             (A.6) 

 

Hence, we must have: 0 ≤
𝜋𝑡−𝜋𝑡

𝐿

𝜋𝑡
≤ +1. When (A.6) holds, (A.2) turns into the usual 

unconstrained maximization problem: 

 

𝐽(𝑊𝑡 , 𝑡) = 𝑀𝑎𝑥𝐶
𝑡,{𝜉𝑖,𝑡}

(𝑢(𝐶𝑡) + 𝐸𝑡
𝜋𝑡

𝐿

(𝐽(𝑊𝑡+1, 𝑡 + 1))),       (A.7) 

 

where 𝐸𝑡
𝜋𝑡

𝐿

(𝐽(𝑊𝑡+1, 𝑡 + 1)) ≡ 𝜋𝑡
𝐿𝐸𝑡(𝐽(𝑊𝑡+1

1 , 𝑡 + 1)) + (1 − 𝜋𝑡
𝐿)𝐸𝑡(𝐽(𝑊𝑡+1

0 , 𝑡 + 1)) denotes the 

ambiguity certainty equivalent (see Epstein and Schneider (2010) pp. 325-326) of the expected 

continuation values 𝐸𝑡(𝐽(𝑊𝑡+1
𝑠 , 𝑡 + 1)) under the worst case scenario probability 𝜋𝑡

𝐿. Finally, 
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standard first-order conditions (see Pennachi (2008)) applied to (A.7) deliver Proposition 1. 

Q.E.D. 
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Appendix B 

We provide an approximation of the Kullback-Leibler divergence between alternative model 𝜋𝑡
∗ 

and reference model 𝜋𝑡 probability measures in our setting (Cover and Thomas 1991, pp.18 and 

19 for technical details and interpretation).  With our notation we obtain: 

 

𝐷𝑡(𝜋𝑡
∗‖𝜋𝑡) = 𝐸𝜋𝑡

∗ (𝑙𝑛 (
𝜋𝑡

∗

𝜋𝑡
)) = 𝜋𝑡

∗𝑙𝑛 (
𝜋𝑡

∗

𝜋𝑡
) + (1 − 𝜋𝑡

∗)𝑙𝑛 (
1−𝜋𝑡

∗

1−𝜋𝑡
) .               (B.1) 

 

A first order Taylor series approximation yields: 

 

𝑙𝑛 (
𝜋𝑡

∗

𝜋𝑡
) ≈

𝜋𝑡
∗−𝜋𝑡

𝜋𝑡
 .                                                        (B.2) 

 

Observe that the above ratio is well behaved since −1 ≤
𝜋𝑡

∗−𝜋𝑡

𝜋𝑡
≤ +1 as long 𝜋𝑡 is non-

degenerate.  Substituting (B.2) back into Equation (B.1) we obtain after algebra: 

 

𝐷𝑡(𝜋𝑡
∗‖𝜋𝑡) ≈

(𝜋𝑡−𝜋𝑡
∗)2

𝜋𝑡(1−𝜋𝑡)
 .                                                     (B.3) 

 

In the entropy literature (Golan, Judge, and Miller 1996, pp. 31), Expression (B.3) is 

interpreted as a shrinkage estimator.   

Define 𝜋̂𝑡 as the Q-MLE of the transition probability of the “expansion” economic state. 

This is the reference model where the data generating process driving the stock market return is 

modeled as formally described in Appendix A.  Given a sample of time-series observations with 
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size T, let 𝑝𝑡 = 𝑡{𝑠𝑡=1} 𝑇⁄  be the empirical likelihood or frequency of observing good economic 

times under a minimum confidence level on the forecast of  (1 − 𝜍). 

Ambiguity averse investors acknowledge that the observed empirical frequencies are 

drawn from a hidden distribution of multinomial proportions (given that “Nature” chooses the 

distribution of returns with maximum entropy or multiplicity).  Thus, they will simultaneously 

entertain a continuum of alternative possible close likelihoods around their reference forecast.  

We follow Goodman (1965) and find the asymptotic interval of the reference model using the 

Bonferroni inequality.   

Thus, T , 𝑝𝑡 is approximately normally distributed with mean 𝜋̂𝑡 and variance 

𝜋̂𝑡(1 − 𝜋̂𝑡) 𝑇⁄  so that the empirical counterpart of Equation (B.3): 

 

𝑍𝑡 =
√𝑇(𝑝𝑡−𝜋̂𝑡)

√𝜋̂𝑡(1−𝜋̂𝑡)
,                                                          (B.4) 

 

is distributed as a standard normal variate.  The interval for 𝜋̂𝑡 has bounds equal to the solutions 

of the quadratic equation: 

 

𝑇(𝑝𝑡  − 𝜋̂𝑡)2 = 𝜒2(1 − 𝜍)𝜋̂𝑡(1 − 𝜋̂𝑡),                                        (B.5) 

 

or what is the same: 

 

𝜋̂𝑡
2(𝑇 + 𝜒2(1 − 𝜍, 1)) − (2𝑡{𝑠𝑡=1} + 𝜒2(1 − 𝜍, 1)) 𝜋̂𝑡 + 𝑡{𝑠𝑡=1}

2 𝑇 = 0⁄ ,             (B.6) 
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where 𝜒2(1 − 𝜍, 1) denotes the quantile of order (1 − 𝜍) of a chi-square distribution with one 

degree of freedom.  Equations (B.5) and (B.6) have two solutions that define the lower and upper 

bounds defining the interval [𝜋𝑡
𝐿, 𝜋𝑡

𝐻] around 𝜋̂𝑡 with coverage probability 1 − 𝑇𝜍.  An investor 

averse to model ambiguity that seeks safety first selects the lower bound 𝜋𝑡
𝐿 of the interval as the 

conditional probability of a good economic regime next period. That is, the investor slants his 

belief toward the recession state with low consumption continuation values.              

Q.E.D. 
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Table 1  

Summary statistics: Bayesian uncertainty vs. ambiguity  
 

 

Panel A 1927-1961 1962-2007 

Ambiguity measures 𝝅𝑳 𝑲𝑼𝑵𝑪 𝝅𝑳 𝑲𝑼𝑵𝑪 

Mean 0.6243 0.2260 0.5683 0.2104 

Std. dev. 0.3932 0.3197 0.3500 0.2691 

Min. 0.0000 0.0238 0.0000 0.0238 

Max. 0.9762 1.0000 0.9762 1.0000 

Bayesian uncertainty measures 𝝅̂ 𝑼𝑪 𝝅̂ 𝑼𝑪 

Mean 0.6615 0.0668 0.6172 0.1106 

Std. Dev. 0.3968 0.0881 0.3549 0.0932 

Min. 0.0000 0.0000 0.0000 0.0000 

Max. 1.0000 0.2500 1.0000 0.2500 

Panel B: Correlation matrix 𝑲𝑼𝑵𝑪 𝑼𝑪 𝝅𝑳 𝝅̂ 

𝐾𝑈𝑁𝐶 

𝑈𝐶 

𝜋𝐿 

𝜋̂ 

1 -0.2100 -0.8400 -0.8600 

 

1 -0.2500 -0.1800 

  

1 1.0000 

   

1 
 

The table reports summary statistics for the proxies for investors’ beliefs and uncertainty over the hidden state 

of the market in the standard Bayesian and Ambiguity cases. 𝜋̂ is the Q-MLE of the conditional probability of 

transitioning to the good economic state using the STAR model of the market return; 𝜋𝐿 is the distorted (lower 

bound) conditional probability of transitioning to the good economic state using Goodman’s procedure; 𝑈𝐶 =
𝜋̂(1 − 𝜋̂) denotes the standard Bayesian index of uncertainty constructed using the Q-MLE transition 

probabilities (Ozoguz 2009); and 𝐾𝑈𝑁𝐶 = (𝜋̂ − 𝜋𝐿) 𝜋̂⁄  denotes the ambiguity measure, constructed using the 
Q-MLE and the distorted probability measures. In Panel A, the sample period is April 1927-December 1961 or 

January 1962-December 2007. Panel B reports the correlation coefficients among the belief and uncertainty 

measures over April 1927-December 2007. 
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Table 2 

The STAR model 
 

Panel A: Excess Stock Market Return Equation 

 Estimates Standard Error t-ratio p-value 

Regime 1 (Good economic times) 

Student t d.f.^(1/2) 3.6946 0.7294 -- -- 
Log (Skewness) -0.1939 0.0591 -3.2810 0.0010 

Intercept (𝜙̂1,0) 0.0023 0.0083 0.3540 0.7230 

AR1(𝜙̂1) -0.9524 0.0302 -31.5260 0.0000 

MA1 (𝜁) -0.9638 0.0219 -44.0680 0.0000 

GARCH Intercept (𝑎̂1,0) 0.0438 0.0088 -- -- 

GARCH AR1 (𝑏̂) 0.9499 0.0198 48.0250 0.0000 

GARCH MA1 (𝑎̂1) 0.8534 0.0248 34.3830 0.0000 

Regime 0 (Bad economic times) 

Intercept (𝜙̂0,0) 0.0176 0.0096 1.8240 0.0680 

GARCH Intercept (𝑎̂0,0) 0.0572 0.0142 4.0180 0.0000 

Log Likelihood: 1650.28    

Panel B: Transition Function
 

 Estimates Standard Error t-stat p-value 

Regime 1 (Good economic times) 

𝛿1,0 -0.6871 0.2454 -2.7990 0.0050 

𝛿1,RF(-1) 0.0022 0.0146 0.1500 0.8810 

𝛿1,DIV(-1) -0.0164 0.0251 -0.6560 0.5120 

𝛿1,TERM(-1) -0.0477 0.0245 -1.9450 0.0520 

𝛿1,DEF(-1) 0.2252 0.0816 2.7610 0.0060 

Regime 0 (Bad economic times) 

𝛿0,0 -0.7142 0.1512 -4.7240 0.0000 

𝛿0,RF(-1) -0.0401 0.0177 -2.2640 0.0240 

𝛿0,DIV(-1) -0.3615 0.0923 -3.9180 0.0000 

𝛿0,TERM(-1) -0.1538 0.0382 -4.0290 0.0000 

δ 0,DEF(-1) 0.0231 0.0156 1.4820 0.1390 

Smoothness (𝜓̂) 36.5380 17.6785 2.0670 0.0390 

 
The table reports conditional quasi maximum-likelihood (Q-MLE) estimates of the self-exciting smooth double transition 
(STAR-GARCH) model for the excess stock market return: 
 
 

𝑅𝑀𝐾𝑇,𝑡
𝑒 = (𝜙1,0 + 𝜙1𝑅𝑀𝐾𝑇.𝑡−1

𝑒 )(𝐺(𝜔𝑡 ; 𝜓, 𝛅)) + (𝜙0,0 + 𝜙1𝑅𝑀𝐾𝑇.𝑡−1
𝑒 )(1 − 𝐺(𝜔𝑡; 𝜓, 𝛅)) + (𝜀𝑡 − 𝜁𝜀𝑡−1) 

𝜀𝑡 = √𝒽𝑡𝑣𝑡, 𝒽𝑡 =  (𝐺(𝜔𝑡; 𝜓, 𝛅))𝒽1,𝑡 + (1 − 𝐺(𝜔𝑡 ; 𝜓, 𝛅)) 

𝒽1,𝑡 = 𝑎1,0 + 𝑎1𝜀𝑡−1
2 + 𝑏𝒽1,𝑡−1, 𝒽0,𝑡 = 𝑎0,0 + 𝑎1𝜀𝑡−1

2 + 𝑏𝒽0,𝑡−1 

𝐺(𝜔𝑡; 𝜓, 𝛅) = (1 + 𝑒𝑥𝑝{−𝜓(𝑅𝑀𝐾𝑇,𝑡−1
𝑒 − 𝛿1,0 − 𝛅′𝟏,𝟏𝑑𝑧𝑡−1)(𝑅𝑀𝐾𝑇,𝑡−1

𝑒 − 𝛿0,0 − 𝛅′𝟎,𝟏𝑑𝑧𝑡−1)})
−1

 

 
 

where the switching “indicator” variable 𝑠𝑡  is the one-period lagged dependent variable 𝑟𝑀𝐾𝑇,𝑡−1
𝑒 ; 𝜓 ≥ 0 is the “smoothness” 

parameter; dzt-1 denotes a vector of innovations in a group of exogenous state variables RF(-1), DIV(-1), TERM(-1), and DEF(-1) 

lagged one period; 𝜙1,0,  𝜙0,0 are state dependent intercepts; and 𝜙1  and 𝜁 are the autoregressive and moving average 

parameters of the data generating process (DGP). The errors are assumed to follow a skewed Student t distribution with 

parameters equal to the square of the number of degrees of freedom (d.f.) and Log(Skewness). The GARCH parameters are in 
ARMA-in-squares form. Robust standard errors are calculated following the Newey-West HAC formula to correct for 
heteroskedastic and autocorrelation effects, and using a non-parametric Parzen kernel and plug-in bandwidth equal to five in 
order to account for parametric functional misspecification (see Ferson, Simin, and Sarkissian, 2003). The sample period is 1927-
2007. 
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Table 3 

Regression results for the learning under ambiguity model 
 

Panel A: 1927-2007
 

𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝝅𝑳 𝝀̂𝑲𝑼𝑵𝑪 

Estimates:
 

0.0090*** 0.0012 0.0020 0.0036*** 

𝑡𝐹𝑀 6.7836 0.5357 1.4717 4.3529 

𝑡𝑆 6.6064 0.5304 1.4659 4.3150 

𝑡𝐽𝑊 5.8953 0.4949 1.4375 4.4339 

𝑡𝐾𝑅𝑆 5.1524 0.4701 1.3039 3.7591 

𝜌2 0.1395    

𝑝(𝜌2 = 1) 0.0000    

𝑝(𝜌2 = 0) 0.0045    

Wald 19.7767    

𝑝(𝑊𝑎𝑙𝑑) 0.0017    

Panel B: 1962-2007 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝝅𝑳 𝝀̂𝑲𝑼𝑵𝑪 

Estimates
 

0.0126*** -0.0027 0.0005 0.0046*** 

𝑡𝐹𝑀 8.0432 -1.1130 0.3569 4.9175 

𝑡𝑆 7.5256 -1.0810 0.3543 4.8338 

𝑡𝐽𝑊 7.1480 -1.0864 0.3519 4.9046 

𝑡𝐾𝑅𝑆 6.0201 -1.0000 0.3436 4.5038 

𝜌2 0.2281    

𝑝(𝜌2 = 1) 0.0015    

𝑝(𝜌2 = 0) 0.0000    

Wald 31.9242    

𝑝(𝑊𝑎𝑙𝑑) 0.0000    

 

The table reports cross-sectional regression (CSR) estimates and asset pricing robust test results for the following 
empirical specification of the learning under ambiguity model: 

 

𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋𝐿𝜆𝜋𝐿+𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 

 
The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. The factors are the returns 

of tracking economic portfolios on “orthogonalized” innovations. 𝜌2 denotes the cross-sectional goodness of fit 

statistic with 𝑝(𝜌2 = 1) denoting the p-value of the asset pricing model specification test with null 

hypothesis 𝐻0: 𝜌2 = 1. 𝑝(𝜌2 = 0) is the p-value of the asset pricing model specification test with null 

hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of the null hypothesis 𝐻0: 𝜆̂ = 0 with p-value 𝑝(𝑊𝑎𝑙𝑑). 
Following the approach in Kan, Robotti, and Shanken (2013), we report standard Fama-MacBeth (1973) t-stats 

assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted t-stats to correct for the EIV problem (tS), 

Jagannathan and Wang (1998) adjusted t-stats (tJW) to correct for Shanken’s test for the distribution of the errors, and 

Kan, Robotti, and Shanken’s (2013) robust t-stats under model misspecification (tKRS). (***) denotes a 1% 

significance level, (**) a 5% significance level, and (*) a 10% significance level. 
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Table 4 

Contribution of the learning factor to the variation of stock returns 
 

 1927-2007
 

1962-2007 

 𝜸̂𝟎 𝜸̂𝑴𝑲𝑻 𝜸̂𝝅𝑳 𝜸̂𝑲𝑼𝑵𝑪 𝜸̂𝟎 𝜸̂𝑴𝑲𝑻 𝜸̂𝝅𝑳 𝜸̂𝑲𝑼𝑵𝑪 

Estimates:
 

0.0090*** 0.7882 -7.7256* 19.2047*** 0.0126*** -0.3236 -14.5029** 32.3734*** 

𝑡𝐹𝑀 6.7836 0.8193 -2.3685 3.3757 8.0432 -0.2229 -3.7490 4.9754 

𝑡𝑆 6.6064 0.7976 -2.3003 3.2693 7.5256 -0.2085 -3.4693 4.5664 

𝑡𝐽𝑊 5.8953 0.7113 -2.0149 2.9003 7.1480 -0.2001 -2.9192 3.9296 

𝑡𝐾𝑅𝑆 5.1524 0.6262 -1.5111 2.1707 6.0201 -0.1846 -2.5661 3.4372 

 

The table reports CSR estimates 𝛾 and t-stats obtained by using factor covariances instead of betas in the first-pass time 

series regressions (see Kan, Robotti, and Shanken 2013). The following empirical specification of the learning under 
ambiguity model is used:  

 

𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝐶𝑂𝑉̂𝑖,𝑀𝐾𝑇𝛾𝑀𝐾𝑇 + 𝐶𝑂𝑉̂𝑖,𝜋𝐿𝛾𝜋𝐿+𝐶𝑂𝑉̂𝑖,𝐾𝑈𝑁𝐶𝛾𝐾𝑈𝑁𝐶 + 𝑢𝑖 

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are returns of tracking 

economic portfolios on “orthogonalized” innovations. Following the approach in Kan, Robotti, and Shanken (2013), we 

report standard Fama-MacBeth (1973 ) t-stats assuming the model is correctly specified (tFM); Shanken’s (1992) 

adjusted t-stats to correct for the EIV problem (tS); Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting 

Shanken’s test for the distribution of the errors; and Kan, Robotti, and Shanken (2013) robust t-stats under model 

misspecification (tKRS). (***) denotes 1% significance level; (**) 5% significance level; and (*) 10% significance level.  
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Table 5 

Incremental explanatory power of KUNC vs. the Bayesian model (1927-2007) 
 

 

Panel A: Bayesian Model 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝝅̂ 𝝀̂𝝅̂(𝟏−𝝅̂)  

Estimates: 0.0157*** -0.0057 -0.0095* -0.0012  

𝑡𝐹𝑀 5.9111 -1.8511 -3.0903 -1.4549  

𝑡𝑆 5.4787 -1.7555 -2.8841 -1.3620  

𝑡𝐽𝑊 4.7633 -1.5200 -2.7381 -1.3044  

𝑡𝐾𝑅𝑆 3.5296 -1.1938 -1.7252 -0.9396  

𝜌2 0.1419     

𝑝(𝜌2 = 1) 0.0050     

𝑝(𝜌2 = 0) 0.1689     

Wald 8.1768     

𝑝(𝑊𝑎𝑙𝑑) 0.2423     

Panel B: Bayesian Model and Ambiguity 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝝅̂ 𝝀̂𝝅̂(𝟏−𝝅̂) 𝝀̂𝑲𝑼𝑵𝑪 

Estimates: 0.0167*** -0.0068 -0.0046 -0.0002 0.0027*** 

𝑡𝐹𝑀 6.2404 -2.1836 -1.3795 -0.2693 3.6704 

𝑡𝑆 6.0010 -2.1253 -1.3307 -0.2602 3.6465 

𝑡𝐽𝑊 5.3802 -1.8936 -1.2639 -0.2351 3.6158 

𝑡𝐾𝑅𝑆 4.3014 -1.5742 -0.9256 -0.1887 3.5917 

𝜌2 0.3020     

𝑝(𝜌2 = 1) 0.0010     

𝑝(𝜌2 = 0) 0.0074     

Wald 21.6935     

𝑝(𝑊𝑎𝑙𝑑) 0.0002     

 
The table reports comparative cross-sectional and GRS asset pricing tests between the three-factor Bayesian model and 

an augmented version that includes the ambiguity measure KUNC. The two models are: 

 

Bayesian model: 𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋̂𝜆𝜋̂+𝛽̂𝑖,𝜋̂(1−𝜋̂)𝜆𝜋̂(1−𝜋̂) + 𝜈𝑖 . 

 

Bayesian model and ambiguity: 𝐸[𝑅𝑛,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋̂𝜆𝜋̂+𝛽̂𝑖,𝜋̂(1−𝜋̂)𝜆𝜋̂(1−𝜋̂)+𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 . 

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are returns of tracking 

economic portfolios on orthogonalized innovations. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) 

denoting the p-value of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-

value of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of 

the null hypothesis 𝐻0: 𝜆̂ = 0 with p-value 𝑝(𝑊𝑎𝑙𝑑). Following the approach in Kan, Robotti, and Shanken (2013), we 

report standard Fama-Macbeth (1973) t-stats assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted 

t-stats to correct for the EIV problem (tS), Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting Shanken’s test 

for the distribution of the errors, and Kan, Robotti, and Shanken’s (2013) robust t-stats under model misspecification 

(tKRS). (***) denotes significance at the 1% level, (**) at the 5% level, and (*) at the 10% level. 
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Table 6 

Incremental explanatory power of KUNC vs. the Bayesian model (1962-2007) 
 

Panel A: Bayesian Model 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝝅̂ 𝝀̂𝝅̂(𝟏−𝝅̂)  

Estimates: 0.0158*** -0.0068** -0.0094 0.0006  

𝑡𝐹𝑀 7.1166 -2.3839 -2.4526 0.6842  

𝑡𝑆 6.4931 -2.2565 -2.2537 0.6370  

𝑡𝐽𝑊 6.5157 -2.2374 -2.1306 0.6172  

𝑡𝐾𝑅𝑆 6.0007 -2.0837 -1.3682 0.4951  

𝜌2 0.2805     

𝑝(𝜌2 = 1) 0.0080     

𝑝(𝜌2 = 0) 0.0286     

Wald 15.3898     

𝑝(𝑊𝑎𝑙𝑑) 0.0015     

Panel B: Bayesian Model and Ambiguity      

Estimates: 0.0169*** -0.0078** -0.0039 0.0011 0.0025*** 

𝑡𝐹𝑀 7.5156 -2.7088 -0.9018 1.2291 2.8225 

𝑡𝑆 7.1228 -2.6235 -0.8576 1.1786 2.7957 

𝑡𝐽𝑊 7.0906 -2.5919 -0.8333 1.1891 2.7774 

𝑡𝐾𝑅𝑆 6.6118 -2.3964 -0.5471 0.9326 2.7547 

𝜌2 0.4095     

𝑝(𝜌2 = 1) 0.0138     

𝑝(𝜌2 = 0) 0.0039     

Wald 24.9766     

𝑝(𝑊𝑎𝑙𝑑) 0.0000     

 

The table reports comparative cross-sectional and GRS asset pricing tests between the three-factor Bayesian model and an 

augmented version that includes the proxy for Knightian uncertainty. The two models are: 
 

Bayesian model:  𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋̂𝜆𝜋̂+𝛽̂𝑖,𝜋̂(1−𝜋̂)𝜆𝜋̂(1−𝜋̂) + 𝜈𝑖 . 

 

Bayesian model and ambiguity: 𝐸[𝑅𝑛,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋̂𝜆𝜋̂+𝛽̂𝑖,𝜋̂(1−𝜋̂)𝜆𝜋̂(1−𝜋̂)+𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 . 

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are returns of tracking 

economic portfolios on orthogonalized innovations. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) 

denoting the p-value of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-value 

of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of the null 

hypothesis 𝐻0: 𝜆̂ = 0 with p-value 𝑝(𝑊𝑎𝑙𝑑). Following the approach in Kan, Robotti, and Shanken (2013), we report 

standard Fama-Macbeth (1973) t-stats assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted t-stats to 

correct for the EIV problem (tS), Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting Shanken’s test for the 

distribution of the errors, and Kan, Robotti, and Shanken’s (2013) robust t-stats under model misspecification (tKRS). (***) 

denotes significance at the 1% level, (**) at the 5% level, and (*) at the 10% level. 

  



60 

Table 7 

Ambiguity and intertemporal risk effects 
 

Panel A: 1927-2007
 

𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑲𝑼𝑵𝑪 

Estimates:  0.0074*** 0.0029 -0.0236* 0.0260 0.0096* 0.0008 0.0021*** 

𝑡𝐹𝑀 4.9020 1.2650 -2.8865 1.1560 3.1885 0.8365 3.3024 

𝑡𝑆 4.2680 1.1848 -2.5289 1.0181 2.7927 0.7460 3.2310 

𝑡𝐽𝑊 4.0923 1.1431 -2.5986 1.0558 2.8395 0.7400 3.4017 

𝑡𝐾𝑅𝑆 3.1944 0.9939 -1.6274 0.7569 1.6478 0.5984 3.2703 

𝜌2 0.2073       

𝑝(𝜌2 = 1) 0.0028       

𝑝(𝜌2 = 0) 0.0342       

Wald 25.7683       

𝑝(𝑊𝑎𝑙𝑑) 0.0046       

Panel B: 1962-2007 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑲𝑼𝑵𝑪 

Estimates: 
 

0.0116*** -0.0019 -0.0041 -0.0401 0.0094** 0.0024 0.0027*** 

𝑡𝐹𝑀 6.7044 -0.7398 -0.4364 -1.7755 3.3294 2.0468 3.1331 

𝑡𝑆 5.9338 -0.6959 -0.3900 -1.5906 2.9866 1.8460 3.0792 

𝑡𝐽𝑊 6.1394 -0.7101 -0.3986 -1.6500 2.9402 1.8682 3.1287 

𝑡𝐾𝑅𝑆 4.6436 -0.6040 -0.2585 -1.0717 2.2464 1.4207 2.9958 

𝜌2 0.2383       

𝑝(𝜌2 = 1) 0.0013       

𝑝(𝜌2 = 0) 0.0094       

Wald 29.3949       

𝑝(𝑊𝑎𝑙𝑑) 0.0002       

 

This table reports cross-sectional regression (CSR) estimates and asset pricing robust test results for the following 

empirical specification of the learning under ambiguity model: 

 

𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝑅𝐹𝜆𝑅𝐹+𝛽̂𝑖,𝐷𝐼𝑉𝜆𝐷𝐼𝑉 + 𝛽̂𝑖,𝑇𝐸𝑅𝑀𝜆𝑇𝐸𝑅𝑀+𝛽̂𝑖,𝐷𝐸𝐹𝜆𝐷𝐸𝐹 + 𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖  

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are returns of tracking 

economic portfolios on orthogonalized innovations. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) 

denoting the p-value of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-

value of the asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of 

the null hypothesis 𝐻0: 𝜆̂ = 0 with p-value 𝑝(𝑊𝑎𝑙𝑑). Following the approach in Kan, Robotti, and Shanken (2013), we 

report standard Fama-Macbeth (1973) t-stats assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted 

t-stats to correct for the EIV problem (tS), Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting Shanken’s test 

for the distribution of the errors, and Kan, Robotti, and Shanken (2013) robust t-stats under model misspecification 

(tKRS). (***) denotes significance at the 1% level, (**) at the 5% level, and (*) at the 10% level. 
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Table 8 

Ambiguity and intertemporal risk effects using innovations 
 

Panel A: 1927-2007
 

𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑲𝑼𝑵𝑪 

Estimates:  0.0071*** 0.0003 -0.0229 0.0002 0.1159* 0.0113 0.0024*** 

𝑡𝐹𝑀 5.7869 0.3742 -2.5869 1.1318 3.1863 0.9554 3.2390 

𝑡𝑆 5.0476 0.3313 -2.2682 0.9997 2.7956 0.8537 3.1638 

𝑡𝐽𝑊 5.0226 0.3442 -2.3312 1.0267 2.8464 0.8650 3.2970 

𝑡𝐾𝑅𝑆 3.6777 0.2038 -1.3247 0.7507 1.6395 0.6945 3.1405 

𝜌2 0.2011       

𝑝(𝜌2 = 1) 0.0023       

𝑝(𝜌2 = 0) 0.0955       

Wald 18.4820       

𝑝(𝑊𝑎𝑙𝑑) 0.0003       

Panel B: 1962-2007 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑲𝑼𝑵𝑪 

Estimates: 
 

0.0099*** -0.0001 -0.0019 -0.0004 0.1109** 0.0268 0.0027*** 

𝑡𝐹𝑀 6.8382 -0.2592 -0.2014 -2.0463 3.2188 1.8713 3.1099 

𝑡𝑆 6.0557 -0.2337 -0.1801 -1.8385 2.8879 1.6873 3.0530 

𝑡𝐽𝑊 6.1904 -0.2497 -0.1847 -1.8991 2.8432 1.7292 3.1801 

𝑡𝐾𝑅𝑆 4.9833 -0.1825 -0.1212 -1.3143 2.1580 1.2568 3.0279 

𝜌2 0.2078       

𝑝(𝜌2 = 1) 0.0003       

𝑝(𝜌2 = 0) 0.0290       

Wald 21.3418       

𝑝(𝑊𝑎𝑙𝑑) 0.0001       

 

The table reports cross-sectional regression (CSR) estimates and asset pricing robust test results for the following 

empirical specification of the learning under ambiguity model:  

 

𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝑅𝐹𝜆𝑅𝐹+𝛽̂𝑖,𝐷𝐼𝑉𝜆𝐷𝐼𝑉 + 𝛽̂𝑖,𝑇𝐸𝑅𝑀𝜆𝑇𝐸𝑅𝑀+𝛽̂𝑖,𝐷𝐸𝐹𝜆𝐷𝐸𝐹 + 𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖  

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are orthogonalized 

innovations from a VAR. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) denoting the p-value of the 

asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-value of the asset pricing 

model specification test with null hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of the null hypothesis 𝐻0: 𝜆̂ =
0 with p-value 𝑝(𝑊𝑎𝑙𝑑). Following the approach in Kan, Robotti, and Shanken (2013), we report standard Fama-

Macbeth (1973) t-stats assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted t-stats to correct for 

the EIV problem (tS), Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting Shanken’s test for the distribution of 

the errors, and Kan, Robotti, and Shanken (2013) robust t-stats under model misspecification (tKRS). (***) denotes 
significance at the 1% level, (**) at the 5% level, and (*) at the 10% level. 
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Table 9 

Incremental explanatory power of empirically-motivated factors vs. ambiguity 
 

Panel A: 

1927-2007
 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑺𝑴𝑩 𝝀̂𝑯𝑴𝑳 𝝀̂𝑼𝑴𝑫 𝝀̂𝝅𝑳 𝝀̂𝑲𝑼𝑵𝑪 

Estimates:  0.0068*** 0.0037 -0.0259 0.0280 0.0085 0.0009 0.0017 0.0032** 0.0067* 0.0020 0.0033*** 

𝑡𝐹𝑀 4.1189 1.5139 -2.9032 1.2002 2.6095 0.8886 1.2359 2.4757 2.2463 1.5203 4.0105 

𝑡𝑆 3.5237 1.3925 -2.4981 1.0391 2.2451 0.7787 1.1497 2.3699 1.9864 1.4794 3.7828 

𝑡𝐽𝑊 3.2926 1.3570 -2.6030 1.0652 2.2170 0.8145 1.1331 2.3993 2.0670 1.4543 4.0796 

𝑡𝐾𝑅𝑆 2.3402 1.0604 -1.5173 0.8008 1.2687 0.6659 0.8719 2.0502 1.5332 1.3558 3.4746 

𝜌2 0.3055           

𝑝(𝜌2 = 1) 0.0053           

𝑝(𝜌2 = 0) 0.0453           

Wald 31.4597           

𝑝(𝑊𝑎𝑙𝑑) 0.0000           

Panel B: 

1962-2007 
𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑺𝑴𝑩 𝝀̂𝑯𝑴𝑳 𝝀̂𝑼𝑴𝑫 𝝀̂𝝅𝑳 𝝀̂𝑲𝑼𝑵𝑪 

Estimates: 
 

0.0094*** 0.0005 -0.0017 -0.0386 0.0095** 0.0019 0.0022 0.0045*** 0.103** 0.0008 0.0042*** 

𝑡𝐹𝑀 5.0071 0.1790 -0.1805 -1.6818 3.1028 1.5319 1.4590 3.3921 3.4640 0.5435 4.4841 

𝑡𝑆 4.2436 0.1632 -0.1549 -1.4473 2.6696 1.3264 1.3873 3.3034 3.0772 0.5319 4.2689 

𝑡𝐽𝑊 4.2446 0.1656 -0.1585 -1.5534 2.7214 1.2928 1.4364 3.2237 3.0260 0.5211 4.4455 

𝑡𝐾𝑅𝑆 3.3343 0.1412 -0.1061 -1.0478 1.9459 0.9972 1.2599 3.0183 2.6705 0.5154 4.0159 

𝜌2 0.3598           

𝑝(𝜌2 = 1) 0.0155           

𝑝(𝜌2 = 0) 0.0050           

Wald 41.1008           

𝑝(𝑊𝑎𝑙𝑑) 0.0000           

 

The table reports cross-sectional regression (CSR) estimates and asset pricing robust test results for the following empirical 
specification of the learning under ambiguity model: 

 

𝐸[𝑅𝑛,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝑅𝐹𝜆𝑅𝐹 + 𝛽̂𝑖,𝐷𝐼𝑉𝜆𝐷𝐼𝑉 + 𝛽̂𝑖,𝑇𝐸𝑅𝑀𝜆𝑇𝐸𝑅𝑀+𝛽̂𝑖,𝐷𝐸𝐹𝜆𝐷𝐸𝐹 + 

 +𝛽̂𝑖,𝑆𝑀𝐵𝜆𝑆𝑀𝐵 + 𝛽̂𝑖,𝐻𝑀𝐿𝜆𝐻𝑀𝐿+𝛽̂𝑖,𝑈𝑀𝐷𝜆𝑈𝑀𝐷 + 𝛽̂𝑖,𝜋𝐿𝜆𝜋𝐿 + 𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are returns of tracking economic 

portfolios on orthogonalized innovations. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) denoting the p-value of the 

asset pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-value of the asset pricing model specification 

test with null hypothesis 𝐻0: 𝜌2 = 0. Wald is the result of the joint test of the null hypothesis 𝐻0: 𝜆̂ = 0 with p-value 𝑝(𝑊𝑎𝑙𝑑). 

Following the approach in Kan, Robotti, and Shanken (2013), we report standard Fama-Macbeth (1973) t-stats assuming the model is 

correctly specified (tFM), Shanken’s (1992) adjusted t-stats to correct for the EIV problem (tS), Jagannathan and Wang (1998) adjusted t-

stats (tJW) correcting Shanken’s test for the distribution of the errors, and Kan, Robotti, and Shanken (2013) robust t-stats under model 

misspecification (tKRS). (***) denotes significance at the 1% level, (**) at the 5% level, and (*) at the 10% level. 
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Table 10 

Incremental explanatory power of empirically-motivated factors vs. ambiguity using innovations 
 

Panel A: 

1927-2007
 𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑺𝑴𝑩 𝝀̂𝑯𝑴𝑳 𝝀̂𝑼𝑴𝑫 𝝀̂𝑲𝑼𝑵𝑪 

Estimates:  0.0078*** 0.0024 -0.0267 -0.0002 0.0098 0.0128 0.0002 0.0022 -0.0018 0.0023*** 

𝑡𝐹𝑀 5.1767 1.0233 -3.0181 -0.4137 2.5577 1.0065 0.2141 2.7002 -1.7590 3.0662 

𝑡𝑆 4.3740 0.9439 -2.5661 -0.3528 2.1748 0.8720 0.1845 2.3164 -1.5152 2.9709 

𝑡𝐽𝑊 4.5181 0.9755 -2.6479 -0.3744 2.1853 0.9283 0.2027 2.4229 -1.7030 3.0314 

𝑡𝐾𝑅𝑆 3.4163 0.8222 -1.5674 -0.2491 1.3194 0.7331 0.1276 1.4873 -1.0032 2.9262 

𝜌2 0.2640          

𝑝(𝜌2 = 1) 0.0067          

𝑝(𝜌2 = 0) 0.0789          

Wald 31.7379          

𝑝(𝑊𝑎𝑙𝑑) 0.0002          

Panel B: 

1962-2007 
𝝀̂𝟎 𝝀̂𝑴𝑲𝑻 𝝀̂𝑹𝑭 𝝀̂𝑫𝑰𝑽 𝝀̂𝑻𝑬𝑹𝑴 𝝀̂𝑫𝑬𝑭 𝝀̂𝑺𝑴𝑩 𝝀̂𝑯𝑴𝑳 𝝀̂𝑼𝑴𝑫 𝝀̂𝑲𝑼𝑵𝑪 

Estimates: 
 

0.0119*** -0.0023 -0.0062 -0.0004 0.1055** 0.0216 -0.0008 0.0008 0.0001 0.0030*** 

𝑡𝐹𝑀 6.6646 -0.8945 -0.6347 -1.7727 3.0062 1.4553 -0.9898 0.9089 0.0769 3.3408 

𝑡𝑆 5.8884 -0.8393 -0.5659 -1.5882 2.6902 1.3079 -0.8905 0.8145 0.0691 3.2710 

𝑡𝐽𝑊 6.0750 -0.8544 -0.5929 -1.7111 2.6727 1.2866 -0.9355 0.8442 0.0708 3.3944 

𝑡𝐾𝑅𝑆 4.5734 -0.7306 -0.3688 -1.1437 2.0289 0.9553 -0.6911 0.5044 0.0455 3.1962 

𝜌2 0.2593          

𝑝(𝜌2 = 1) 0.0008          

𝑝(𝜌2 = 0) 0.0424          

Wald 33.4840          

𝑝(𝑊𝑎𝑙𝑑) 0.0001          

 

The table reports cross-sectional regression (CSR) estimates and asset pricing robust test results for the following empirical 
specification of the learning under ambiguity model: 

 

𝐸[𝑅𝑛,𝑡+1
𝑒 ] = 𝜆0 + 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝑅𝐹𝜆𝑅𝐹 + 𝛽̂𝑖,𝐷𝐼𝑉𝜆𝐷𝐼𝑉 + 𝛽̂𝑖,𝑇𝐸𝑅𝑀𝜆𝑇𝐸𝑅𝑀+𝛽̂𝑖,𝐷𝐸𝐹𝜆𝐷𝐸𝐹 + 

 +𝛽̂𝑖,𝑆𝑀𝐵𝜆𝑆𝑀𝐵 + 𝛽̂𝑖,𝐻𝑀𝐿𝜆𝐻𝑀𝐿+𝛽̂𝑖,𝑈𝑀𝐷𝜆𝑈𝑀𝐷 + 𝛽̂𝑖,𝜋𝐿𝜆𝜋𝐿 + 𝛽̂𝑖,𝐾𝑈𝑁𝐶𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 

 

The set of test assets includes 55 portfolios ranked by size, book-to-market, and industry. Factors are orthogonalized 

innovations from a VAR. 𝜌2 is the cross-sectional goodness of fit statistic with 𝑝(𝜌2 = 1) denoting the p-value of the asset 

pricing model specification test with null hypothesis 𝐻0: 𝜌2 = 1; 𝑝(𝜌2 = 0) is the p-value of the asset pricing model 

specification test with null hypothesis 𝐻0: 𝜌2 = 0 . Wald is the result of the joint test of the null hypothesis 𝐻0: 𝜆̂ = 0 with p-

value 𝑝(𝑊𝑎𝑙𝑑). Following the approach in Kan, Robotti, and Shanken (2013), we report standard Fama-Macbeth (1973) t-stats 

assuming the model is correctly specified (tFM), Shanken’s (1992) adjusted t-stats to correct for the EIV problem (tS), 

Jagannathan and Wang (1998) adjusted t-stats (tJW) correcting Shanken’s test for the distribution of the errors, and Kan, Robotti, 

and Shanken (2013) robust t-stats under model misspecification (tKRS). (***) denotes significance at the 1%, (**) at the 5% level, 

and (*) at the 10% level. 
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Table 11 

Comparative tests of CSR  𝝆𝟐s: Bayesian uncertainty vs. the three-factor learning 

under ambiguity model 
 

 Learning Under Ambiguity Model 
 Period: 1927-2007 Period: 1962-2007 

Augmented Model -0.0123 -0.0988 

p-value(1) (0.6367) (0.0846) 

p-value(2) (0.6484) (0.1240) 
 

The table reports pair-wise tests of equality of the GLS cross-sectional 𝜌2 between the Augmented Model 
(AUG) and the Learning Under Ambiguity (LUA) model for two sample periods. The null hypothesis is 

𝐻0: 𝜌𝐴𝑈𝐺
2 − 𝜌𝐿𝑈𝐴

2 = 0 with p-values in parenthesis computed without [p-value (1)] and with [p-value (2)] 

the assumption of model misspecification. The Learning Under Ambiguity model includes MKT, DIV, 

TERM, DEF, and KUNC as risk factors. The Augmented model includes the same factors as the Learning 

Under Ambiguity in addition to the Bayesian proxy for uncertainty. The models are estimated using 

monthly returns on 25 Fama-French portfolios ranked by size and book-to-market. The sample periods 

are from 1927-2007 (969 observations) and 1962-2007 (552 observations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

Table 12 

Comparative tests of CSR  𝝆𝟐s: the intertemporal CAPM, 

the Fama-French four-factor model and learning under 

ambiguity model 
 

Panel A: 1927-2007 

 Column Model 

Row Model FF-4 

Learning Under 

Ambiguity 

ICAPM 0.2242 -0.0320 

p-value(1) (0.0764) (0.9943) 

p-value(2) (0.0000) (0.1244) 

FF-4  -0.2562 

p-value(1)  (0.0683) 

p-value(2)  (0.0000) 

Panel B: 1962-2007 

 FF-4 

Learning Under 

Ambiguity 

ICAPM 0.0590 -0.0320 

p-value(1) (0.1406) (0.2411) 

p-value(2) (0.0827) (0.1846) 

FF-4  -0.2562 

p-value(1)  (0.4199) 

p-value(2)  (0.0001) 
 

The table reports pair-wise tests of equality of the GLS cross-sectional 

between each of the two “row” models (Model i) and each of the two 

“column” models (Model j) with null 𝐻0: 𝜌𝑖
2 − 𝜌𝑗

2 = 0 with p-values in 

parenthesis computed without [p-value (1)] and with [p-value (2)] the 

assumption of model misspecification. The FF-4 model includes MKT, 

SMB, HML, and UMD as risk factors,. The ICAPM includes MKT, RF, DIV, 

TERM, and DEF as risk factors. The R-DAPM includes MKT, RF, DIV, 

TERM, DEF, and KUNC as risk factors. The models are estimated using 

monthly returns on 25 Fama-French portfolios ranked by size and book-to-

market. The sample periods are from 1927-2007 (969 observations) and 

1962-2007 (552 observations). 
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Table 13 

GLS-CSR robustness checks  
 

   𝝀̂𝑴𝑲𝑻       t-stat   

WL/CL 90 80 70 60 50  WL/CL 90 80 70 60 50 

180 0.0072 0.0072 0.0072 0.0072 0.0072  180 4.39 4.38 4.38 4.38 4.38 

120 0.0077 0.0077 0.0077 0.0077 0.0077  120 3.77 3.76 3.76 3.76 3.76 

96 0.0070 0.0070 0.0070 0.0070 0.0070  96 3.41 3.41 3.41 3.41 3.41 

60 0.0070 0.0070 0.0070 0.0070 0.0070  60 3.53 3.53 3.53 3.53 3.52 

36 0.0071 0.0071 0.0071 0.0071 0.0071  36 3.60 3.60 3.60 3.60 3.60 

   𝝀̂𝝅𝑳        t-stat   

WL/CL 90 80 70 60 50  WL/CL 90 80 70 60 50 

180 0.0346 0.0339 0.0336 0.0335 0.0335  180 0.66 0.64 0.64 0.64 0.64 

120 0.0608 0.0604 0.0601 0.0599 0.0597  120 1.19 1.18 1.18 1.18 1.17 

96 0.0968 0.0960 0.0951 0.0942 0.0933  96 2.11 2.09 2.08 2.06 2.04 

60 0.0864 0.0865 0.0867 0.0868 0.0869  60 2.30 2.31 2.31 2.32 2.32 

36 0.0590 0.0604 0.0613 0.0618 0.0622  36 2.19 2.24 2.27 2.29 2.30 

   𝝀̂𝑲𝑼𝑵𝑪        t-stat   

WL/CL 90 80 70 60 50  WL/CL 90 80 70 60 50 

180 0.0069 0.0135 0.0195 0.0248 0.0297  180 5.20 5.18 5.13 5.03 4.89 

120 0.0057 0.0111 0.0160 0.0206 0.0247  120 4.16 4.15 4.10 4.00 3.83 

96 0.0047 0.0095 0.0143 0.0190 0.0236  96 3.57 3.72 3.80 3.81 3.75 

60 0.0033 0.0072 0.0115 0.0162 0.0211  60 2.52 2.82 3.04 3.14 3.16 

36 0.0015 0.0041 0.0075 0.0116 0.0159  36 1.19 1.69 2.10 2.35 2.46 

   CL  90 80 70 60 50    

   𝑄̂  34.41 34.36 34.32 34.29 34.25    

   p-value  0.10 0.10 0.10 0.11 0.11    

   Adj. 𝑄̂  48.50 48.44 48.38 48.33 48.95    

      p-value  0.07 0.07 0.07 0.08 0.08       

 

The table reports the second-pass Fama-MacBeth (1973) GLS-CSR test results on excess returns on 25 portfolio returns sorted by size and 

book-to-market:  

 

𝐸[𝑅𝑖,𝑡+1
𝑒 ] = 𝛽̂𝑖,𝑀𝐾𝑇𝜆𝑀𝐾𝑇 + 𝛽̂𝑖,𝜋𝐿𝜆𝜋𝐿+𝛽̂𝑖,𝐾𝑈𝑁𝐶 𝜆𝐾𝑈𝑁𝐶 + 𝜈𝑖 

 

The sample period is 1927-2007. The factors are measured in levels. The results are presented across different confidence levels (CL) 

ranging from 50%-90%, and different lengths in the rolling regression windows (WL) ranging from 36 months to 180 months. The GLS-

CSR test has null hypothesis 𝐻0: 𝑄̂ = 𝑇𝛼̅′(𝑉̅22
−1)𝛼̅ = 0, with 𝛂̂ = 𝐑 − 𝑅𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝛽̂𝛌. Individual t-statistics are presented with Shanken’s (2009) 

correction. 𝑄̂
 
are presented with and without Shanken’s correction. Highlighted t-stats in black denote statistical significance at the 5% 

level. 
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Figure 1.  The ambiguity measure. 
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Figure 2. KUNC (CL = 50%, T = 36 months). The top chart plots the 12-month moving average of the 

factor KUNC from 1927-1961. The bottom chart plots the 12-month moving average of the factor KUNC from 

1962-2007. 
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