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Abstract
We give an overview of the ideas central to some recent developments in

the ergodic theory of the stochastically forced Navier Stokes equations and
other dissipative stochastic partial differential equations. Since our desire is
to make the core ideas clear, we will mostly work with a specific example:
the stochastically forced Navier Stokes equations. To further clarify ideas, we
will also examine in detail a toy problem. A few general theorems are given.
Spatial regularity, ergodicity, exponential mixing, coupling for a SPDE, and
hypoellipticity are all discussed.

This article attempts to collect a number of ideas which have proven useful
in the study of stochastically forced dissipative partial differential equations. The
discussion will center around those of ergodicity but will also touch on the regularity
of both solutions and transition densities. Since our desire is to make the core ideas
clear, we will mostly work with a specific example: the stochastically forced Navier
Stokes equations. To further clarify ideas, we will also examine in detail a toy
problem. Though we have not tried to give any great generality, we also present
a number of abstract results to help isolate what assumptions are used in which
arguments. Though a few results are presented in new ways and a number of proofs
are streamlined, the core ideas remain more or less the same as in the originally cited
papers. We do improve sightly the exponential mixing results given in [Mat02c];
however, the techniques used are the same. Lastly, we do not claim to be exhaustive.
This is not meant to be an all encompassing review article. The view point given
here is a personal one; nonetheless, citations are given to good starting points for
related works both by the author and others.

Consider the two-dimensional Navier-Stokes equation with stochastic forcing:
∂u

∂t
+ (u · ∇)u+∇P = ν∆u+

∂W (x, t)

∂t
∇ · u = 0

. (1)
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We restrict to the 2π-periodic case with mean flow zero, though many of the results
apply equally to bounded domains with Dirichlet boundary conditions. The addition
of a stochastic forcing can be motivated by a number of considerations. Since the
Navier-Stokes equations are dissipative, if there is no external forcing, the system
relaxes to the zero state where the fluid is at rest. Hence, if one is interested in
probing the nonlinear dynamics, some forcing is necessary. Stochastic forcing is
often proposed, particularly in the study of turbulent fluid flows, as a way to add a
“generic” forcing. Generic is then interpreted in the sense of the typical events in
probability space.

We will take the forcing to be the sum of independent Brownian motions exciting
independent Fourier modes. This is convenient because one of our long term goals
is to understand the interaction between the different scales and the differences of
the dynamics at different scales. Specifically we set

W (x, t) =
∑
k∈K

σk
k⊥

|k|
eik·xβk(t) with

∑
k∈K

σ2
k <∞ (2)

where K ⊂ Z2 does not contain the zero wave number ensuring that the spatial
mean stays zero. The βk = 1√

2
(β

(1)
k + iβ

(2)
k ) where the β(i)

k are mean zero, variance
one Brownian Motions independent except for the reality condition β̄k = β−k. The
σk ∈ C are constants used to set the spatial roughness of the flow. They also
satisfy the reality condition σ̄k = σ−k. We make the standing assumption that
E0 =

∑
|σk|2 < ∞ and define σ2

∗ = max |σk|2. Similarly if Eα =
∑
|σk||k|2α < ∞

then for every t, W ( · , t) is almost surely in the Sobolev space Hα(T2) ×Hα(T2).
Here T2 is the two dimensional torus. If the |σk| decay exponentially or faster, the
forcing field is analytic is space almost surely.

In the next section, we continue with the setup. In section 2, we briefly dis-
cuss invariant measures. In section 3, we discuss how the structure of the solution
changes for different choices of forcing. In particular, we discuss the spatial smooth-
ness. In sections 4, 5, and 6, we highlight some of the difficulties with ergodic
theory in infinite dimensions. In section 7, we discuss ergodicity of the stochasti-
cally forced Navier Stokes (SNS) equations under various assumptions, including the
ideas of “effective ellipticity” and the reduction to Gibbsian dynamics (dynamics
with memory). In section 8, we formulate the results in a more general setting and
examine a toy model to highlight the main ideas. In sections 9 and 10, we discuss
the contractive nature of the SNS equations and the fluctuations of its energy and
enstrophy. In section 13, we discuss the Lyapunov structure and localization in the
general setting. In section 15, we prove a general exponential mixing result using
a non-Markovian coupling argument. In section 16, we discuss some other systems
where the discussed methods apply. In section 17, we give a number of partial re-
sults in the setting where the previously stated ergodic theorems do not hold. Lastly
in section 18, we list a few open questions.
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1. The Setting

It is convenient to project (1) onto the space of divergence free vector fields thereby
removing the pressure, which is just a Lagrange multiplier enforcing the divergence
free constraint. To this end, L2 will denote the closure in the L2 topology of di-
vergence free, mean zero, C∞ vector fields on the two dimensional torus T2. Sim-
ilarly the Sobolev space Hα is defined as L2 except that the closure is taken in
Hα(T2) ×Hα(T2). Projecting equation (1) onto L2 produces the stochastic evolu-
tion equation

∂u(x, t)

∂t
+ νΛ2u(x, t) +B(u, u) =

∂W (x, t)

∂t
(3)

where B(u, v) = Pdiv(u · ∇)v, Λ2u = −Pdiv∆u and Pdiv is the projection operator
onto the space of divergence free vector fields.

To better elucidate some of the structure of (3), it is useful at times to consider
the equation for the vorticity ω(x, t)

def
= ∂u2

∂x1
− ∂u1

∂x2
written in Fourier Space. Notice

that in two dimensions ω is a scalar quantity. Setting ω(x, t) =
∑

k ωk(t)e
ik·x, one

obtains the infinite system of coupled diffusions

dωk(t)

dt
= −ν|k|2ωk + i

∑
`+j=k

k⊥ · `
|k|2

ω` ωj + i|k|σk 1k∈K
dβk(t)

dt
. (4)

Unlike many lattices of interacting diffusions, this system in not invariant under
translations in the lattice index k ∈ Z2. In fact for large |k| the linear term in (4)
dominates the other drift term which couples the modes together. This observation
is at the heart of all that follows. It gives rise to the dissipative nature of the
dynamics.

Since the noise is additive in our model problem, it is completely standard that
there exists a stochastic flow which depends continuously on both the initial data
and the noise realization W considered as an element of the probability space Ω

def
=

C((−∞,∞); R2|K|). To complete the picture, we work on (Ω,P,F ,Ft). Here Ω,
as just defined, is the path space of the Brownian trajectories, P is the Weiner
measure on this space, F is the associated sigma algebra, and Ft and F[s,t] are
the filtrations containing the information of the noise increments up to time t and
between time s and t respectively. We will at times write ϕs,t(W )u0 or ϕW

s,tu0 for
u(x, t,W ) with u(s) = u0 and ϕt(W ) for ϕ0,t(W ). The notation u[s,t] means the
segment of trajectory on [s, t]. We will write E to denote expectation with respect
to the probability measure P; that is EF (W ) =

∫
Ω
F (W )P(dW ). At times we

will speak of solutions existing on the time interval (−∞,∞). By this we mean a
measure P on Ω×C(−∞,∞; X) so that the following holds for almost every (W,u):
W is distributed as a Weiner process, u(t) is adapted to the filtration generated by
W (s) with s ≤ t, and the pair (W,u) solves the integral form of (3) over any finite
time interval.
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2. Ergodicity and Invariant Measures

When investigating a stochastically forced system, such as the stochastically forced
Navier Stokes equation (SNS), the main interest is often the behavior and structure
of the system once it has forgotten its initial condition. In other words, we are
interested in the behavior of the system in its statistical steady state. The statistical
steady states of a system are described by its invariant measure. In our setting, a
measure µ on L2 is invariant under the dynamics if for any t > 0 and Borel set
A ⊂ L2

µ{u0 : u0 ∈ A} =

∫
Ω

µ{u0 : u(t,W ;u0) ∈ A}P(dW ) = Eµ{u0 : ϕt(W )u0 ∈ A} .

A system is uniquely ergodic, or simply ergodic, if there is only one such invariant
measure. The Birkoff ergodic theorem (cf. [Sin94]) guarantees that for any bounded
function f : L2 → R

1

T

∫ T

0

f
(
u(t,W ;u0)

)
dt −→

T→∞
f̄(u0) =

∫
L2

f(u)dµu0(u)

if u0 is a typical point for some invariant measure µu0 . We have labeled the invariant
measure with the initial point u0 to emphasize that different points might converge
to different f̄ , each the average of f against a different invariant measure. However,
if the system is ergodic then there is only one such invariant measure and the time
average f̄ is independent of the initial condition. Hence, the statistics of almost
every trajectory will converge to a unique common distribution. Implying that the
statistics of the systems asymptotic behavior is insensitive to the initial condition.

3. The Form of the Forcing

Consider the two classes of forcing distinguished by whether |K| < ∞ or |K| = ∞.
The first class is the most natural from both the point of view of turbulence theory
and that of exploring the nonlinear dynamics of the Navier-Stokes equations. In that
case, one wants to force the equations at some scale, usually at large or intermediate
scales, and then observe the transfer of energy and enstropy up and down scale.
Generally, forcing which excites all the Fourier modes (K = Z2) is the first case
studied for a given stochastic partial differential equation (SPDEs). This was true
of the SNS (cf. [FM95, Fer97, DPZ96]). In these investigations, the forcing was
assumed to be spatially rough; essentially |σk| ∼ |k|−α. This assumption means
that the forcing is not analytic in space. The requirement of rough forcing appears
to not simply be a technical assumption, and the methods from [FM95, Fer97,
DPZ96] do not seem to work in other elliptic cases. It is important to mention
that the qualitative behavior of the system appears to be quite different depending
on whether the magnitude of the modes decays at least exponentially or simply
algebraically.

Consider the following two theorems proven respectively in [MS03] and [Mat02c].
The first theorem compares the vorticity equation to the associated linear stochastic
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heat equation. This equation is just the Ornstein-Uhlenbeck process
∂z

∂t
(t, x) = ν∆z(t, x) + i

∑
k

|k|σk
∂βk(t)

∂t

z(0, x) = ω0(x),

. (5)

If z(x, t) =
∑

k∈Z zk(t) exp(ik · x) then (5) becomes

dzk(t)

dt
= −ν|k|2zk + i|k|σk

dβk(t)

dt
. (6)

The following theorem states that at small scales z and ω are quite similar, even
path wise if the forcing decays algebraically in the spatial Fourier modes.

Theorem 1. Assume that c|k|−α < |σk| < C|k|−α for some positive constants. Let
ω′k =

√
2

|σk|
ωk and z′k =

√
2

|σk|
zk. For any uniformly continuous, bounded function F on

C([0, 1];Rd), E|F (ω′k1
, ..., ω′kd

)− F (z′k1
, ..., z′kd

)| → 0 as k1, ..., kd →∞. [MS03]

Theorem 1 says that when the forcing decays algebraically in the magnitude of
the wave number k, then so does the solution. In fact, at small scales, it is pathwise
a perturbation of (5) in some sense. Hence, the nonlinearity is really secondary in
setting the infinite dimensional character of the problem.

The second theorem covers the case when the forcing decays at least exponen-
tially fast and, in particular, covers the case when only a finite number of modes are
forced. Earlier versions of this theorem were proven in [Mat98, MS99] and all of the
versions build on deterministic versions which date back at least to [FT89] and are
informed by later works such as [LO97, DT95, DG95, OT00]. In [BKL00, Shi02],
yet different formulations of Theorem 2 are given and proven. The second reference
seems to give the best scaling with viscosity, while the version below gives explicit,
eventually stationary processes which bound the quantities of interest.

Theorem 2. If there exist positive constants β and C so |σk| < Ce−β|k| then for any
initial u(0) ∈ L2 there exist two stochastic processes τ(t,W ) and D(t,W ), positive
for t > 0, so that

|uk(t,W )| ≤ D(t,W )e−τ(t,W )|k| W -almost surely for all t > 0

and such that limt→∞ Eτ(t) ∈ [c1, C1] and limt→∞ ED(t) ∈ [c2, C2] where ci and Ci

are positive constants which depend on the structure of the forcing but not on the
initial data u(0). (For the form of the equations for τ and D and information about
their moments see [Mat02b].)

Though no lower bound on |uk|, as |k| → ∞, has been proven, there is strong
evidence that this is the correct order. Even when the forcing decays faster than
exponential, there is no evidence that the solution does. It is interesting to note
that in all of the current estimates of the decay rate fluctuate in time. Whether this
is correct is not clear. It is a little surprising that even when only a few modes are
forced that τ(t) does not converge to a constant as t→∞.

Comparing Theorem 1 and 2, one sees that there is a strong qualitative difference
between the two cases. In the first, the forcing sets the small scale structure. In the
second, the forcing seems to be dictated by the nonlinear dynamics.
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4. The Difficulty of Infinite Dimensions

It is reasonable to ask why the ergodic theory of stochastically forced PDEs is more
complicated than that of finite dimensional SDEs. A basic problem is that there is
no single distinguished topology associated with most infinite dimensional diffusions.
Since all topologies are not equivalent, if one wants to write the transition density
one must use exactly the right base measure. This means one must know exactly
the natural topology of the problem. This is underlined by the following simple
example. Consider two SPDEs of the form (5) with |σk| = |k|−α in one case and
|σk| = |k|−α+ε in the other. These two process induce measures on the phase space
L2 which are mutually singular at any positive moment of time, even if they start
from the same point.

In general, getting the correct topology is a very delicate matter. There seems to
be no good general tool to address this class of problems. In the setting of Theorem
1, one strongly suspects that the measure induced by the SNS at a moment of time
t is equivalent to that induced by (5). However, even in this case, equivalence has
only been proven when the Laplacian is replaced by ∆2+ε. For this “hyperviscous”
problem, the equivalence is proven in [MS03].

5. Diffusions, Ellipticity, and Hypoellipticity

Just as an ordinary SDE is associated with a PDE which evolves its density, one
can association with an SPDE a “diffusion” on a larger space which evolves the
probability transition density. In some cases this can be made rigorous (cf. [DPZ92,
FG98, DPZ02], ). Formally, consider the “diffusion” on RZ2×Z2 associated with the
stochastic process (4). Writing zk = xk + iyk, the backward Kolmogorov equation
would be

∂

∂t
U({xk}, {yk}, t) = LU({xk}, {yk}, t) (7)

U({xk}, {yk}, 0) = U0({xk}, {yk})

where U0 : RZ2×Z2 → R is the initial condition. By {xk} we mean the collection
{xk : k ∈ Z2}. The differential operator L is

L =
∑

k

Re(Fk)
∂

∂xk

+ Im(Fk)
∂

∂yk

+
1

2
1k∈K|k|2|σk|2

( ∂2

∂x2
k

+
∂2

∂y2
k

)
where

Fk = −ν|k|2zk + i
∑

`+j=k

k⊥ · `
|k|2

z` zj .

The case when K = Z2, corresponds to the elliptic setting. If |K| < ∞, then the
operator L is degenerate to leading order in all but a finite number of coordinates.
Even the case K 6= Z2 but |K| = ∞, it is still degenerate. In either of the last cases,
the ergodic theorems stated previously are surprising in the sense that they imply
some sort of ellipticity without requiring the detailed geometric information needed
to verify hypoellipticity. These ideas will be elaborated upon in section 17.
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6. Ergodicity with Elliptic, Rough Forcing

In [FM95, Fer97] ergodicity is proven under the assumption, translated to our set-
ting, that c|k|−α < |σk| < C|k|−α for some positive constants. The proof of ergodic-
ity relies on the Bismuth-Elworthy-Li formula and seems to fundamentally require
an elliptic diffusion with algebraically decaying spectrum. In light of Theorem 1,
it is tempting to characterize the system in this regime as a perturbation of the
linear process since the linear process sets the small scale structure. Eckmann and
Hairer [EH01] showed that finite dimensional Malliavin calculus could be combined
with the type of analysis used in [Cer99, FM95, Fer97] to show that a stochastically
forced SPDE was ergodic even if a finite number of the directions with possibly pos-
itive Lyapunov exponents were not forced. They required a bracket condition in the
spirit of Höromander’s “sum of squares theorem” (see section 17). Unfortunately
they still required rough (algebraically decaying) forcing.

7. Ergodicity under an Effective Ellipticity Assumption

We now turn to a number of results which allow one to prove ergodicity despite the
fact that K 6= Z2. In particular, no lower bound will be placed on the decay rate of
the |σk|; even |K| <∞ will be allowed if other assumptions are satisfied. Recalling
that E0 =

∑
k |σk|2, we have the following theorem.

Theorem 3. There exists a fixed constant C depending only on the domain so that
the following hold:

• If C E0

ν3 < 1 then (3) has a unique L2-valued invariant probability measure
regardless of the structure of the forcing. [Mat98, Mat99]

• If |σk| > 0 for all k with |k|2 ∈ (0, C E0

ν3 ), then (3) has a unique L2-valued
invariant probability measure. [EMS01, BKL01]

By a L2-valued probability measure, we mean a measure µ such that µ(L2) = 1.
The existence was given in [VF88, Fla94] in the case of the SNS and in a more
general setting in [CK97]. Both results of Theorem 3 stem from the following fact
first proven in the stochastic setting in [Mat98] but closely related to ideas in [FP67,
Tem95, CFNT89, FST88]. Contemporaneously to [EMS01] similar techniques were
used in [KS00], to prove a similar theorem for impulsive or “kicked” forcing. Though
these initial results applied only for bounded forced, those authors later extended
them to cover unbounded forcing. They also proved a convergence theorem of the
kicked case to the white in time case. For the remainder of the discussion of the SNS,
we fix a positive N∗. Let Π` be the orthogonal projection onto the space spanned
by the wave numbers k with |k| < N and let Πh be the complimentary orthogonal
projection. We consider the “high mode” equation on ΠhL2 given by

∂h(x, t)

∂t
+ νΛ2h(x, t) + ΠhB(h+ `, h+ `) =

∂η(x, t)

∂t
(8)

where ` is a given “low mode” trajectory in Π`L2 and η = ΠhW (x, t). We will
denote by Φη

s,t(`[s,t];h0) the solution to (8) at time t with initial condition h0 at
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time s and the given external forcings ` and η over the time interval [s, t]. A more
quantitative version of the following result is given in Lemma 13.1.

Theorem 4 (Foias and Prodi’67, Mattingly’98). Let C be the same constant
as in Theorem 3. Assuming that N2

∗ ≥ C E0

ν3 , there exists a positive constant γ so the
following two statements hold.

• Let u(x, t,W ) be a solution to (3) on the time interval [0,∞). Define `(t) =
Π`u(t) and η(t) = ΠhW (t). For almost every W , there exists a positive con-
stant T = T (W,u(0)) so that for all t ≥ T and h0 ∈ ΠhL2∣∣Φη

0,t(`[0,t];h0)− Πhu(t,W )
∣∣
L2 ≤ |h0 − Πhu(0)|L2 e

−γt .

In particular, if ũ(x, t,W ) is another solution on [0,∞) and Ω0 ⊂ Ω × Ω
such that for all (W, W̃ ) ∈ Ω0 and t ∈ [0,∞) one has Π`ũ(t,W ) = Π`u(t, W̃ )
and ΠhW (t) − ΠhW (0) = ΠhW̃ (t) − ΠhW̃ (0) then ũ(t,W ) = u(t, W̃ ) for all
t ∈ [0,∞) and almost every (W, W̃ ) ∈ Ω0.

• Let u(x, t,W ) be a stationary solution to (3) on the time interval (−∞,∞).
Define `(t,W ) = Π`u(t,W ) and η(t) = ΠhW (t). Then with probability one,
there exists a positive constant C depending only the solution u so that for
t ≤ 0 ∣∣Φη

t,0(`[t,0];h0)− Πhu(0)
∣∣
L2 ≤ C(|h0|L2 + 1)e−γ|t|.

In particular, if ũ(x, t,W ) is another stationary solution on (−∞,∞), Ω0 ⊂
Ω× Ω, and T a fixed time, such that for any (W, W̃ ) ∈ Ω0 and s ∈ (−∞, T ],
Π`ũ(s, W̃ ) = Π`u(s,W ) and ΠhW (s) − ΠhW (0) = ΠhW̃ (s) − ΠhW̃ (0) then
u(s,W ) = ũ(s, W̃ ) for all s ∈ (−∞, T ) and almost every (W, W̃ ) ∈ Ω0.

In other words, the history of the modes with wave number |k| less than N∗
combined with the history of the forcing increments on the remaining degrees
of freedom is sufficient to determine the solution uniquely with probability one.

The first statement in Theorem 3 is really a consequence of the contractive
properties used to prove Theorem 4. It is the special case when the set of determining
low modes is empty; hence, knowledge of the infinite past of the random forces is
sufficient to reconstruct the state of the whole system. In general, as shown in
Theorem 4, one needs some finite number of determining modes and knowledge of
the random forcing applied to the missing modes to reconstruct the missing modes.

We now give a more general result which implies the first part of Theorem 3
by showing that to each realization of noise there corresponds a unique, stationary
solution if the viscosity is large enough relative to the forcing. Another way of
saying this is that the system’s random attractor, whose existence was proven at
any viscosity by Flandoli [Fla94], consists of a trivial diffusing point. Schmalfuss
proved a similar statement using a random fixed point argument in the case of
multiplicative noise and large viscosity [Sch97]. In that case, the attracting random
solution is a random fixed point which does not fluctuate in time.
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Theorem 5. If C E0

ν3 < 1, then there exists a unique stationary random solution
u∗(t,W ) defined for t ∈ (−∞,∞) and almost all W ∈ Ω. In addition, it attracts all
other solutions exponentially quickly. [Mat98, Mat99]

One of the interesting interpretations of Theorem 4 in the case of arbitrary
viscosity is that on the set of stationary solutions one can define a functional Φ :
C(−∞, 0; Π`L2) → ΠhL2 which reconstructs the high modes from the low modes.
In particular if u is a stationary solution and η = ΠhW then define

Φη(Π`u(−∞,0])
def
= lim

t→−∞
Φη

t,0(Π`u(t,0];h0)

for some arbitrary fixed h0. Theorem 4 guarantees that the limit exists, that it is
independent of the choice of h0, and that Πhu(0,W ) = Φη(Π`u(−∞,0]). With this
result, we can close the low mode equations at the price of introducing memory.
One obtains

d`(x, t)

dt
+ νΛ2`(x, t) + Π`B(`+ Φθtη(θt`), `+ Φθtη(θt`)) =

∂ξ(x, t)

∂t
(9)

where θt is the shift defined on ` by (θt`)(s) = `(s + t) and η by (θtη)(s) = η(t +
s) − η(t). This representation is closely related and inspired by the inertial form
representation from inertial manifolds theory (cf. [CFNT89, EFNT94]) and the
ideas of symbolic dynamics. From the representation in (9), it is clear why it
might be reasonable to call systems satisfying the assumptions of the second part
of Theorem 3 “effectively elliptic” diffusions. Under that assumption, the system
reduces to an equation of the form (9). This Itô process with memory is elliptic in
the sense that the noise directly agitates all of the coordinates. In contrast to the
hypoelliptic systems considered in section 17, no detailed knowledge of the tangent
space structure is needed. Once the assumption about all of the possibly unstable
directions being forced is satisfied, only some soft general estimates are needed.

When viewed in the context of Section 5, Theorem 3 might seem surprising. The
theorem allows the associated diffusion to be degenerate in an infinite number of
directions; yet the system has nice ergodic properties. Yet in other ways, Theorem
3 is expected. It simply says that if all of the unstable directions are forced directly,
the system is ergodic. Since the long time dynamics are governed by the behavior
on the “unstable manifold” (if one was known to exist), forcing those directions
destroys all possible obstruction to mixing in the phase space. Since these systems
are non-autonomous, when we say that a collection of directions are stable, we really
mean that all of the associated Lyapunov exponents associated with these degrees
of freedom are negative.

8. Ergodicity: General Constructions

We now lay out a more general framework to make some ideas clear without being
encumbered by specifics. In the next section, we also give a simple toy model and
some illustrative examples which hopefully will make the ideas concrete.
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Let (X, | · |X , 〈 · , · 〉X) be a complete separable Hilbert space with a basis {ek},
k = 1, . . . . Consider the stochastic evolution equation

du

dt
= G(u) +

dW

dt
. (10)

taking values in X. For concreteness, we take W (x, t) =
∑
σkekbk(t) where σk are

constants which fix the structure of the forcing and the bk(t) are standard variance
one Brownian motions. More general forcings built over a cylindrical Wiener space
are possible with further assumptions, but this will be sufficient for our needs.

We assume that the σk are chosen so that (10) has a globally defined stochastic
flow ϕW

s,tu0 = u(t,W ) where u(s) = u0. It is standard to associate with this flow
a random dynamical system defined by the skew flow Θt(u,W ) = (ϕW

0,tu0, θtW )
(cf. [Arn98, Kif86]). Here θt is the shift operator. On noise paths the shift is
defined by (θtW )(s) = W (t+ s)−W (t). We also define the shift of a trajectory by
(θtu)(s) = u(t + s). The difference in definition is due to the fact that in the first
case we are really shifting the noise increments and not the path itself.

Fix a positive integer N∗, and define the splitting of the space X = X` × Xh,
by X` = span{ek : k < N∗} and Xh = span{ek : k ≥ N∗}. Let Π` and Πh be
the orthogonal projectors onto X` and Xh respectively. We will write u = (`, h) =
(Π`u,Πhu) ∈ X` × Xh and η = ΠhW and ξ = Π`W . Notice that the probability
measure P decomposes into Pη×Pξ. As before, we will denote segments of trajecto-
ries by an interval of time as a subscript. Hence, `[s,t] is a trajectory in X` between
time s and t. We use Π[s,t] to denote the projection of a path or set of paths onto
the time interval [s, t].

One can always split the system into two coupled equations on X` × Xh,

dh

dt
= ΠhG(`+ h) +

dη

dt
(11)

d`

dt
= Π`G(`+ h) +

dξ

dt
. (12)

As in section 8.1, given this splitting, one can always define a map h(t) = Φη
s,t(`[s,t];h0)

which solves (11) given an initial condition h0, noise path η, and `[s,t] viewed as an
external input. Then for each t0, h0, and η, we can define

d`

dt
= Π`G(`+ Φη

t0,t(`[t0,t];h0)) +
dξ

dt
(13)

`(t0) = `0 .

Equation (13) is no longer a standard diffusion as we have introduced memory
through the function Φη

t0,t. It is critical to notice that `(t) remains an adapted Itô
process and hence the power of stochastic calculus can be brought to bear.

For the representation in (13) to be useful in the study of the ergodic theory of
(10), the reduced dynamics (13) must “forget” the choice of h0. One way to investi-
gate this is to study the system as t0 → −∞. If the functional Φ becomes indepen-
dent of h0, then we have a closed dynamics on C(−∞, 0; X`) over the probability
space Ω. The resulting stochastic process could have infinite memory. Since it is
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defined by a compatible family of Gibbs measures, in [EMS01] it was dubbed “Gibb-
sian dynamics” to be contrasted with Markovian dynamics. The ergodic theory of
systems with this type of memory was explored in its own right in [Bak02, BM03].

Alternatively, one could study the measures induced on the infinite future for
different choices of h0 and show that they induce the same asymptotic dynamics in
some sense. This was the point of view taken in [Mat02c].

The two approaches are more or less equivalent and each has its own difficul-
ties. One difficulty of the memory/Gibbsian Dynamics approach is that sometimes
the limit, limt0→−∞ Φη

t0,t(`[t0,t];h0), only exists on a restricted set of paths. In any
situation where the approach works, one can always take `(−∞,t], which are typical
realizations of a stationary solution obtained by suspending any invariant measure
over path space. But such a characterization is not constructive and at times is
difficult to work with.

At the most basic level, the success of the approach developed in [EMS01] (or
[KS00, BKL01] for that mater) hinges on treating the ` and h variables in fundamen-
tally differently way. Since the ` variable is finite dimensional in all the situations
we consider, all the difficulties of probabilistic calculations in an infinite dimensional
setting, mentioned in section 4, are not an issue. In particular, the time t transition
densities projected onto X` will have densities relative to Lebesgue measure on X`

if all of the directions in X` are forced. The analysis of the h variable is dynamic
in nature. The analysis is done noise realization by noise realization. In contrast
the analysis of the ` variable is probabilistic in nature. Arguments are made at the
level of transition densities. If the system is strongly contractive, then the structure
of the forcing is irrelevant. This was the fundamental fact used in [Mat99] to prove
ergodicity by showing the existence of a distinguished globally attracting solution.
Another way to say this is that the random attractor is trivial, consisting of a single
point at each moment of time. Given our splitting, a similar structure remains in
the h variable. As we will see, such contraction, η-fiber by η-fiber, is much less
sensitive to the topology than are questions like the absolute continuity of mea-
sures. The basic idea is to change the measure on the ` variables in such a way that
the remaining degrees of freedom are contractive. The analyses in [Mat02c] and
[EMS01] accomplish this by making the `’s agree after some finite time. In [Hai02],
the measure is changed to bring the ` (and h) together asymptotically at infinity
but never at a finite time. In all cases, care must be taken so that the changes in
the measure to not accumulate to the extent that the limiting measures become
singular.

To execute this program, we need to analyze the dynamics on the path space of
Xh and understand the structure of the measures induced on the path space of X`.
To this end, we make a few definitions. For all t > s ≥ 0 define

Qt(`0, h0, A) = P
(
`(t) ∈ A

∣∣`(0) = `0, h(0) = h0

)
(14)

Q[s,t)(`0, h0, B) = P
(
`[s,t) ∈ B

∣∣`(0) = `0, h(0) = h0

)
for Borel sets A ⊂ X` and B ⊂ C([s, t); X`) ∼= C([0, t − s); X`). Notice we have
associated C([s, t),X`) with C([0, t − s),X`) and will view u[s,t) as an element of
C([0, t− s),X`).
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Similarly for any realization of η, let Fη
[s,t] be the σ-algebra generated by the

increments of η between [s, t]. We defineQη
t (`0, h0, A) = P(`(t) ∈ A|`(0) = `0, h(0) =

h0,Fη
[0,t]) and Qη

[s,t)(`0, h0, B) = P(`[s,t) ∈ B|`(0) = `0, h(0) = h0,Fη
[s,t]). These

are analogous to the previous measures except that we have conditioned on the
realization of η over the time interval in question. Hence, for A ⊂ X`.

Qt(`0, h0, A) =

∫
Qη

t (`0, h0, A)P(dη) = EQη
t (`0, h0, A) .

8.1. A Toy Problem

We now describe a simple toy problem which contains the main ideas needed to
prove the results of the previous section. We will use the same notation to make
the connections explicit.

Consider the following two dimensional stochastic differential equation

dh(t)

dt
= −ν1h+ F1(`, h) + σ1

dη

dt
(15)

d`(t)

dt
= −ν2`+ F2(`, h) + σ2

dξ

dt
. (16)

Here νi > 0, σi ≥ 0, η and ξ are standard one dimensional Brownian Motions on
the probability space Ω = C((−∞,∞); R2). Hence, in the notation of the previous
section X = R2, X` = R, and Xh = R. We assume the following estimates hold
|F1|+ |F2| < K and |Fi(`, h)−Fi(`, h̃)| ≤ Li|h− h̃|. For the moment, we allow either
or both of the σi to be zero. Eventually, we will require only that σ2 > 0 allowing
σ1 to be zero if desired. Since the Fi are uniformly bounded, it is easy to see that
lim supt→∞ E[h2(t) + `2(t)] is uniformly bounded over all initial conditions. From
this, one can deduce the existence of an invariant measure using standard tightness
arguments. The stochastic flow ϕ

(ξ,η)
t (`0, h0) and the functional Φη

s,t(`[s,t];h0) are
defined as in the previous section.

Subtracting two copies of (15) with the same η and `[s,t] but different initial
conditions produces the estimate

|Φη
s,t(`[s,t];h0)− Φη

s,t(`[s,t]; h̃0)| ≤ |h0 − h̃0|e−(ν1−L1)(t−s) . (17)

Using this estimate immediately produces the following result, which is the analog
of Theorem 4.

Lemma 8.1. Assume ν1 > L1. Given ` ∈ C((−∞, 0]; R) and h0 ∈ R, the limit

Φη(`(−∞,0])
def
= lim

s→−∞
Φη

s,0(`[s,0];h0)

is well defined almost surely and independent of h0. Similarly, fixing a time in-
terval [s, t] and initial conditions (`i(s), hi(s)). Let Ω0 ⊂ Ω × Ω such that for all
(ξ1, η1, ξ2, η2) ∈ Ω0 η1(r) − η1(s) = η2(r) − η2(s) and `1(r) = `2(r) when r ∈ [s, t]

where (`i(r), hi(r)) = ϕ
(ξi,ηi)
t (`i(s), hi(s)). Then for all (ξ1, η1, ξ2, η2) ∈ Ω0

|h1(t)− h2(t)| ≤ |h1(s)− h2(s)|e−(ν1−L1)(t−s) .

XI–12



Recalling that the shift θt on trajectories acts by (θt`)(s) = `(t+ s) and on noise
paths by (θtη)(s) = η(t + s) − η(t), then by Lemma 8.1 we can reduce the system
to the following system with memory

d`

dt
= −ν2`+ F2(`,Φ

θtη(θt`)) + σ2
dξ

dt
(18)

`(0) = `0

where now `(t) is seen as an element of C((−∞, t]; R). Similarly our initial condition
`0 is an element of C((−∞, 0]; R).

We now turn to another auxiliary result which, along with the contraction em-
bodied Lemma 8.1, is the linchpin on which ergodicity hangs. Recalling the defini-
tions from (14), we have

Lemma 8.2. Assume σ2 > 0 and ν1 > L1. For all `0, h0 ∈ R, the measure
Qt(`0, h0, · ) is equivalent to Lebesgue measure. For all `0, h0, h̃0,∈ R, the mea-
sure Q[0,∞)(`0, h0, · ) is equivalent to Q[0,∞)(`0, h̃0, · ). For any realization of η, the
exact same conclusions hold with Qt replace by Qη

t and Q[0,∞) replaced by Qη
[0,∞).

In the next section, we will use the Lemma 8.2 to prove the ergodicity of the
toy problem (equations (15) and (16)). Of course, if σ1, σ2 > 0 then the system is
uniformly elliptic and the fact that there is a unique invariant measure follows from
standard elliptic theory. Even when σ1 = 0, one might well use hypoelliptic diffusion
theory to prove ergodicity. What we present here is a different possible route,
where the detailed knowledge of the tangent space structure used in hypoelliptic
arguments is replaced with assumptions about the system’s Lyapunov exponents.
The advantage of this route being that the contractive properties are less sensitive
to the choice of topology than the measure theoretic properties of the system needed
for the more standard approaches to ergodicity.

The fact that Q[0,∞)(`0, h0, · ) and Q[0,∞)(`0, h̃0, · ) are equivalent measures
on the infinite time [0,∞) interval is critical. Absolute continuity on finite time
intervals would not be sufficient. As an illustrative example consider the measures
induced on path space by a standard Brownian motion B(t) and the SDEs

dX(t)

dt
= −X(t) +

dB(t)

dt

dY (t)

dt
= −Y (t) +

1

t
+
dB(t)

dt
X(0) = x0 Y (0) = x0 .

All three processes induce measures which are pairwise equivalent on any finite
segment of path space. However, only the processes X and Y are equivalent on the
infinite futures because their difference, 1

t
, is square integrable on an infinite time

interval. See the proof of the second part Lemma 8.2 for the needed argument. In
particular, we see that X(t) and Y (t) have the same asymptotic behavior at the
level of the path space marginals, while W (t) has a different one. Notice that we do
not mean that |X(t)− Y (t)| → 0 as t→∞.

Intuitively it is clear why Lemma 8.2 when combined with the contractive esti-
mate from (17), implies that there is only one invariant measure. From Lemma
8.2, we see that any two invariant measures will induce equivalent measure in
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C(0,∞; X`). Hence they will charge trajectories with the same projection onto
X`. This is already enough to ensure that the distribution on X` is unique. However
because of (17) if the two paths share the same projection on to X` for all time
the remaining degrees of freedom will also converge. Hence the time averages along
some typical paths of the two measure will be the same. This implies the measure
are the same. In Theorem 6, we make this argument precise.

Proof of the first part of Lemma 8.2: We now prove the statements
concerning Qt and Qη

t . We need only to show that the measures, conditional on
η, are equivalent since the full measures are simply the integration of the condi-
tioned measures against the Wiener measure governing η. We will use Girsanov’s
Theorem (cf. [Oks92, RY94] Ch 8, Thm 1.1) to compare (16) with the Ornstein-
Uhlenbeck process dz

dt
= −ν2z + σ2

dξ
dt

. Girsanov’s Theorem states that the two
measures on path space are equivalent if a certain exponential martingale, which
gives the Radon-Nikodym derivative, is uniformly integrable. This is guaranteed by
Novikov’s criterion (cf. [Oks92, RY94] Ch 8, Prop 1.15) which, translated into our
setting, becomes E exp

(
1
2

∫ t

0
1
σ2
2
|F2(`, h)|2ds

)
<∞. Since by assumption

E exp

(
1

2

∫ t

0

1

σ2
2

∣∣F2

(
`(s), h(s)

)∣∣2 ds) ≤ exp

(
K2

2σ2
2

t

)
<∞,

we know that the measures induced on path space by `[0,t] conditioned on η and z[0,t]

are equivalent. This in turn implies that the time t marginals are equivalent. Since
the law of z(t) for fixed t is Gaussian and thus equivalent to Lebesgue measure the
proof is complete. 2

Proof of the second part of Lemma 8.2: We now prove the statements
concerning Q[0,∞) and Qη

[0,∞). Again we use Girsanov’s Theorem and only consider
the conditioned measures. This time we compare the measures induced on [0, t] by `
starting from the same `0 with the same η but different h’s. In this case, Novikov’s
criterion becomes

E exp
(1

2

∫ t

0

1

σ2
2

|F2(`,Φ
η
0,s(`[0,s];h0))− F2(`,Φ

η
0,s(`[0,s]; h̃0))|2ds

)
≤ exp

(1

2

∫ t

0

L2

σ2
2

|Φη
0,s(`[0,s];h0)− Φη

0,s(`[0,s]; h̃0)|2ds
)

≤ exp
(1

2

∫ t

0

L2

σ2
2

|h0 − h̃0|2e−2(ν1−L1)sds
)

≤ exp
( L2

4σ2
2(ν1 − L1)

|h0 − h̃0|2
)
.

Since the bound is finite and uniformly bounded in t, we conclude that the measures
on path space are equivalent on the time interval [0,∞). 2

8.2. Basic Ergodicity

We now present some general theorems which we will use to prove the ergodicity of
the SNS equations and the toy model. Hopefully, the assumptions will seem natural
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in light of the structure of the toy model.

Assumption 1. There exists a set B ⊂ C(0,∞; X), with P{ϕW
[0,∞)u0 ∈ B} = 1 for

all u0 ∈ X so that the following holds:
If u(t,W ) and ũ(t,W ) are solutions to (10) and Ω0 a subset of Ω× Ω so that

(W, W̃ ) ∈ Ω0 =⇒


u( · ,W ), ũ( · , W̃ ) ∈ B
ΠhW (t)− ΠhW (0) = ΠhW̃ (t)− ΠhW̃ (0) for all t ≥ 0

Π`u(t,W ) = Π`ũ(t, W̃ ) for all t ≥ 0

then
∣∣∣Πhu(t,W )− Πhũ(t, W̃ )

∣∣∣
X
→ 0 as t→∞ for all (W, W̃ ) ∈ Ω0.

In the toy model the set B was not needed; the conclusion held for all paths.
This is not true in more general settings; we need to restrict ourselves to a set of
“nice” paths. For the SNS equation, B will be the set of paths which grow and
average in a typical fashion. Recall from (14), that Qη

t (u0, · ) and Qη
[t,∞)(u0, · ) are

respectively the measure induced on the “low modes” X` at time t by u(t) and on
the path space C([0,∞),X`) by u[t,∞) if one conditions to use the noise realization
η and to start from the initial condition u0 at time t = 0.

Assumption 2. For all u0 = (`0, h0) ∈ X` × Xh, Qη
t (`0, h0, · ) is equivalent to

Lebesgue measure for almost every η. For all u0 = (`0, h0) and ũ0 = (˜̀0, h̃0) ∈
X` × Xh, the measure Qη

[0,∞)(`0, h0, · ) is equivalent to Qη
[0,∞)(`0, h̃0, · ) for almost

every η.

As noted in the analysis of the toy problem, the equivalence of the measure
conditioned on η implies the equivalence of the unconditioned versions.

Theorem 6. If Assumptions 1 and 2 hold, then (10) has at most one X-valued
invariant probability measure.

By an X-valued probability measure µ, we mean a measure such that µ(X) = 1.
Once this theorem is proven, we will have proven the ergodicity of the toy problem
from the previous section. In the SNS setting, notice that Assumption 2 is close
to Theorem 4. Lemma 13.1 makes the set B explicit. We now state a number of
lemma which will be used to prove Theorem 6.

Lemma 8.3. Assume Assumption 2 holds. For any pair of initial conditions u0 =
(`0, h0) and ũ0 = (˜̀0, h̃0) ∈ X` × Xh and any t > 0, the measure Q[t,∞)(`0, h0, · )

and Q[t,∞)(˜̀0, h̃0, · ) are equivalent. Similarly for almost every η, Qη
[t,∞)(`0, h0, · )

is equivalent to Qη
[t,∞)(

˜̀
0, h̃0, · ).

Given any invariant measure µ, we define two classes of associated measures;
one on the future trajectories and one on the past trajectories. Let M− denote the
natural measure on C((−∞, 0]; X) defined by cylinder sets of the type: for some
t0, t1, · · · tn, t0 < t1 < t2 · · · tn ≤ 0,

A =
{(
`(s), h(s)

)
∈ C

(
(−∞, 0],X

)
,
(
`(ti), h(ti)

)
∈ Ai, i = 0, · · ·n

}
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where the Ai’s are Borel sets of X. The definition

M−(A) = µ(A0) · P{u(ti) ∈ Ai, i = 1 . . . n|u(t0) ∈ A0}.

characterizes the measure. Similarly we define M+ on C([0,∞); X). We also define
Mη

+ on C([0,∞); X) by pushing µ forward under dynamics conditioned to use the
noise realization η. We will define a measure Mη

− at the end of the section and
explore it properties. Recalling that Π` was the projection onto X`; and hence,
M+Π−1

` is a measure on C([0,∞); X`). Analogously for t > s, we define Π[s,t) as
the projection onto the space C([s, t); X).

Assumption 3. Let µ1 and µ2 be any two invariant measures and let Mη
+,1 and

Mη
+,2 be the measures induced on C([0,∞); X) described above. Then for almost

every η, Mη
+,1Π

−1
` is equivalent to Mη

+,2Π
−1
` .

Lemma 8.4. Assumption 2 implies Assumption 3.

Proof of Lemma 8.4: Since µ is invariant, for any B ⊂ C([t,∞); X`) and t > 0

Mη
+Π−1

` (B) =

∫
X
Q

θ−tη
[t,∞)(`0, h0, B)µ(d`0 × dh0)

the result follows from Lemma 8.3 and since θt is ergodic; hence, mapping one set
of full measure in Π`Ω to another set of full measure. 2

Assumption 3, is weaker than Assumption 2. As the next lemma shows, it is
sufficient to prove ergodicity. In some settings where solutions to the initial value
problem do not have nice moment properties it is more convenient to work directly
with stationary solutions. This type of analysis is presented in [BM03]. However,
in systems like the SNS equations such difficulties do not arise and, as we shall see,
Assumption 2 holds.

In light of above lemma, the following result implies Theorem 6.

Lemma 8.5. If Assumptions 1 and 3 hold, then (10) has at most one X-valued
invariant probability measure.

Note: If one was only interested in events which depended on the part of the
path in X` then Assumption 1 is not needed.

Proof of Lemma 8.5: Since all invariant measures are a linear combination
of ergodic measures it is enough to show there is a unique ergodic measure. Let
µ1 and µ2 be two different ergodic measures. Let M+,1, Mη

+,1, M+,2 and Mη
+,2

be the associated measures defined above. Let φ : X` × Xh → R be a measurable
test function bounded with sup |φ|X ≤ 1 and φ(`, · ) ∈ Lip1(Xh) for all `. The
norm induced on measures by this class of test functions dominates the Wasserstein
( or Kantorovich) distance for measures. Hence, this class of test functions is rich
enough so that if

∫
φdµ1 =

∫
φdµ2 for all such φ then µ1 = µ2 (cf. [Dud76] ). Since

M+,i is invariant under the flow induced on measures, the Birkoff ergodic theorem
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implies that there exists sets Āi ⊂ C([0,∞),X) such that M+,i(Āi) = 1 and for all
(`, h) ∈ Āi

lim
t→∞

1

t

∫ t

0

φ(`(s), h(s))ds = φ̄i =

∫
φ(x, y)µi(dx× dy). (19)

Define Ai = Āi ∩ B where B is the set from Assumption 1. Again remark that
M+,i(Ai) = 1 since B has full measure. Since M+,i(Āi) = EMη

+,i(Āi) = 1,
Mη

+,i(Ai) = 1 for almost every η. Let Aη
i be a subset of Ai of full Mη

+,i–measure
so that the paths in Aη

i are solutions with a noise realization W so Π`W = η. By
Assumption 3, Mη

+,1Π
−1
` is equivalent to Mη

+,2Π
−1
` . Hence, Mη

+,2Π
−1
` (Π`A

η
1) > 0

which implies that Π`A
η
1 ∩ Π`A

η
2 is not empty since Mη

+,2Π
−1
` (Π`A

η
2) = 1. Hence,

the set A = {(`, h1, h2) : (`, h1) ∈ Aη
1 and (`, h2) ∈ Aη

2} is not empty. Fixing some
(`, h1, h2) ∈ A, from (19) and Assumption 1 we have that for any ε > 0 there exists
a T so that for all t > T ∣∣∣1

t

∫ t

0

φ(`(s), hi(s))ds− φ̄i

∣∣∣ < ε

4

and |h1(t)− h2(t)|X < ε
4
. This last inequality holds because the hypotheses of

Assumptions 1 are satisfied. Hence,

|φ̄1 − φ̄2| ≤
∑

i

∣∣∣1
t

∫ t

0

φ(`(s), hi(s))ds− φ̄i

∣∣∣+ ∣∣∣1
t

∫ t

0

φ(`(s), h1(s))− φ(`(s), h2(s))ds
∣∣∣

≤ ε

2
+

2T

t
+
ε

4

t− T

t
< ε for t sufficiently large.

Since ε was arbitrary, the proof is complete. 2

Proof of Lemma 8.3 : Let A ⊂ C(0,∞; X). We will show that

Qη
[t,∞)(`0, h0, A) = 0 implies that Qη

[t,∞)(
˜̀
0, h̃0, A) = 0.

First notice that for B ⊂ ΠhX if Hη
t (`0, h0, x, B) = P{h(t) ∈ B|`(0) = `0, h(0) =

h0, `(t) = x,Fη
[0,t]} for t > 0 then

Qη
[t,∞)(`0, h0, A) =

∫ ∫
Qη

t (`0, h0, dx)H
η
t (`0, h0, x, dy)Q

θtη
[0,∞)(x, y, A) . (20)

Hence for almost every η, Qη
[t,∞)(`0, h0, A) = 0 implies that Qθtη

[0,∞)(x, y, A) = 0 for
Leb(dx)×Hη

t (`0, h0, x, dy) almost every (x, y) because by assumption Qη
t (`0, h0, · )

is equivalent to Lebesgue measure. By the second part of Assumption 2, we know
that Qη̃

[0,∞)(x, y, · ) is equivalent to Qη̃
[0,∞)(x, ỹ, · ) for all x, y, ỹ and for P-almost

every η̃. Hence, Qθtη
[0,∞)(x, y, A) = 0 for Leb(dx) × Hη

t (˜̀0, h̃0, x, dy) almost every
(x, y) and P-almost every η. (Here we have used that the shift is ergodic with
respect to P. So θt a maps set of full measure to another set of full measure.) And
hence, by the representation for Qη

[t,∞)(
˜̀
0, h̃0, A) analogous to (20), we conclude

Qη
[t,∞)(

˜̀
0, h̃0, A) = 0. 2
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8.3. One Force, One Solution: Statistical Equilibrium
Measures and Trivial Random Attractors

In analogy to Mη
+, we define Mη

− on C((−∞, 0]; X) as the limit as t → −∞ of
Mη

t,0 = E{ϕ(ξ,η)
[t,0] µ|F

η
(−∞,0]}. As discussed in [LJ87, DLJ88, Bax91], the sequence

is a backwards martingale, hence the limit exists almost surely by the martingale
convergence theorem. By ϕ

(ξ,η)
[t,0] u0 we mean the entire piece of trajectory on [t, 0].

Similarly, one can define M(ξ,η)
− on C((−∞, 0]; X) by the limit t → −∞ of ϕ(ξ,η)

[t,0] µ.

This is the called the equilibrium measure [LJ87] and Mη
− = E{M(ξ,η)

− |Fη
(−∞,0]}. In

a similar manner, one can define Mη on all of C(−∞,∞; X`).
In the case of the SNS equations Flandolli, Craul, and Debussche [Fla94, CDF97]

proven the existence of a compact random attractor A(ξ, η) ⊂ L2 which attracts all
bounded subsets B ⊂ L2 in the sense

lim
t→−∞

d(ϕ
(ξ,η)
t,0 B,A(ξ, η)) = 0

where d is the symmetric Hausdorff distance on sets.
If we define the action of the shift θt of η as (θtη)(s) = η(t+s)−η(t), the measure

Mη is invariant under the skew flow on measures fibered over η. Then we have, for
example, E{ϕ(ξ,η)

0,t Mη|Fη} = Mθtη. (Recall that Fη was the sigma algebra generated
by η.) Similarly, when a random attractor exists ϕ(ξ,η)

0,t A(ξ, η) = A(θtξ, θtη).
We can consider the equation (11) in isolation over a probability space ΠhΩ ×

C(−∞,∞; X`) with the measure Pη(dη) ×MηΠ−1
` (d`). In other words, we have

elevated the part of the phase space C(−∞,∞; X`) to part of the base probability
space. On this space the h(t) dynamics has the same property as the whole SNS
equation under the extremely contractive assumption( N2

∗ ≥ C E0

ν3 ). In particular,
an analogous theorem to Theorem 5 holds: there is a unique solution h∗(t; η, `)
which attracts all other solutions. In these coordinates, the random attractor for
the equation (11) is the single solution h∗(t; η, `). Therefore, the invariant measure
µ from above projected onto Xh disintegrates into a delta measure concentrated at
δh∗(0;η,`) against the measure Pη(dη)×MηΠ−1

` (d`). That is to say, if F : X`×Xh → R
then ∫

F (`, h)µ(d`× dh) =

∫
F (`, h∗(0; η, `))

[
Pη(dη)×MηΠ−1

` (d`)
]

=

∫
F (`, h)δh∗(0;η,`)(dh)

[
Pη(dη)×MηΠ−1

` (d`)
]
.

This is the analog for the partially dissipative system of the “one force, one solution”
(i.e. trivial random attractor) discussed in [Mat99, EKMS00, Sch97, LJ87, Mat02a,
MY02, EVE00] or exemplified by Theorem 5. A similar statement holds for the toy
problem and all of the systems satisfying the assumptions in section 8.2.

9. Contractive Nature of the SNS Dynamics

The proof of ergodicity of the SNS under the assumption that only the “determining
modes” are forced will parallel the proof of the toy model. Our first step is to estab-
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lish Assumption 1 in the context of the SNS. We do this by proving a quantitative
version of Theorem 4 which was given earlier.

To see what is involved we consider two solutions to equation (8), h1 and h2,
driven by a common low mode process ` and noise η. That is for t > s, hi(t) =
Φη

s,t(`[s,t);hi(s)). Denoting ui = `+ hi, we have

∂ρ(t)

∂t
=− Λ2ρ(t) + ΠhB(u1, ρ) + ΠhB(ρ, u2)

which using standard estimates on the nonlinearity (cf. [CF88]) produces, for some
C > 0,

d |ρ|2L2

dt
≤− 2ν |Λρ|2L2 + (2C)

1
2 |Λρ|L2 |Λu2|L2 |ρ|L2 ≤ −ν |Λρ|2L2 +

C
ν
|Λu2|2L2 |ρ|2L2

≤−
(
νN2

∗ −
C
ν
|Λu2|2L2

)
|ρ|2L2 .

The above estimate then gives for t0 < t

|ρ(t)|2L2 ≤ |ρ(t0)|2L2 exp

(
−νN2

∗ (t− t0) +
C
ν

∫ t

t0

|Λu2(s)|2L2 ds

)
(21)

We now see the new difficulty which the Stochastic Navier Stokes equations present
over the toy model. The contraction rate depends on the time average of the en-
stropy |Λu2(s)|2L2 of one of the solutions. However, after we develop some estimates
controlling this quantity the proof will proceed using standard ideas of localization
from stochastic analysis.

10. The Energy and Enstrophy

The toy model is an extremely uniform setting. The added difficulty in the SNS
relative to the toy model, is the lack of uniformity. However, the standard idea of
localization from stochastic analysis allows us to overcome this hurdle. As we saw in
the last section, the growth of the energy |u|2L2 and the time average of the enstrophy
|Λu|2L2 seem to be of importance in controlling the uniformity of the contraction.
This will be come clearer after the next two sections. We begin with some estimates
on the energy and enstrophy.

Lemma 10.1. E |u(t)|2L2 ≤ e−2ν(t−t0)E |u(t0)|2L2 + E0

2ν

(
1− e−2ν(t−t0)

)
and for any

p ≥ 1, E |u(t)|2p
L2 ≤ e−2ν(t−t0)E |u(t0)|2p

L2 + C0

∫ t

t0
e−2ν(t−s)E |u(s)|2(p−1)

L2 ds.

This implies that if one has a solution u(t,W ) defined for t ∈ (−∞,∞) such that
e−2ν|t|E |u(t,W )|2L2 → 0 as t→ −∞ then in fact E |u(t,W )|2L2 is uniformly bounded
in time. Using similar reasoning, one can show the following result.

Lemma 10.2. Assume that µ is an invariant measure such that there exist a
U ⊂ L2 with µ(U) = 1. For any such measure stationary measure all energy
moments are finite. In fact for any p ≥ 1 there exist constant Cp < ∞ such

XI–19



that
∫

L2 |u|2p
L2 dµ(u) < Cp for all invariant measures µ. In particular, C1 = E0

2ν
.

Furthermore,
∫

L2 |Λu|2L2 dµ(u) = E0

2ν
assuming only that E0 =

∑
|σk|2 < ∞. If

E1 =
∑
|k|2|σk|2 <∞ is finite then the analogous statements hold for |Λu|2p

L2 replac-
ing |u|2p

L2. In particular,
∫

L2 |Λ2u|2L2 dµ(u) = E1

2ν
.

Since one can construct a stationary solution from any invariant measure and vice
versa (see section 8.2 ), this conclusion applies equally to any stationary solution.
The proofs of Lemma 10.1 and 10.2 can be found in the appendix of [EMS01].
Related statements can be found in Chapter 3 and 4 of [Mat98], section 2 of [Mat99],
or the appendix of [Mat02b]. The moment estimates are just the stochastic analogs
of deterministic estimates. Similar estimates from slightly different points of view
can be found in [VF88, MR, BKL00]. If one assumes, E1 =

∑
|σk|2|k|2 < ∞ then

completely analogous statements can be made about the enstrophy.
It is critical to our analysis to understand the typical size of the fluctuations

of the enstrophy about its mean of E0

2ν
. Applying Itô’s formula to the energy, one

obtains

d |u(s)|2L2 = −2ν |Λu(s)|2L2 dt+ E0dt+ 2〈u, dW (t)〉L2

If one writes the last term as(∑
k

|σkuk|2
) 1

2
[
〈u, dW (t)〉L2

(
∑

k |σkuk|2)
1
2

]
,

then the term in the square brackets is distributed as a one dimensional Brownian
motion adapted to the filtration generated by the W increments. This motivates our
definition of a Lyapunov function in the abstract setting (10), which is contained in
the next section.

11. Growth and Fluctuations in A General Setting

In this section, we put an abstract framework on the ideas of the previous section.
In the section 12, we return to the concrete setting of the SNS.

Assumption 4. There exists a function V : X → [0,∞), with c0V (x)p0 ≥ |x|2X for
positive p0, c0, so that for a solution u of equation (10) V satisfies the Itô equation

dV (u(t)) = g(u(t))dt+ f(u(t))dB̃(t).

Here B̃ is a standard one dimensional Wiener process adapted to the flow generated
by (dW ). g : X → R is a function satisfying

g(u) < C1 − U(u) where U(u) ≥ C2V (u)

for some constants C1, C2 > 0 and U : X → [0,∞)∪∞. Though U might be infinite
on X, we assume if u(t) is a solution to (10) on [0, t], then

∫ t

0
U(u(s))ds <∞ almost

surely. And f : X → R is a function satisfying

C3|f(u)|2 ≤ U(u)

for some C3 > 0.
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From the calculation at the end of the last section, in the SNS setting we should
take V (u) = |u|2L2 , U(u) = 2ν |Λu|2L2 , C1 = E0, C2 = 2ν, and C3 = ν

2σ2
∗
. (We could

have also used V (u) = |Λu|2L2 , U(u) = 2ν |Λ2u|2L2 if E1 =
∑
|σk||k|2 <∞.)

Lemma 11.1. For any ε ∈ (0, 1) and K > 1
εC3

one has

P

{
sup
t>0

V (u(t)) + (1− ε)
∫ t

0
U(u(s))ds− V (u0)− C1t

1 + log(1 + t)
> K

}
≤ exp

(
−2C3εK

)

Proof: Let M(t) denote the martingale
∫ t

0
f(u(s))dW̃ (s). Its quadratic variation

[M,M ](t) is
∫ t

0
f(u(s))2ds. Since C3[M,M ](t) ≤

∫ t

0
U(u(s))ds, by Itô’s formula we

have

V (u(t)) + (1− ε)

∫ t

0

U(u(s))ds− V (u0)− C1t ≤M(t)− εC3[M,M ](t)

The exponential martingale estimate implies that

P
{

sup
t≤T

M(t)− εC3[M,M ](t) > a
}
≤ e−2εC3a. (22)

Setting a = K[1 + log(T )] one sees that probability of the event in the statement of
the lemma is bounded from above by

∞∑
n=1

exp
(
−2C3εK[1 + log(n)]

)
≤
∫ ∞

1

exp
(
−2εC3K − 2 log(x)

)
dx = exp

(
−2C3εK

)
.

More details can be found in the proofs of the following related results: Theorem
4–6 in [BM03], Lemma A.5 and Lemma B.3 of [EMS01], or for the use of the
exponential martingale Lemma A.2 [Mat02c]. 2

Using similar reasoning one can prove (see for example [BKL00, Mat02b]):

Lemma 11.2. There exist positive constants γ and K so that for all invariant
measures µ with V (u) <∞ µ-almost surely,

∫
exp(γV (u))dµ(u) ≤ K <∞ and for

every initial condition u0 and t ≥ 0, E exp(γV (u(t))) ≤ K exp(γV (u0))

We now give estimates backward in time for stationary solutions.

Lemma 11.3. Let u(t,W ) be a stationary solution to (10) with V (u(t)) <∞ almost
surely. There exists a K0 and a γ > 0 so that for K > K0

P

{
sup
t∈R

V (u(t)) + (1− ε)

∣∣∣∣∫ t

0

U(u(t))ds

∣∣∣∣− C1|t|

1 + log(1 + |t|)
> K

}
≤ exp(−γK)
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Proof: The proof is essentially the same as that of Lemma (11.1). We write

sup
t∈[T−1,T ]

V (u(t)) + (1− ε)

∣∣∣∣∫ t

0

U(u(t))ds

∣∣∣∣− C1|t| ≤ V (u(T − 1))+

sup
t∈[T−1,T ]

[
V (u(t)) + (1− ε)

∣∣∣∣∫ t

0

U(u(s))ds

∣∣∣∣− C1|t| − V (u(T − 1))

]
By the previous two lemmas both of these terms have exponential moments uniform
in T . Using the same reasoning as in the end of the proof of Lemma 11.1 completes
to proof. 2

In light of Lemmas 11.1 and 11.3 we define the following sets of “nice” trajectories
which average well and grow in a typical fashion. Fixing some fixed ε∗ ∈ (0, 1), which
will be set differently in different contexts, we define

An =
{
u ∈ C(−∞, 0; X) : sup

t≤0

V (u(t)) + (1− ε∗)
∣∣∫ t

0
U(u(s))ds

∣∣− C1t

1 + log(t+ 1)
≤ n

}
,

Bn =
{
u ∈ C(0,∞; X) :

sup
t≥0

V (u(t)) + (1− ε∗)
∣∣∫ t

0
U(u(s))ds

∣∣− V (u0)− C1t

1 + log(1 + t)
≤ n

}
. (23)

The previous lemmas imply that, with probability one, any stationary solution is
contained in ∪An and the solution to any initial value problem is contained in ∪Bn.

From these lemmas it is clear that

lim
t→∞

1

t

∫ t

0

U(u(s))ds ≤ C1 and lim
t→−∞

1

|t|

∫ 0

t

U(u(s))ds ≤ C1

almost surely. This is the result analogous to the final conclusion of Lemma 10.2.
But notice that Lemma 11.1 and 11.3 also give information about the size of the
fluctuations.

12. Strongly Contractive Case SNS: Proof of Theorem 5

In the next section, we will take a more abstract point of view on the contractive
nature of the SNS equation and other SPDE. However, first for illustrative reasons,
we continue with the explicit calculations began in section 9 and use them to prove
Theorem 5.

Proof of Theorem 5: We begin by proving uniqueness. Let us assume that
there are two solutions u(t,W ) and u∗(t,W ) defined for all t ∈ (−∞,∞). Let
ρ(t,W ) = u(t,W )− u∗(t,W ). Both are governed by (3), so subtracting produces

∂ρ(t)

∂t
=− Λ2ρ(t) +B(u, ρ) +B(ρ, u∗).
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Using the same estimates on the nonlinearity as in (21), we obtain

d |ρ|2L2

dt
≤−

(
νN2

∗ −
C
ν
|Λu∗|2L2

)
|ρ|2L2 .

Notice that this is the same estimate as was obtained in (21). Since u∗ is a solution,
we know that it is contained in some An, where An was the set of “nicely” fluctuating
and growing paths defined in the last section. Recall that for the SNS: V (u) = |u|2L2 ,
U(u) = 2ν |Λu|2L2 , C1 = E0. Hence, u ∈ An implies that for t ≤ 0

|u(t)|2L2 + (1− ε∗)2ν

∣∣∣∣∫ t

0

|Λu(s)|2L2 ds

∣∣∣∣− E0|t| < n[1 + log(|t|+ 1)]

where ε∗ ∈ (1, 0) is a free parameter which we will set momentarily. Continuing the
estimation of ρ, using this bound, produces for t0 < 0

|ρ(0)|2L2 ≤ |ρ(t0)|2L2 exp

(
−νN2

∗ |t0|+
C
ν

∫ 0

t0

|Λu2(s)|2L2 ds

)
≤ |ρ(t0)|2L2 exp

(
−
[
νN2

∗ − C
E0

ν2(1− ε∗)

]
|t0|+

n[1 + log(|t0|+ 1)]

2ν(1− ε∗)

)
.

Picking ε∗ so νN2
∗ −C E0

ν2(1−ε∗)
= 1

2
γ∗ where γ∗ = νN2

∗ −C E0

ν2 and using the assumption
that the solutions are in An to control |ρ(t0)|2L2 yields the estimate

|ρ(0)|2L2 ≤ 4[E0 + n(1 + log(1 + |t0|)] exp

(
−1

2
γ∗|t0|+

n[1 + log(|t0|+ 1)]

2ν(1− ε∗)

)
.

Taking t0 → −∞, proves uniqueness. A similar estimate shows that the solution
to any initial value problem converges exponentially forward in time to u0. The
existence can be deduced from the existence of a stationary measure; however, it is
instructive to construct it directly, which we now do.

Let un(t) be the solution starting from initial value zero at time −n. From
Lemma 11.1, we know that θ−nun ∈ Bkn for some kn. (θ−n just shifts the path
on [−n,∞) to a path on [0,∞).) In addition, we know that P{kn > n

1
8} ≤

exp(−νε∗
σ2
∗
n

1
8 ). Hence, by the Borel-Cantelli Lemma, there exists an n∗ so that

kn ≤ n
1
8 for all n > n∗. Let n > m > M > n∗, then for M sufficiently large

we have

sup
s∈[−1,0]

|un(s)− um(s)|L2 ≤
n∑

j=m+1

sup
s∈[−1,0]

|uj+1(s)− uj(s)|L2

≤
∞∑

j=M

sup
s∈[−1,0]

|uj+1(s)− uj(s)|L2

≤
∞∑

j=M

|uj+1(−j)|L2 exp(−1

2
γ∗|j − 1|+ |j|

1
8 [1 + log(1 + |j|)])

≤
∞∑

j=M

[E0 + 2|j|
1
8 ] exp(−1

2
γ∗|j − 1|+ |j|

1
8 [1 + log(1 + |j|)])
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Since the last sum is less than C exp(−γM) for some positive constants C and γ,
the sequence is Cauchy and the proof is complete. 2

13. Contractive Nature in the General Setting

We now extract the essential assumptions of the previous section and present them
in an abstract form. The choice of assumptions follows [BM03] which uses ever
so slightly different assumptions, but proves more detailed estimates. In particular,
statements about the continuity of the map Φ are made. (See Theorem 9 of [BM03].)
The treatment is also informed and influenced by [Hai02, Mat02c, EL02].

Assumption 5. Consider the G : X → X from (10). Assume that Assumption 4
holds and that for all ` ∈ X` and h, h̃ ∈ Xh and some ci ≥ 0, and pi ≥ 0, with
c1 > C1(c2 + c3),

〈G(`+ h)−G(`+ h̃), h− h̃〉X ≤
[
− c1 + c2U(`+ h) + c3U(`+ h̃)

] ∣∣∣h− h̃
∣∣∣2
X∣∣∣Π`G(`+ h)− Π`G(`+ h̃)

∣∣∣2
X
≤ c4

[
1 + V (`+ h)p1 + V (`+ h̃)p1

] ∣∣∣h− h̃
∣∣∣p2

X

We give the analog of Theorem 4 and Lemma 8.1 in the general setting of equa-
tion (10). This is a quantitative version of the determining mode result given in
Theorem 4 and will be used to verify Assumption 1.

Lemma 13.1. Let Assumption 5 hold. In particular, γ∗
def
= c1−C1(c2 + c3) > 0. Set

the ε∗ from the definition of An and Bn in (23), so that c1 − C1(c2+c3)
1−ε∗

= 1
2
γ∗ and

define c∗ = c2+c3
1−ε∗

.

1. Fixing a T ∈ (0,∞], let ` ∈ C(0, T ; X`) and h0, h̃0 ∈ Xh and define u(t) =
`(t) + Φη

0,t(`[0,t];h0) and ũ(t) = `(t) + Φη
0,t(`[0,t]; h̃0).

Assume that u ∈ Π[0,T )Bn if c2 > 0 and ũ ∈ Π[0,T )Bn if c3 > 0. Then for all
t ∈ [0, T )∣∣∣Φη

0,t(`[0,t];h0)− Φη
0,t(`[0,t]; h̃0)

∣∣∣2
X
≤
∣∣∣h0 − h̃0

∣∣∣2
X
enc∗(1 + t)nc∗e−

1
2
γ∗t .

2. Fixing a T ∈ (−∞, 0), let ` ∈ C(T, 0; X`) and h0, h̃0 ∈ Xh and define u(t) =
`(t) + Φη

T,t(`[T,t];h0) and ũ(t) = `(t) + Φη
T,t(`[T,t]; h̃0).

Assume that u ∈ Π[T,0]An if c2 > 0 and ũ ∈ Π[T,0]An if c3 > 0. Then for all
t ∈ [T, 0]∣∣∣Φη

T,t(`[T,t];h0)− Φη
T,t(`[T,t]; h̃0)

∣∣∣2
X
≤
∣∣∣h0 − h̃0

∣∣∣2
X
enc∗(1 + |T |)nc∗e−

1
2
γ∗(|T |−|t|) .

This theorem can be restated in terms of solutions to (10).

Corollary 13.2. Let Ω0 ⊂ Ω× Ω and c∗ and γ∗ are as defined in Lemma 13.1.
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1. Let u(t,W ) and ũ(t,W ) be solutions to (10) on C(0, T ; X) with T > 0. If
for (W, W̃ ) ∈ Ω0, one has u(W ), ũ(W̃ ) ∈ Π[0,T ]Bn and ΠhW (s)− ΠhW (T ) =

ΠhW̃ (s)− ΠhW (T ) , Π`u(s,W ) = Π`ũ(s, W̃ ) for s ∈ [0, T ] then∣∣∣u(t,W )− ũ(t, W̃ )
∣∣∣2
X
≤
∣∣∣u(0,W )− ũ(0, W̃ )

∣∣∣2
X
enc∗(1 + t)nc∗e−

1
2
γ∗t .

2. Let u(t,W ) and ũ(t,W ) be solutions to (10) on C(T, 0; X) with T < 0. If
for (W, W̃ ) ∈ Ω0, one has u(W ), ũ(W̃ ) ∈ Π[T,0]An and ΠhW (s) − W (T ) =

ΠhW̃ (s)−W (T ) , Π`u(s,W ) = Π`ũ(s, W̃ ) for s ∈ [T, 0] then∣∣∣u(t,W )− ũ(t, W̃ )
∣∣∣2
X
≤ 2[C1|T |+ n+ n log(1 + |T |)]enc∗×

(1 + |T |)nc∗e−
1
2
γ∗(|T |−|t|) .

Proof of Lemma 13.1 and Corollary 13.2: The proof of the two statements
is almost identical and is simply an abstraction of the ideas in the proof of Theorem
5 given in the last section. We give the details of the first statement.

Let ρ(s) = Φη
0,s(`[0,s];h0)−Φη

0,s(`[0,s]; h̃0), then equation (11) and the assumption
in the lemma and Assumption 5 imply that

1

2

d |ρ(s)|2X
dt

= 〈G(u)−G(ũ), ρ(s)〉X
≤
[
− c1 + c2U(u(s)) + c3U(ũ(s))

]
|ρ(s)|2X .

Since u, ũ ∈ Π[0,T ]Bn, we have

|ρ(t)|2X ≤ |ρ(0)|2X exp
(
−[c1 −

C1(c2 + c3)

1− ε∗
]t+ n

c2 + c3
1− ε∗

(1 + log(1 + t))
)

which proves the first result. The second result is just the same except that the
estimates from An are used. See the proof of Theorem 5. Corollary 13.2 is just a
restatement of the theorem with the added observation that backwards in time the
initial conditions h0 = Πhu(T,W ) and h̃0 = Πhũ(T, W̃ ) can not grow too fast since
the solutions are in An. 2

Using the contractive properties backward in time one can define the limit

lim
t→−∞

Φη
t,0(`;h0)

for any ` which is a projection of a solution u(t,W ) on (−∞, 0]. This limiting
function, denoted Φ(`), is independent of h0 and can be used to reduce the dynamics
to one on X` with memory (i.e. Gibbsian dynamics). See [BM03] discussion of
this in a general setting and [EMS01, EL02] for specific examples. If one endows
C(−∞, 0; X) with the metric |u|r = supt<0

|u(t)|X
1+|t|r , then in many settings Φ(`) is

continuous on the set of solutions u with ` = Π`u. In fact under some simple
assumptions, it is globally Lipschitz on each Bn defined in section 11. In particular,
both of these facts hold for the SNS equation. See [BM03] for more discussion of
this.
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14. Ergodicity: the SNS and the General Setting

We now turn to completing the proof of Theorem 3. All that remains to prove is
the last part of Theorem 3 about the “essentially elliptic” dynamics (the case when
N2
∗ > C E0

ν3 ). We will do so by proving an ergodic theorem in the general setting of
(10) and using the assumptions already introduced.

To prove basic ergodicity in this case, we will use Theorem 6, which along with
Corollary 13.2, contains the essential ideas from [EMS01]. Lemma 11.1 implies
that almost every solution ϕW

[0,∞)u0 is contained in a Bn for some n. This, coupled
with Lemma 13.2, is more than enough to imply Assumption 1 of Section 8.2 with
B = ∪Bn. We need only verify Assumption 2, to prove complete the proof. Since
the author feels that techniques often used to verify the first part of Assumption 2
are suboptimal, we leave it as an assumption for the moment. We will revisit the
question at the end of this section. Hence, we introduce the following assumption.

Assumption 6. For all t > 0 and (`0, h0) ∈ X and almost every η, Qη
t (`0, h0, · ) is

equivalent to Lebesgue measure.

The idea to prove the second part of Assumption 2 is again the idea of localiza-
tion. By restricting ourselves to well behaved paths, we will be able to of obtain
the needed result for a subset of the probability space. By relaxing the restriction,
we can include arbitrarily large subsets of the probability space, implying that the
conclusion holds with probability one. We prove the following result.

Theorem 7. Consider equation (10). Let Assumption 4, 5 and 6 hold. In addition
if σk > 0 for all k with |k| ∈ (0, N∗), where N∗ was used to define the splitting of
equation (10), then the system has at most one invariant measure.

Note: It is worth mentioning that existence of an invariant measure in our setting
is usually straight forward. For instance, if the set {u : V (u) ≤M} is precompact for
all M then the result follows easily by the standard Krylov–Bogoljubov construction
of extracting a convergent subsequence from the empirical measures obtained by
time–averaging. See for instance [CK97] for the SPDE setting or [CFS82] for general
discussions.

We begin the proof of Theorem 7 by proving the analog of Lemma 8.2 from the
discussion of the toy model. In fact, we will only deduce part of it from our existing
assumptions leaving the remainder still as an assumption.

Lemma 14.1. Consider the solution to equation (10) under the assumptions of
Theorem 14.1. For `0 ∈ X` and h0, h̃0 ∈ Xh and almost every η, Qη

[0,∞)(`0, h0, · ) is
equivalent to Qη

[0,∞)(`0, h̃0, · ).

Proof of Lemma 14.1: Again we begin by essentially localizing to a fixed Bn.
However, we need to pick a set of paths in C(0,∞; X`). Fixing `0, h0, h̃0 and η, we
define

B′
n =

{
`[0,∞) : u, ũ ∈ Bn where u(s) = `(s) + Φη

s(`[0,s], h0),

ũ(s) = `(s) + Φη
s(`[0,s], h̃0)

}
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Then for A ⊂ C(0,∞; X`), define

Qη
[0,t](`0, h0, A;B′

n) = P
{
u[0,t] ∈ A; Π`u[0,t] ∈ B′

n

∣∣∣u(0) = (`0, h0)
}

(24)

We now compare Qη
[0,t](`0, h0, · ;B′

n) to Qη
[0,t](`0, h̃0, · ;B′

n). Again we compare the
measure using Lemma A.1 from the appendix. By restricting to B′

n, we ensure that
both u and ũ stay in Bn. Hence, the first part of Lemma 13.1 combined with the
second estimate in Assumption 5 produces

|Π`G(u(t))− Π`G(ũ(t))|2X ≤ c4 [1 + 2(C1t+ n[1 + log(1 + t)])p1 ]×∣∣∣Φη
0,t(Π`u[0,t];h0)− Φη

0,t(Π`u[0,t]; h̃0)
∣∣∣p2

X

where∣∣∣Φη
0,t(Π`u[0,t];h0)− Φη

0,t(Π`u[0,t]; h̃0)
∣∣∣2
X
≤
∣∣∣h0 − h̃0

∣∣∣2
X
enc∗(1 + t)nc∗e−

1
2
γ∗t . (25)

Defining σ2
min = min|k|<N∗ |σk|2, the previous two estimates imply that∫ ∞

0

1

σ2
min

|Π`G(u(t))− Π`G(ũ(t))|2X dt < D∗ <∞ (26)

for some D∗ uniformly on B′
n. Using Lemma A.1, we conclude that Qη

t (`0, h0, · ;B′
n)

is equivalent to Qη
t (`0, h̃0, · ;B′

n). As in the previous part, since both u and ũ
are in ∪Bn with probability one, we conclude that Qη

t (`0, h0, · ) is equivalent to
Qη

t (`0, h̃0, · ).
Looking back on the above proof, we seen that there was a great deal of unifor-

mity in the estimates. When comparing Qη
[0,t](`0, h0, · ;B′

n) to Qη
[0,t](`0, h̃0, · ;B′

n),
we see that for all (`0, h0), (`, h̃0) in a bounded ball, we can choose the same D∗.
From Lemma A.1 in the appendix, we get the following result

Lemma 14.2. For any M , there exists a D∗ so that if |`0 + h0|X ,
∣∣∣`0 + h̃0

∣∣∣
X
≤ M

then

E

[
dQη

[0,t](`0, h0, · ;B′
n)

dQη
[0,t](`0, h̃0, · ;B′

n)

]p

≤ Dp(p−1)
∗

for all p > 0.

Conclusion of the Proof of Theorem 7: In light of Lemma 14.1 and 13.1
the result follows from Theorem 6. 2

We now address Assumption 6. In the case of the stochastic Navier Stokes
equations it is implied without further assumptions by the techniques used to prove
Theorem 10 from section 17 since all of the directions in X` are directly forced. (The-
orem 10 does not address the question of the marginal with respect to η. However
Theorem 10 follows from the fact that the Malliavin covariance matrix restricted
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to X` is almost surely invertible. This does imply the result for the marginals. See
[MP03].)

The same techniques should apply to most SPDEs of interest with additive noise.
However, since an abstract version of the techniques in [MP03] is not written, we
refrain from making any claims. There is however another approach. Though it is
rather adhoc and in the author’s opinion and “not the correct way,” it is sufficient in
many contexts. The basic idea is to compare the measures induced on C(0, t; X`) by
the process of interest and some well understood process both starting from the same
point. This is done using Girsonov’s theorem. Then the time t marginals of the well
understood process starting from two different points are compared. By stringing
the estimates together and making some additional assumptions needed to control
the “high” modes in equation (8), one can prove Assumption 6. A particularly
simple version of this was done in the toy model of the previous section. For more
complicated versions see [EMS01, EL02, Mat02c, BM03]. [BM03] has a relatively
crisp version of the argument.

15. Exponential Mixing and Coupling

In this section, we expand the simple uniqueness results, given earlier in the paper,
by giving a rate of convergence. The proof will be based on a coupling argument
and is closer in packaging to the author’s first proof of basic ergodicity which were
presented in seminar talks1. We will measure the rate of convergence of (10) using
the following metric. For any two measures µ1 and µ2 on X define

‖µ1 − µ2‖∗ = sup
φ∈G∗

∫
φ(x)µ1(dx)−

∫
φ(x)µ2(dx)

where G∗ is the set of all measureable functions φ : X → R with |φ(u)| ≤ 1 for all
u ∈ X and |φ(`+ h)− φ(`+ h̃)| ≤

∣∣h− h̃∣∣X for all ` ∈ X` and h, h̃ ∈ Xh. Notice that
the ‖ · ‖∗ norm dominates the Wasserstein or Kantorovich distance for measures
but is weaker than the total variation norm. In the definition of G∗, we could have
also used test function which were Lipα on Xh, with α > 0, and all of the theorems
below would still hold.

Now we make the following assumption which is a more qualitative version of
Assumption 6. It amounts to continuity in the initial condition of the density
induced on X` at time t.

Assumption 7. Fix any t > 0. For any M0, there exist positive a δ and Ω′ ⊂ ΠhΩ
so P(η ∈ Ω′) > δ and for any η ∈ Ω′ and u

(i)
0 ∈ X, i = 1, 2, with V (u

(i)
0 ) ≤ M0 we

have 1
2
‖Qη

t (u
(1)
0 , · )−Qη

t (u
(2)
0 , · )‖TV < 1− δ .

See Appendix B for the definition of ‖ · ‖TV which may differ by a factor of 2
from some definitions. Again this estimate can be obtained in a number of ways. For
the SNS it was obtained by comparing, in a quantitative fashion, the total variation
distance between the time t marginals and well controlled reference process (either

1Stanford and Berkeley probability seminars November and December 1999.
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Brownian motion or the SDE on X` obtained from the Galerkin truncation of the
SNS). However the author feels that this is not the optimal fashion to proceed. It
would be better to use the flow property and the calculations from [MP03] to verify
this estimate. Since the assumption has only been verified in specific cases, we leave
it as an assumption.

Letting Pt(u0, A) = P{u(t) ∈ A|u(0) = u0} where A ⊂ X, we have the following
result whose proof give in the sections which follow. Stronger results using norms
allowing test functions which grow are also possible by the methods presented here.
Corollary 15.1 at the end of the section gives a simple, suboptimal example. See
[MT93] or [MSH02] for examples to the type of stronger statements which should
be possible. However [MT93, MSH02] does not apply to our setting.

Theorem 8. If Assumption 4, 5 and 7 hold, then there exists fixed positive constants
K and γ so for all u(i)

0 ∈ X (possibly random, but adapted to the filtration at time
zero) (see notes below.)

‖Pt(u
(1)
0 , · )− Pt(u

(1)
0 , · )‖∗ ≤ K

[
1 + EV (u

(1)
0 ) + EV (u

(2)
0 )
]
e−γt

We give the proof of this theorem in the next sections. In [Mat02c] a general
theorem, ensuring exponential mixing in a wide class of problems, was given and the
conditions were verified for the SNS. However, given the estimates of the previous
section the exact same analysis applies to equation (10) when η = ΠhW = 0. In that
paper, the case η = ΠhW 6= 0 was discussed in another setting. A straight forward
modification of the techniques from that paper yields the extension to η = ΠhW 6= 0.
Kuksin and Shirikyan were the first to consider exponential mixing for the SNS in
the case when η 6= 0 [KS02]; however, their norm is slightly weaker. The norm we
give here gives total variation convergence on a subset of the space which dictates the
asymptotic behavior, namely X`. This allows on to use standard mixing results to
get law of large numbers, central limit theorems, and other results. With additional
work this also possible directly in the framework of [KS02] or [Hai02]. See [Shi02]

In [Mat02c], the case η 6= 0 was considered in a simple map example and we see
here that those ideas extend to the SPDE context. In [BKL02], exponential con-
vergence was proven but without the explicit dependence on the initial condition.
That paper along with [Mat02c] were the first proofs of exponential convergence
of the SNS with white in time forcing. In the kicked case exponential convergence
was given in [MY02, KPS02]. The first of these also considers the the case where
the system is strongly dissipative as in Theorem 5. In [Hai02], exponential conver-
gence for a reaction diffusion equation was proved by bringing the paths together
asymptotically using a coupling construction inspired by [Mat02c]. (Both [Mat02c]
and [BKL02] were delayed considerable in the review process, and hence, [Hai02]
appeared first.)

To state a slightly stronger result, for any weighing function R : X → [0,∞)
define ‖µ1 − µ2‖R∗ = supφ∈GR∗

∫
φ(x)µ1(dx) −

∫
φ(x)µ2(dx) where GR∗ is the set

of all measureable functions φ : X → R with |φ(u)| ≤ R(u) for all u ∈ X and
|φ(`+h)−φ(`+ h̃)| ≤

[
1+R(`+h)+R(`+ h̃)

] ∣∣∣h− h̃
∣∣∣
X

for all ` ∈ X` and h, h̃ ∈ Xh.
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Corollary 15.1. In the same setting as Theorem 8, for any 1
q
+ 1

p
= 1 with q, p > 1

‖Pt(u
(1)
0 , · )− Pt(u

(1)
0 , · )‖R∗ ≤ [1 + (ER(u(t))q)

1
q + (ER(ũ(t))q)

1
q ]×

K ′[1 + EV (u
(1)
0 ) + EV (u

(2)
0 )
] 1

p e−γ′t

where γ′ and K ′ are positive constants depending on p and q.

Notice that if R(x) = V (x) then the assumptions of the corollary are satisfied
and EV (u(t))q ≤ K ′′[1 + EV (u0)

q] for some K ′′ as V q is also a Lyapunov function.
This Lemma is suboptimal as the right hand side does not scale linearly in V (u0) so
a convenient operator norm is not induced. See [MSH02] for ideas, from the Markov
setting, which likely could overcome this difficnency.

15.1. Deconstruction and Reconstruction

We begin with an overview of the coupling construction. The idea is to factor the
measure induced on C(0,∞; X`) starting from u0 and ũ0 and build a process on
C(0,∞; X)× C(0,∞; X) so that the marginals are distributed as a process started
from u0 and ũ0 respectively and so that Π`u(t) = Π`ũ(t) with positive probability.
There is the added complication that we need to also have the processes use the
same realization of η = ΠhW and that we need to localize the trajectories to the
nicely growing and averaging paths so that Πhu(t)−Πhũ(t) will converge to zero at
a controlled rate. We begin with the localization.

The Bn defined in section 11 were sufficient for localizing to prove uniqueness.
They also showed how typical paths stayed in a logarithmic envelope about the
average behavior. However the probability from deviating from a given Bn after
time t decays slowly. To prove exponential convergence, we now localize with sets
from which it becomes exponentially unlikely to deviate over time. For positive M
define

B(M) =
{
u ∈ C(0,∞; X) : V (u(t)) + (1− ε∗)

∫ t

0

U(u(s))ds− V (u0)

≤M + C1(1 + ε∗)t for all t ≥ 0
}

(27)

The constant ε∗ is chosen so that c1 − 1+ε∗
1−ε∗

C1(c2 + c3) = 1
2
γ∗. Recall that γ∗ =

c1 − C1(c2 + c3) was assumed positive. Clearly P{u ∈ ∪∞M=1B(M)} = 1 and
(22), P{u[0,t] ∈ Π[0,t]B(M);u 6∈ B(M)} decays exponential in t. Furthermore
given the choice ε∗, Lemma 13.1 (part one) holds with Bn replaced with B(M)
and different constants on the right hand side of the decay estimate. Precisely, if
u

(i)
[0,T ) ∈ Π[0,T )B(M) (i = 1, 2) where u(i)(t) = `(t)+Φη

0,t(`[0,t];h
(i)
0 ) then for t ∈ (0, T ]∣∣∣Φη

0,t(`[0,t];h
(1)
0 )− Φη

0,t(`[0,t];h
(2)
0 )
∣∣∣2
X
≤
∣∣∣h(1)

0 − h
(2)
0

∣∣∣2
X
eMe−

1
2
γ∗t . (28)
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Fix some M . For every (u
(1)
0 , u

(2)
0 , η) ∈ X× X× ΠhΩ, we define

B̄[0,n](u
(1)
0 , u

(2)
0 , η) =

{
`[0,n] ∈ Π`X[0,n] : u

(i)
[1,n] ∈ Π[0,n−1)B(M),

∣∣u(i)(1)
∣∣2
X ≤M

where u(i)(s) = `(s) + Φη
s(`[0,s],Πhu

(i)
0 )
}

and define for A ⊂ Π`X[0,n−1) the measure

Qη
[1,n](u0, A; B̄[0,n]) = P

{
Π`u[1,n] ∈ A and Π`u[0,n] ∈ B̄[0,n]

∣∣u(0) = u0,Fη
[0,n]

}
= E{1A(Π`u[1,n])1B̄[0,n]

(Π`u[0,n])|u(0) = u0,Fη
[0,n]}.

where B̄[0,n] = B̄[0,n](u
(1)
0 , u

(2)
0 , η). Hence Qη

[1,n](u0, A; B̄[0,n]) is the measure of paths
so that Π`u[0,n] ∈ B̄[0,n] and Π`u[1,n] ∈ A if one conditions to start from u0 and use
noise realizations W so Π`W = η. Of course, it is not a probability measure as it
does not have total mass one.

Given any two measures µ1 and µ2, one can always write them as a density
against a common third measure. That is µi(dx) = fi(x)µ3(dx) for i = 1, 2. We
define the measures µ1 ∧ µ2 and µ1 − µ2 respectively by the densities (f1(x) ∧
f2(x))µ3(dx) and (f1(x) − f2(x))µ3(dx). It is easy to see that this definition is
independent of the choice of µ3. If µ1 does not dominate µ2 for all measurable sets
then the second measure is a signed measure. See Appendix B more explination
and the realtion to the total variation norm, which we denote by ‖ · ‖TV .

With this notation define

Ψη
n(u

(1)
0 , u

(2)
0 , · ) = Qη

[1,n)(u
(1)
0 , · ; B̄[0,n)) ∧Qη

[1,n)(u
(2)
0 , · ; B̄[0,n))

where again B̄[0,n) = B̄[0,n)(u
(1)
0 , u

(2)
0 , η). Next for A ⊆ X[0,n) and ` ∈ Π`X[0,n−1)

define

Hη
n(u0, A|`) = P{u[0,n) ∈ A|u(0) = u0,Π`u[1,n) = `[0,n−1),Fη

[0,n)}.

In words Hη
n(u0, · |`) is the measure induced on X[0,n) by paths u[0,n) conditioned to

start at u0, use noise realization η, and such that u(s+ 1) = `(s) for s ∈ [0, n− 1).
Next we define the two families of measures rn and sn, n ∈ {1, 2, . . . ,∞}, which

will be critical in our construction. They will both be measures on Π`X[0,n) ×
Π`X[0,n) × ΠhΩ[0,n) with n ∈ {1, 2, . . . ,∞}. In general, we will use bold letters to
denote measures on such spaces and capital bold letters for probability measures on
such spaces. Define

sn(u0, ũ0, du× dũ× dη)

=

∫
Π`X[0,n−1)

[Hη
n(u0, du|`)×Hη

n(ũ0, dũ|`)]Ψη
n(u0, ũ0, d`)× P(dη)

and

rn+1(u0, ũ0, du× dũ× dη) =
[
P1sn − sn+1

]
(u0, ũ0, du× dũ× dη).
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Here P1sn is the measure on Π`X[0,n+1) × Π`X[0,n+1) × ΠhΩ[0,n+1) obtained by first
stepping with sn and then with

Pn(u0, ũ0, du[0,n) × dũ[0,n) × dη[0,n)) = P η
[0,n)(u0, du[0,n))× P η

[0,n)(ũ0dũ[0,n))× P(dη[0,n))

where for A ⊂ X[0,n) and P η
[0,n)(u0, A) = P

{
u[0,n) ∈ A

∣∣u(0) = u0,Fη
[0,n)

}
. That is to

say,

P1sn(u0, ũ0, du[0,n+1)× dũ[0,n+1)× dη[0,n+1)) = sn(u0, ũ0, du[0,n)× dũ[0,n)× dη[0,n))×
P1(u(n), ũ(n), du[n,n+1) × du[n,n+1) × dη[n,n+1)).

Define r1(u0, ũ0, · ) = P1(u0, ũ0, · ) − s1(u0, ũ0, · ). Since P1sn(u0, ũ0, A) ≥
sn+1(u0, ũ0, A) by construction for all measurable sets A, rn is a standard measure
and not a signed measure. Lastly, we define

ρn(u0, ũ0) = sn(u0, ũ0,X[0,n) × X[0,n) × ΠhΩ[0,n))

for n > 0 (including n = ∞) and ρ0 = 1 and the probability transition kernels

Sn(u0, ũ0, · ) =
sn(u0, ũ0, · )

ρn(u0, ũ0)
Rn(u0, ũ0, · ) =

rn(u0, ũ0, · )

ρn−1(u0, ũ0)− ρn(u0, ũ0)
.

If the denominator is zero in either of the above definitions, we set the corresponding
measure to the zero measure. Observe that

ρn(u0, ũ0) =EΨη
n(u0, ũ0,Π`X[0,n−1))

=1− 1

2
E‖Qη

[1,n)(u0, · ; B̄[0,n))−Qη
[1,n)(ũ0, · ; B̄[0,n))‖TV > 0,

where B̄[0,n) = B̄[0,n)(u0, ũ0, η). This holds even for n = ∞, since for all n the
measures are absolutely continuous for almost every η. This can be seen by the
same calculations as in the proof of Lemma 14.1 coupled will Lemma 8.3. Also
observe that ρn(u0, ũ0) ≥ ρn+1(u0, ũ0). Thus, we have

1 = ρ0 ≥ ρ1 ≥ · · · ≥ ρ∞

For all M sufficiently large, we will see in Lemma 15.2 that ρ∞(u0, ũ0) > 0 for all
u0, ũ0 with V (u0), V (ũ0) ≤M0.

From the properties of sn and rn, one had P1(u0, ũ0, · ) = s1(u0, ũ0, · ) +
r1(u0, ũ0, · ) and

P2
M
= P1s1 + P1r1

M
= s2 + [P1s1 − s2] + r1

M
= s2 + r2 + r1

where we have suppressed the dependence of the kernels on the initial conditions u0

and ũ0. By M
= we mean that the two measures have the same relevant marginals.

More precisely if we consider the kernel at the point (u0, ũ0), the joint distribution
of the first and last coordinate of both sides is P η

[0,2)(u0, · ) × P(dη) and the joint
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distribution of the second and last coordinate of both sides is P η
[0,2)(ũ0, · )× P(dη).

Continuing along this line and normalizing the measures to probability measures,
produces the following version of the factoring lemma from [Mat02c].

P∞(u0, ũ0, · )
M
= ρ∞S∞ +

∞∑
n=1

[ρn−1 − ρn]P∞Rn (29)

where P∞Rn is analogous to P1sn from above. On the right hands side we have
suppressed the dependence on u0 and ũ0 in the interest of space. That is S∞ =
S∞(u0, ũ0, · ), ρn−1 = ρn−1(u0, ũ0) and so forth.

Such a factorization of the futures was also fundamental to the results in [Hai02].
Since the project of this measure onto the first and last coordinate of both sides
equals P η

[0,∞)(u0, · )×P(dη[0,∞)) and the projection on the second and last coordinate
of both sides is P η

[0,∞)(ũ0, · )×P(dη[0,∞)), we have built a representation of two copies
of the process which both use the same η. The first is distributed as a solution
starting from u0 and the second as a solution starting from ũ0. This representation
has the the following importantly feature. There exists a set A ⊂ X[0,∞) × X[0,∞) ×
ΠhΩ[0,∞) so that S∞(A) = 1 and if (u, ũ, η) ∈ A then Π`u(s) = Π`ũ(s) for all s ≥ 1,
u[1,∞), ũ[1,∞) ∈ B(M), and u, ũ are solutions for some noise realizations W and W̃ so
ΠhW = ΠhW̃ . These are precisely the conditions needed to apply the contractive
estimates from section 13.

This factorization states that drawing from P∞ is equivalent, as far as either
u(t) or ũ(t), is concerned, to drawing from S∞ with probability ρ∞ and P∞Rn with
probability ρn−1−ρn. Of course, we have built in useful correlations between the two
processes. Also notice that P∞ appears on the left hand side, so the factorization
can be iterated.

15.2. Estimates on the ρ’s

The following estimates on the ρ are the principle information needed to prove the
exponential mixing, other that the Lyapunov structure which will be described in
the next section. The first estimate is enough to imply mixing. The fact that the
spacing between the ρ’s decays exponentially, combined with the exponential tails
of the return time to the set C defined in the following section, give the exponential
mixing rate.

Lemma 15.2. In the setting of Theorem 8, let B(M) be the set used to define B̄[0,n)

in the previous section. For any M0 > 0 the following estimates hold for all M large
enough:

1. There exists a positive constant ρ∗∞, depending on M and M0, so that

inf
u
(i)
0 :V (u

(i)
0 )≤M0

ρ∞(u
(1)
0 , u

(2)
0 ) ≥ ρ∗∞ > 0

2. There exist positive constants K1 and γ1, also depending on M and M0, so
that for all u(i)

0 , i = 1, 2 with V (u
(i)
0 ) ≤M0,

ρn(u
(1)
0 , u

(2)
0 )− ρn+1(u

(1)
0 , u

(2)
0 ) ≤ K1 exp(−γ1n).
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The proof of this lemma will be given in section 15.7 .

15.3. Consequences of the Lyapunov Structure

We now make a modification in the presentation relative to [Mat02c] which is greater
than notational (but still mainly cosmetics). We want to iterate the expansion (29).
However we will only have nice control over the ρn’s for u0, ũ0 in a particular subset
of the phase space. Hence, we modify the expansion to include the steps needed to
return to this subset.

As already mentioned under Assumption 4, a lemma analogous to Lemma 10.1
holds for the Lyapunov function V . From this it is straight forward that there
exists an α ∈ (0, 1) so that E{V (u(t+ 1))|Ft} ≤ αV (u(t)) +C1. Hence, if we define
V(u, ũ) = V (u) + V (ũ) then

E{V(u(t+ 1), ũ(t+ 1))|Ft} ≤ αV(u(t), ũ(t)) + 2C1.

We define the set C = {(u, ũ) : V(u, ũ) ≤ 4C1

α
} and the stopping time

τC = inf{s ≥ 0 : s ∈ N; (u(s), ũ(s)) ∈ C}.

Lastly set M0 = 4C1

α
and fix M , from the previous two sections so the conclusions

of Lemma 15.2 hold. The importance of this choice of M0 and hence the definition
of C are given by the following result.

Lemma 15.3. Under Assumption 4, P{τC(u0, ũ0) > n} ≥ K0γ
n
0 V(u0, ũ0) for any

γ0 ∈ (α, 1) and some positive K0 = K0(γ).

Proof of Lemma 15.3: This result can be found many places. See for instance
Lemma 11.3.9 of [MT93], Lemma 9.3 of [MSH02] or in the continuous time setting
and in the context of the SNS Lemma 3.2 [EM01]. 2

15.4. Coupling: A New Representation of the Process

We will define a new presentation of the chain using the factorization (29). First
however, we modify the factorization slightly. In light of the previous section, the
process (u(t), ũ(t)) returns to the set C infinitely often at integer times almost surely.
Let P∗(u0, ũ0, · ) be the distribution of (u[0,τC ], ũ[0,τC ], η[0,τC ]) where (u(0), ũ(0)) =
(u0, ũ0). Then P∗(u(0), ũ(0), · ) is a probability measure on χ where

χ =
∞⋃

k=0

X[0,k] × X[0,k] × ΠhΩ[0,k] .

The case k = 0 is added to cover the situation when (u0, ũ0) ∈ C already. Since we
only want to use the previous factorization for (u0, ũ0) ∈ C, we redefine ρn(u0, ũ0) =
0 for (u0, ũ0) 6∈ C and set Sn equal to the null measure for (u0, ũ0) 6∈ C. Hence
for (u0, ũ0) 6∈ C, r1 = P1 and all other rn are then the null measure. The result is
that for (u0, ũ0) 6= C, the chain takes a step of length one with u and ũ stepping
independently.
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Returning to the general case (u0, ũ0) ∈ X × X. Defining Rn∗ = P∗Rn, the
factorization (29) can be rewritten

P∞(u0, ũ0, · )
M
= ρ∞S∞ + [1− ρ∞]

∞∑
n=1

[ρn−1 − ρn]

1− ρ∞
P∞Rn∗. (30)

Again we have suppressed the dependence of the right hand side on the initial
conditions. Defining

R∞∗(u0, ũ0, · ) =
∞∑

n=1

[ρn−1(u0, ũ0)− ρn(u0, ũ0)]

1− ρ∞(u0, ũ0)
Rn∗(u0, ũ0, · ), (31)

we consider the chain Xn = (xn, x̃n, ηn) on the state space χ̄ = χ∪
(
X[0,k∞)×X[0,∞)×

ΠhΩ[0,∞)

)
given by taking steps from probability transition kernel

ρ∞(u0, ũ0)S∞(u0, ũ0, · ) + [1− ρ∞(u0, ũ0)]R∞∗(u0, ũ0, · ) . (32)

We define

tn =
n−1∑
k=1

|xk| =
n−1∑
k=1

|x̃k|

where |xk| is the length of the trajectory segment xk. tn is the time passed in the
physical PDE setting after n steps of the chain have passed. Since the chain adds
segments of random length on each step, tn is a random quantity. Similarly asso-
ciated to Xn is a trajectory (u(t), ũ(t)) of the SPDE. It is defined by (u(t), ũ(t)) =(
xn(t− tn), x̃n(t− tn)

)
where tn is the unique tk such that tk ≤ t ≤ tk + |xk|. We will

use both notations depending on which is the most convenient. We are, of course,
only interested in Xn through the step when |xn| = ∞. This happens the first time
a segment is drawn from S∞. For reasons that will be clear, if they are not already,
we refer to this as the “coupling time.” We define the stopping time

τ = inf{n : |xn| = ∞}. (33)

We pause for a second to notice some of the properties of the chain we have
built. On the first step if (u(0), ũ(0)) 6∈ C, it takes one step, adding a piece of
trajectory of variable, integer length according to P∗(u(0), ũ(0), · ). Hence, at the
end of this step, the system is in C. Henceforward each step starts and ends in
C. With probability 1 − ρ∞ the chain draws from R∞∗. Each of these paths is
of finite length. Their statistics are discussed below. With probability ρ∞ a path
of infinite length is drawn from S∞. After one unit of time, paths draw from S∞
are, by construction, contained in B(M). In addition by construction, they have
norm at time one less than M , use the same η increments, and agree on X` for
t ≥ 1. Since at time one the norm is less than M , we have an a priori bound to the
separation in the high modes. Thus, if (v, ṽ, η) is drawn according to S∞, then from
(28), |v(t)− ṽ(t)|X = |Πhv(t)− Πhṽ(t)|X ≤MeM exp(−1

2
γ∗t).
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15.5. The Heart of the Convergence Result

We now show how the previous two sections quickly give the needed estimates to
prove Theorem 8. For φ ∈ G∗ one has

Eφ(u(t))− φ(ũ(t)) = E[φ(u(t))− φ(ũ(t))][1tτ > t
2

+ 1tτ≤ t
2
]

≤ 2P{tτ >
t

2
}+MeM exp(−1

4
γ∗t). (34)

The first term in the estimate follows from φ(u(t)) − φ(ũ(t)) < 2 and E1tτ >t/2 =
P{tτ > t/2}. The second term follows because for t > 2tτ the system has been
following a trajectory drawn from S∞ for at least t/2 units of time. Hence,

|Πhu(t)− Πhũ(t)|X ≤MeM exp(−1

2
γ∗
t

2
)

as noted in the previous paragraph. Next observe that tτ (u0, ũ0) = τC(u0, ũ0) +
tτ (uτC

, ũτC
) where tτ (u0, ũ0) and tτ (uτC

, ũτC
) means the stopping time starting from

initial conditions (u0, ũ0) and (uτC
, ũτC

) respectively. Hence,

P(tτ (u0, ũ0) > n) ≤ P(τC(u0, ũ0) >
n

2
) + sup

(u′0,ũ′0)∈C

P(tτ (u
′
0, ũ

′
0) >

n

2
) . (35)

We know from Lemma 15.3 that P(τC(u0, ũ0) >
n
2
) is exponentially decaying in n

with a constant which scales linearly with V(u0, ũ0). Hence, Theorem 8 would be
proven. If we show that sup P(tτ (u

′
0, ũ

′
0) >

n
2
) decays exponentially in n. This is

done in the next section.
The proof of Corollary 15.1 follows from similar reasoning.

Eφ(u(t))− φ(ũ(t)) = E[φ(u(t))− φ(ũ(t))][1tτ > t
2

+ 1tτ≤ t
2
]

≤ ER(u(t))1tτ > t
2

+ ER(ũ(t))1tτ > t
2

+MeM exp(−1

4
γ∗t)[1 + ER(u(t)) + ER(ũ(t))]

≤
[
(E(R(u(t))q))

1
q + (E(R(ũ(t))q))

1
q
][

P{tτ >
t

2
}
] 1

p

+MeM exp(−1

4
γ∗t)[1 + (ER(u(t))q)

1
q + (ER(ũ(t))q)

1
q ].

Hence and exponential bound on P{tτ > t
2
} will also complete the proof of the

Corollary.

15.6. Moments of the Coupling Time

We now complete the proof of Theorem 8 by providing exponential control of the
moments of tτ . The missing pieces are the following lemma, which we will proven
at the end of this section and some estimates on the ρ’s given in the next section.

Lemma 15.4. There exist positive constants γ2 and K2 so that for all (u0, ũ0) ∈ C,
E exp(γ2|R∞∗(u0, ũ0)|) ≤ exp(K2). Where |R∞∗(u0, ũ0)| is the random variable
distributed as the length of a segment drawn from R∞∗(u0, ũ0, · ).
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Using this lemma we quickly finish the proof of Theorem 8. For any a ∈ (0, 1)
and (u0, ũ0) ∈ C

P{tτ (u0, ũ0) > n} =P{tτ > n; τ > an}+ P{tτ > n; τ ≤ an}
≤P{τ > an}+ P{tτ > n; τ ≤ an}
≤(1− ρ∗∞)banc + e−(γ2−K2a)n (36)

where γ2 and K2 are the constants from Lemma 15.4 and ρ∗∞ from Lemma 15.2.
The first estimate follows because on each step of the chain there is at least a ρ∗∞
chance of drawing from S∞. Accepting the second estimate for a moment, choosing
any a ∈ (0, 1 ∧ γ2

K2
) gives exponential decay and completes the proof.

To see the second estimate, observe that from Lemma 15.4 and the fact that
(u0, ũ0) ∈ C, E exp(γ2

∑an
k=1 |xk|) ≤ exp(anK2). Hence one has

P{tτ > n; τ ≤ an} ≤ P{
an∑

k=1

|xk| > n; } ≤ e−(γ2−K2a)n

Proof: Proof of Lemma 15.4 Let |Rn∗| be the random variable distributed as the
length of a trajectory drawn from Rn∗(u0, ũ0, · ). In what follows, we suppress the
dependence on the initial conditions (u0, ũ0) of the ρ’s and the transition kernels as
we always consider the same initial conditions.

Define the random variable ζ as follows by

ζ = k with probability for k ∈ {1, 2, . . . }ρk−1 − ρk

1− ρ∞
.

Then |R∞∗| is distributed as |Rζ∗|. Hence, we have

P{|R∞∗| > n} = P{|Rζ∗| > n; ζ >
n

2
}+ P{|Rζ∗| > n; ζ ≤ n

2
}

≤ P{ζ > n

2
}+ P{|Rζ∗| > n; ζ ≤ n

2
}.

The first term decays exponentially by the second part of Lemma 15.2. This leaves
only the last term.

P{|Rζ∗| > n; ζ ≤ n

2
} ≤

n
2∑

k=1

P{|Rk∗| > n}ρk−1 − ρk

1− ρ∞

Notice that |Rk∗| is k plus the time to return to C starting from (u(k), ũ(k)). Using
Lemma 15.3 and that by definition [ρk−1 − ρk]Rk = rk produces

P{|Rζ∗| > n; ζ ≤ n

2
}

≤ 1

1− ρ∞

n
2∑

k=1

∫
P {τC(u(k), ũ(k)) > n− k}Rk(du,dũ)[ρk−1 − ρk]

≤ K

1− ρ∞

n
2∑

k=1

γn−k

∫
V(u(k), ũ(k))rk(u0, ũ0, du[0,k), dũ[0,k)).
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By the definition of rk one sees that for any measurable set A, Pk(u0, ũ0, A) ≥
rk(u0, ũ0, A). Since V is positive, we have∫

V(u(k), ũ(k))rk(du[0,k), dũ[0,k)) ≤
∫

V(u(k), ũ(k))Pk(du[0,k), dũ[0,k))

= E
{
V(u(k), ũ(k))

∣∣(u(0), ũ(0)) = (u0, ũ0)
}

≤ K ′′ since (u0, ũ0) ∈ C.

The uniform bound on the integral used to obtain the last estimate comes from a
lemma controlling V completely analogous to Lemma 10.1 about the energy of the
SNS. It can be found in many places. It is simply integrating up the Lyapunov
estimate in time. See for instance Lemma 9.3 of [MSH02] or Lemma 11.3.9 of
[MT93]. Continuing, one has

P{|Rζ∗| > n; ζ ≤ n

2
} ≤ K ′

1− ρ∞

n
2∑

k=1

γn−k
0 ≤ K ′

1− ρ∞
γ

n
2
0

2

15.7. Proof of Lemma 15.2

Proof of Lemma 15.2: The details of a similar argument are on page 452 of
[Mat02c]. We begin with the first statement. For any M > 0 and A ⊂ X`, define

Qη
t (u0, A;M) = P(Π`u(t) ∈ A;V (u(t)) ≤M |u(0) = u0,Fη

[0,t])

= E{1A(Π`u(t))1V (u(t))≤M |u(0) = u0,Fη
[0,t]}.

Since supu0:V (u0)≤M0
E{V (u(t))} <∞, for all M sufficiently large one has

inf
u0:V (u0)≤M0

P{V (u(t)) < M
1
2} > 1− δ/10.

Hence there exist a Ω′′ ⊂ Ω′ so P(η ∈ Ω′′) > δ/2 and for all η ∈ Ω′′ and u(i)
0 ∈ X, i =

1, 2, with V (u
(i)
0 ) ≤M0, one has ‖Qη

t (u
(1)
0 , · ;M

1
2 )−Qη

t (u
(2)
0 , · ;M

1
2 )‖TV < 1− δ/2.

Now define Γη(u0, ũ0, · ) = Qη
[0,∞)(u0, · ;u ∈ B(M))∧Qη

[0,∞)(ũ0, · ;u ∈ B(M)).
Then

ρ∞(u0, ũ0) ≥
δ2

4
inf

u0,ũ0∈X,Π`u0=Π`ũ0

V (u0),V (ũ0)≤M
1
2

EΓη(u0, ũ0,Π`X[0,∞) × Π`X[0,∞) × Π`Ω[0,∞))

Since (28) holds in this setting, the exact same calculations as in the proof of the
second half of Lemma 14.1 hold producing an estimate identical to Lemma 14.2
with B′

n replaced by {u ∈ B(M)} and valid for u0, ũ0 with V (u0), V (ũ0) ≤ M
1
2 .

Combining this estimate with Lemma B.1, we obtain for any p > 1

inf
u0,ũ0∈X,Π`u0=Π`ũ0

V (u0),V (ũ0)≤M
1
2

EΓη(u0, ũ0,Π`X[0,∞) × Π`X[0,∞) × Π`Ω[0,∞)) ≥
[
1− 1

p

]
C(M)

p
p−1

p
1

p−1Dp
∗
.
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where C(M) = inf
u0:V (u0)≤M

1
2

EQη
[0,∞)(u0,Π`X[0,∞)×Π`X[0,∞)×Π`Ω[0,∞);u ∈ B(M))

and D∗ is the constant defined analogously to (26).
Notice that

EQη
[0,∞)(u0,Π`X[0,∞) × Π`X[0,∞);u ∈ B(M)) = P{u[0,∞) ∈ B(M)|u(0) = u0}.

Hence for M sufficiently large, for all u0 with V (u0) ≤ M
1
2 there exists a set Ω′′′

0 ⊂
Π`Ω so that P(η ∈ Ω′′′

0 ) > 1−δ/100 and for all η ∈ Ω′′′
0 P η

[0,∞)(u0, B(M)) > 1−δ/100.
Hence C(M) ≥ (1− δ/100)2. This completes the first claim.

Now consider the second claim. Setting Yn = Π`X[0,n) × Π`X[0,n) × Π`Ω[0,n),
notice that ρn−1(u0, ũ0) − ρn(u0, ũ0) = rn(u0, ũ0,Yn) = [P1sn−1 − sn](u0, ũ0,Yn).
From this we see that ρn−1 − ρn is the probability of drawing from sn−1 but not
from sn. There are two ways this can happen. First the trajectory can leave the
set B(M) between time n − 1 and n. This probability is exponentially small in
n by the construction of B(M) and the estimate in (27). The second way is to
draw from the part of distribution contained in B(M) between time n − 1 and
n but not in the common part of the two Qη distributions. Over [0, n − 1] tra-
jectories (u, ũ, η) are drawn from sn−1. Hence almost every trajectory has the
properties that Π`u[1,n−1] = Π`ũ[1,n−1] and both are in Π[0,n−1]B(M). The contrac-
tive property derived analogously to (25) then implies, |u(n− 1)− ũ(n− 1)|X ≤
MeMe−

1
2
γ∗(n−1). Let B̄[n−1,n](u[0,n−1), ũ[0,n−1), η[0,n−1)) be the paths in Π`X[n−1,n] ×

Π`X[n−1,n] × Π`Ω[n−1,n] so that when added to (u[0,n−1], ũ[0,n−1], η[0,n−1]) the result-
ing path (u[0,n], ũ[0,n], η[0,n]) is such that u[0,n], ũ[0,n] ∈ Π[0,n]B(M). (As before the
part of the trajectory in ΠhX[n−1,n] has to be reconstructed with the aid of Φ.)
Hence Qη

[0,1](u(n− 1), · ; B̄[n−1,n]) and Qη
[0,1](ũ(n− 1), · ; B̄[n−1,n]) where B̄[n−1,n] =

B̄[n−1,n](u[0,n−1], ũ[0,n−1], η[0,n−1]), are the two distributions which will be used to draw
the next unit length step. Thus the term we need to control is

1

2
E‖Qη

[0,1](u(n− 1), · ; B̄[n−1,n])−Qη
[0,1](ũ(n− 1), · ; B̄[n−1,n])‖TV

≤ E

E


[
dQη

[0,1](u(n− 1), · )

dQη
[0,1](ũ(n− 1), · )

− 1

]2

1B̄[n−1,n]

∣∣∣∣∣Fη


 1

2

≤
(
exp(Ke−

1
2
γ∗n)− 1

) 1
2

The main estimate comes from the last estimate of Lemma A.1 applied on the
measure conditioned on a fixed η path. The estimate exp(Ke−

1
2
γ∗n) is the estimate

on the constant D∗ used in Lemma A.1. This estimate is a consequence of the
contractive property noticed above use to estimate the difference term

exp

(∫ n

n−1

1

σ2
min

|Π`G(u(t))− Π`G(ũ(t))|2X dt
)

in a fashion analogous to (26).
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16. Other Examples

The general assumptions used in the previous example are general enough to cover
a number of SPDEs of interest. A natural second example where all of our analysis
applies is the stochastically forced Cahn-Allen/Ginsburg-Landau equation

du(x, t) =
[
ν∆u+ u− u3

]
dt+ dW (x, t) (37)

where W (x, t) =
∑

K ek(x)σkβ(t), βk are independent standard Brownian motions,
σk are positive constants and ek are the elements of the real Fourier basis

{1, sin(2πx), cos(2πx), sin(4πx), cos(4πx), · · · }.

See [BM03, EL02] for the verification of the assumptions. (Note that text assumes
that Xh is not forced; however, the verification of the assumptions given there allows
one to cover that case with the theorems provided in this text.) One uses the
Lyapunov structure V (u) = U(u) = |u|2L2 + |∇u|2L2 . That case is also analyzed in
[Hai02]. In that reference, the strong contractive nature is used to get an exponential
mixing rate uniform in the initial data. This is because the time for the initial return
center of the phase space does not depend on the initial state; this is not the case
in the SNS equation. This holds because one can estimate the time τC uniformly in
the initial data. Hence from (35), one sees that the mixing time can be estimated
independent of the initial data. This is made explicitly in the theorems in [Mat02c].
Another noteworthy feature of the analysis in [Hai02] is that a change of measure
is made in the low modes to steer all of the modes together only asymptotically. In
contrast to the presentation given here where the ` variable is made to be equal for
all moments of time after t = 1 and the h variable converges asymptotically. The
method in [Hai02] appears to be simpler to construct while the method exposed
here gives convergence in a slightly stronger topology.

In [EL02] other examples are given, all but the stochastic Kuramoto-Sivashinsky,
fits directly in the framework given here. The stochastic Kuramoto-Sivashinsky
equation requires localization ideas not based on a straight forward Lyapunov func-
tion. The details are explained fully in [EL02].

17. True Hypoellipticity and the Cascade of Randomness

It is reasonable to ask if the results given in Theorem 3 or Theorem 7 are sharp. Does
ergodicity require forcing all of the modes below the scale specified by the balance
between energy influx and dissipation ? The assumption for the second part of
Theorem 3 is an ellipticity assumption about the dynamics in the typically unstable
directions. Equivalently viewed from the Memory/Gibbsian dynamics point of view,
it means that the reduced system with memory (9) is elliptic.

While there is no complete proof, there are a number of results which seem to
imply that much weaker conditions are sufficient. They all describe the dynamics
in a hypoelliptic setting; the case where all of the typically unstable degrees of
freedom are not forced directly. In this setting, ergodicity and mixing require that
the nonlinearity transfer the randomness to other degrees of freedom.
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The first result given below proves the ergodicity of an arbitrary Galerkin ap-
proximation of (4) under very weak assumptions. Under similar assumptions, the
second result says that the full PDE has a transition density whose finite dimensional
marginals have a density with respect to Lebesgue measure.

A third result by [Rom02] proves the geometric ergodicity of the Galerkin pro-
jections of the three dimensional SNS equations. This was expected as the structure
shares the needed structure with the two dimensional problem. What was extremely
interesting and novel in that paper was the proof that the system was globally con-
trollable. A fourth result found in [AS03] shows that the full two and three dimen-
sional SNS equations are controllable in the sense that one can steer them so that
any finite number of modes take specified values. This is very similar in spirit to
Theorem 10 where only projections of the transition measure are shown to have a
density. The techniques used to prove the control results in [Rom02] and [AS03]
seem to use the same important observation. Namely that the off-diagonal nature of
the nonlinearity leaves the system globally consolable even though its nonlinearity is
even powered. We refer the reader to [Rom02] and [AS03] for the precise statement
of the results.

As we will undertake direct calculations, it is simpler to work in a real basis of
L2(T2). For this reason we switch our forcing to the form

W (x, t) =
∑

k∈Kcos

σcos
k cos(k · x)bk(t) +

∑
k∈Ksin

σsin
k sin(k · x)Bk(t) (38)

where Bk and bk are independent real Brownian motions with variance one, σcos
k ,

σsin
k are positive real constants, and Kcos, Ksin are subsets of Z2

∗
def
= {j = (j1, j2) ∈

Z2 : j2 ≥ 0, |j| > 0}. We need only to consider Z2
∗ as the reality of the vorticity

allows one to restrict to wave number in the upper half plane and we have assumed
the absence of a mean flow. (Note: In [EM01] the sums were restricted too much,
however this does not effect any of the bracket calculations made and the results
hold true.)

We now define two sequences of subsets of Z2 which capture how the randomness
spreads from one degree of freedom to the next. Define K0 = Z0 = Kcos∩Ksin. Next
define

Zn = Zn−1 ∪
{
k ∈ Z2

∗ : k ∈ {`+ j, `− j, j − `} with j ∈ Z0, ` ∈ Zn−1

and `⊥ · j 6= 0, |j| 6= |`|
}

and fixing some positive integer N define

KN
n = KN

n−1 ∪
{
k ∈ Z2

∗ : k ∈ {`+ j, `− j, j − `} with j, ` ∈ KN
n−1

and `⊥ · j 6= 0, |j| 6= |`|, |`− j| < N, |`+ j| < N
}

and finally Z∞ = ∪Zn and KN
∞ = ∪KN

n . The two sets track the cascade of ran-
domness out to the unforced modes. The farther along the chain which a mode
first enters the sequence of sets, the less the random variation will be felt in that
coordinate.
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Theorem 9 below will state its assumptions in terms of KN
∞ whereas Theorem

10 will use Z∞. It is likely that for a given Kcos and Ksin that Z∞ = ∪NKN
∞ (one

direction is clear) however proof is not immediately obvious. Furthermore, a sketch
of Theorem 10, under the same assumptions as Theorem 9, is given in [MP03].
Hence, we do not think there is any real significant difference between the two sets.

The first result we state gives exponentially mixing for the order N Galerkin
approximation of (4) with forcing of the form (38) provided an algebraic condition
on the wave numbers forced, given in terms of KN

∞, is satisfied. By the Galerkin
approximation of order N , we mean the finite system of coupled ODEs obtained by
setting to zero, for all time, any Fourier mode with |k| ≥ N . This approximation
returns us to the setting of standard hypoelliptic SDE in Rd. Using a weak version of
Höromander’s sum of squares theorem (cf. [KS84, Nor86, Bel95] ), it was shown that
the diffusion has a smooth C∞ density. Then, using some standard Markov chain
theory for a Harris chain with a Foster-Lyapunov function, one obtains exponential
mixing.

Theorem 9. [EM01] Consider the order N Galerkin approximation of the vorticity
equation (4). Assume that KN

∞ = {k ∈ Z2
∗ : |k| < N}. Denoting the solution by ωN ,

one has the following mixing result.
If ωN

0 and ω̃N
0 are two initial conditions then for any p ≥ 1 there exist positive

constants B = B(p) and γ = γ(p) so that

‖Pt(ω
N
0 , · )− Pt(ω̃

N
0 , · )‖TV ≤ ‖Pt(ω

N
0 , · )− Pt(ω̃

N
0 , · )‖Vp

≤ B[1 + |ωN
0 |2p + |ω̃N

0 |2p]e−γt

Here ‖ · ‖TV is the total variation norm on signed measures and ‖ · ‖V (p) is the
weighted variational norm defined by

‖Pt(ω
N
0 , · )− Pt(ω̃

N
0 , · )‖Vp

def
= sup

φ∈Vp

Eφ(ωN(t))− Eφ(ω̃N(t))

with Vp = {measurable φ with |φ(x)| ≤ 1 + |x|2p}. Taking ω̃N
0 distributed as the

invariant measure, one obtains exponential convergence to the invariant measure
and uniqueness of the invariant measure.

To make this theorem interesting, we need some examples of conditions on Kcos

and Ksin so that it applies. The following Lemma gives simple conditions under
which the previous and next theorems hold.

Lemma 17.1. [EM01, MP03]

• If {(0, 1), (1, 1)} or {(1, 0), (1, 1)} ⊂ Kcos∩Ksin then Z∞ = Z2 and KN
∞ = {k ∈

Z2
∗ : |k| < N} for any N .

• Let M,K ∈ N with M,K > 2 and |M −K| > 2. Then if

{(M + 1, 0), (M, 0), (0, K + 1), (0, K)} ⊂ Z0

then Z∞ = Z2. If in addition M,K < N − 1 then KN
∞ = {k ∈ Z2

∗ : |k| < N}.
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This gives only two examples of types of forcing which are sufficiently distributed
to ensure ergodicity. Many others choices are possible. The author thanks A.
Majda and P. Constantin for stimulating conversations which pushed him to verify
the second part of Lemma 17.1. It provides an example of forcing which allows
one to observe both the energy and enstrophy cascade which are present in two
dimensional fluid systems. Of course, the most interesting question would be to
make some qualitative statement connecting this cascade of probability with the
dynamics.

A theorem similar to Theorem 9, but for the three dimensional Galerkin approx-
imation, is proven in [Rom02]. There he proves even more; he shows that the system
is actually globally controllable. This very interesting fact hinges on the observation
that because the nonlinearity is off-diagonal in Fourier space; and hence, the system
has the good properties of systems with odd powered polynomials nonlinearities (see
[Jur97]).

Theorem 9 gives a strong indication that a similar theorem holds for the full PDE;
however, a proof currently alludes the community. The following theorem shows
that at least one of the needed ingredients persists for the full infinite dimensional
vorticity equation.

Defining

S∞ = Span
({

sin(k · x) : k ∈ Z∞ ∪ Zcos
0

}
∪
{

cos(k · x) : k ∈ Z∞ ∪ Zsin
0

})
we have the following density result for the finite dimensional marginals of equation
(4).

Theorem 10. [MP03] For any t > 0 and any finite dimensional subspace S of
S∞, the law of the orthogonal projection ΠSω(t, ·) of ω(t, ·) onto S is absolutely
continuous with respect to the Lebesgue measure on S.

This of course is not enough to prove ergodicity. It addresses only the first part
of Assumption 2.

18. Open Questions

A number of open questions have been mentioned in the text. Here we collect them
and add a few more.

1. Extend the ergodic results to the case when all of the determining modes
are not forced. The results on the ergodicity of the Galerkin approximation
suggest strongly that full PDE is ergodic under weaker assumptions than The-
orem 3. Theorem 9 gives and indication what the proper assumptions should
be. The results on the existence of densities for the projection of transition
densities and the controllability of a finite number of variables gives strong
evidence that nothing surprising happens in the full PDE.

2. Prove (or disprove) that even when the forcing has spatial Fourier modes which
decay super–exponentially, the solution still decays only exponentially in |k|.
Prove (or disprove) that this decay rate does not fluctuate with time in the
stationary state.
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3. Related to the previous: “What is the natural topology of the transition den-
sity of the Markov process defined by the SNS ?”

4. Extend Theorem 3 to the full space. The case of bounded domains in the same
as the periodic case. However the full space requires some additional ideas, if
not completely different ones.

5. Understand better the ν → 0 limit. In a recent preprint [Kuk03] explores
this limit for one choice of forcing. However, the choice of scaling produces a
deterministic limit which is the less interesting case and does not correspond to
the traditional view of turbulence. In all cases, there remain many interesting
question concerning the structure of the limiting solutions and the limit when
other types of forcing are used.

6. Make progress in the three dimensional problem. Unless a breakthrough is
made in the deterministic three dimensional problem, this would likely require
other methods. The methods used here proceed in a pathwise manner in
the high k and, hence, can do no better than the deterministic theory. In
particular, the estimates used to get contraction of the high k are similar to
those used to prove uniqueness of solutions. Recently Da Prato and Debussche
have show that by a selection principle one can build a stochastic process
associated to the 3D problem and that this process under certain conditions
has a unique invariant measure. Unfortunately the conditions on the forcing
require it to have algebraic decay in |k|.
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A. Comparison of Measures on Path Space

Suppose that we have stochastic processes X(i)(t), i = 1, 2 on the path space
C([0, T ],X) where X is some Hilbert space and T ∈ (0,∞]. Furthermore, assume
that X(i) satisfies the equation

dX(i)(t) = fi(t,X
(i)
[0,t])dt+ gdW (t), t ∈ [0, T ]

X(i)(0) = x0.
(39)
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Here, for fixed t the functions f1 and f2 map the space C[0,t] = C([0, t],X) to X. By
X[0,t] we mean the segment of the trajectory on [0, t]. W (t) is a cylindrical Brownian
motion over a Hilbert space Y and g is an invertible Hilbert-Schmidt operator from
Y → X. For any B ⊂ C[0,T ], define measures P (i)

[0,T ]( · ;B) on the path space as:

P
(i)
[0,T ](A;B) = P{X(i)

[0,T ] ∈ A ∩ B}, for A ⊂ C[0,T ].

Define also D(t, · ) = f1(t, · )− f2(t, · ).
In this setting, we have the following result which is a variation on Lemma B.1

from [Mat02c] and follows quickly from Girsanov’s Theorem. Similar versions of
this lemma can be found in [MS03] and [BM03].

Lemma A.1. Assume there exists a constant D∗ ∈ (0,∞) such that

exp

{
1

2

∫ T

0

∣∣g−1D
(
t,X

(i)
[0,t]

)∣∣2
Ydt

}
1B(X

(i)
[0,t]) < D∗ (40)

almost surely for i = 1, 2. Then the measures P (1)
[0,T ]( · ;B) and P

(2)
[0,T ]( · ;B) are

equivalent. In addition for any p > 0

E

[
dP

(1)
[0,T ]( · ;B)

dP
(2)
[0,T ]( · ;B)

]p

≤ Dp(p−1)
∗ .

And lastly

1

2
‖P (1)

[0,T ]( · ;B)− P
(2)
[0,T ]( · ;B)‖TV ≤

E

[
dP

(1)
[0,T ]( · )

dP
(2)
[0,T ]( · )

− 1

]2

1B

 1
2

≤
(
D2
∗ − 1

) 1
2

Proof: Define the auxiliary SDEs

dY (i)(t) = fi

(
t, Y

(i)
[0,t]

)
1B(t)(Y

(i)
[0,t])dt+ gdW (t)

where B(t) = {x ∈ C[0,t] : ∃x̄ ∈ B such that x(s) = x̄(s) for s ∈ [0, t]}. Solutions
Y (i)(t) to these equation can be constructed as

Y (i)(t) = Xi(t)1{t≤τ} + [gW (t)− gW (τ) +X(i)(τ)]1{t>τ}.

Here τ = inf{s > 0 : X
(i)
[0,s] 6∈ B(s)}.

Denote DB(t, x) = [f1(t, x)− f2(t, x)]1B(t)(x). The assumption on D in (40) and
the definition of B(t) imply that

exp

{
1

2

∫ T

0

∣∣g−1DB
(
t,X[0,t]

)∣∣2
Ydt

}
< D∗ a.s.

under both measures P (i)
Y [0,t] defining solutions to auxiliary equation with i = 1 and

i = 2. Hence, Novikov’s condition is satisfied for the difference of the drifts of
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the auxiliary equations and the Girsanov’s theorem implies that
dP

(1)
Y [0,t]

dP
(2)
Y [0,t]

(x) = E(x)

where the Radon–Nikodym derivative evaluated at a trajectory x is defined by the
stochastic exponent:

E(x) = exp

{∫ T

0

〈
g−1DB(s, x[0,s]), dW (s)

〉
Y −

1

2

∫ T

0

|g−1DB(s, x[0,s])|2Yds
}
.

Note that restrictions of measures P (i)
Y[0,t]

on the set B coincide with P
(i)
[0,t]( · ;B).

This proves that P (1)
[0,t]( · ,B) is absolutely continuous with respect to P

(2)
[0,t]( · ;B).

The reverse relation follows by symmetry and the proof of equivalence is complete.
To prove the second estimate, notice that

(E)p = exp

{
p

∫ T

0

〈
g−1DB(s, x[0,s]), dW (s)

〉
Y − p

1

2

∫ T

0

|g−1DB(s, x[0,s])|2Yds
}

= Ep exp

(
p2 − p

2

∫ T

0

|g−1DB(s, x[0,s])|2Yds
)
≤ EpD

p(p−1)
∗

where Ep is the martingale defined by

Ep = exp

{
p

∫ T

0

〈
g−1DB(s, x[0,s]), dW (s)

〉
Y −

p2

2

∫ T

0

|g−1DB(s, x[0,s])|2Yds
}
.

Hence, EEp = 1 and in light of the estimate on Ep, the proof is complete. To see
the last estimate, use the Cauchy-Schwartz inequality to obtain the first inequality.
The expand the square and use the fact that the Radon-Nikodym derivative is a
martingale with expectation one to obtain the bound (E(dP (1)

dP (2) )
2 − 1)

1
2 . Applying

the previous estimate to the square gives the result. 2

B. Coupling Estimates

For any two probability measure µ1 and µ2 on a space X, we can always write
them relative to a common measure ν so that dµi = ψidν. Then we define the
measures (µ1 ∧ µ2)( · ), (µ1 − µ2)

+( · ), and (µ2 − µ1)
+( · ) respectively by the

densities (ψ1 ∧ψ2)dν, (ψ1−ψ2)
+dν, (ψ2−ψ1)

+dν where a∧ b = min(a, b) and (a)+

is a if a is positive and zero otherwise. Notice that µ1 = (µ1 ∧ µ2) + (µ1 − µ2)
+.

Also observe that if ‖ · ‖TV =
∫
|ψ1 − ψ2|dν is the total variation norm then

1
2
‖µ1 − µ2‖TV = 1 − (µ1 ∧ µ2)(X) = (µ1 − µ2)

+(X) = (µ2 − µ1)
+(X). The proof of

the following lemma can be found in the appendix of [Mat02c].

Lemma B.1. Let µ1 and µ2 be two measures on a space X with µi(X) ≤ 1. Assume
that µ1 is equivalent to µ2 and that there exists a constant C ′ > 0 and p > 1 so that∫

X

[
dµ1

dµ2

(x)

]p+1

dµ2(x) =

∫
X

[
dµ1

dµ2

(x)

]p

dµ1(x) < C ′
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then ∫
X

∣∣∣∣1 ∧ dµ1

dµ2

(x)

∣∣∣∣ dµ2(x) ≥
[
1− 1

p

](
µ1(X)p

pC ′

) 1
p−1

.

Notice that this lower bound is strictly positive if µ1(X) > 0 (or equivalently µ2(X) >
0).
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