
CBDIReport

1

2

3

4

4

5

6

8

9

11

Service Oriented
Architecture and
OptimalJ
Web Services has been the subject of much
discussion, industry hype and promotion by
the software industry and analysts. CBDI has
promoted not only Web Services but also
Service Oriented Architecture (SOA). On their
own, Web Services solve some technical
issues to do with platform incompatibility and
distributed computing across the Internet, but
also build a web of interdependencies and a
potential management nightmare. We
strongly recommend adoption of SOA as part
of the migration to Web Services. The
combination of the two provides a platform for
business collaboration inside the enterprise
and B2B.

SOA is important for enterprise IT because it
provides the framework that unites the
business model with the applications that
provide the functionality required for efficient
business.

This report, sponsored by Compuware, looks
at how OptimalJ supports SOA and examines
how its model-driven approach complements
Web Services to provide SOA.

Insight for Web Serv
Inside…

12

ice Ba
Introduction
Web Services and their relationship to SOA

Service Oriented Architecture
An exploration of the concept

The Business Services Bus
Logically grouped services for widespread use

Modeling and SOA
Importance of the business model

Model Driven Architecture
A short introduction to MDA

Web Services and OptimalJ
How does OptimalJ support Web Services

Web Service Provision
How to create services

Consuming Web Services
How to import and use external services

Extreme Productivity
Web Services with minimal effort - fast

OptimalJ Roadmap
Future directions for OptimalJ product development

Conclusions
sed and Software Component Practice

Introduction
Web Services has been the subject of much discussion, industry hype and promotion by the
software industry and analysts. CBDI has promoted not only Web Services but also Service
Oriented Architecture (SOA). On their own, Web Services solve some technical issues to do
with platform incompatibility and distributed computing across the Internet, but also build a
web of interdependencies and a potential management nightmare. We strongly recommend
adoption of SOA as part of the migration to Web Services. The combination of the two
provides a platform for business collaboration inside the enterprise and B2B.

SOA is important for enterprise IT because it provides the framework that unites the business
model with the applications that provide the functionality required for efficient business.
Without SOA IT systems become a disjointed collection of packages, functions and screens that
consume ever-increasing resources to maintain and evolve. SOA imposes a direct correlation
between business operations and software services, making it a simple task to maintain and re-
factor new systems from existing services.

In this report we will also discuss the symbiosis of SOA and J2EE and show how J2EE lacks
some important features of SOA unless used in combination with Web Services. J2EE servers
are complex platforms for corporate IT but they do make an ideal foundation on which to build
SOA provided you have the right tools and techniques. OptimalJ from Compuware is one of
the first development environments to fully implement a model-driven approach to application
design and development. Model-driven tools start with a logical business model and
automatically transform this into an application. The model-driven approach is described in our
report entitled (‘Governance and MDA’); in this report we examine OptimalJ’s ability to
generate automatically an application that conforms to SOA and supports Web Services.

Service Oriented Architecture

The SOA concept includes some structural features that go deeper into the corporate IT system
than Web Services. Where Web Services address the communications mechanisms to allow
functions to be made public, SOA addresses the layering and structure of software.
Enlightened organizations have been moving towards SOA by exposing core services in a
loosely coupled way that reduces complexity, improves re-use and enables agility.

Some key features of SOA are:

• Platform-independent interfaces
• Loosely coupled
• Business level granularity
• Discoverable

OptimalJ generates a Java application from a high-level business model. In the context of this
discussion on SOA, the important point is that OptimalJ creates code that is separated into

CBDI Forum Limited 2003 SOA and OptimalJ 2

logical layers, and builds a set of components that provide the services required by the
application. It is the capability to publish very easily these services as Web Services that make
them fully platform independent, and the generation of the WSDL (Web Services Description
Language) that provides the interface definition required for discoverability.

So to re-cap, OptimalJ generates applications that are logically layered and service oriented. It
supports Web Service standards and can selectively publish its services as Web Services. In
addition to these essential features, the model-driven approach taken by OptimalJ brings with it
some further benefits which differentiate it from a simple framework. To explain these we now
look at SOA from a higher level; at the level of the business model, and introduce a concept
first coined by CBDI, ‘The Business Services Bus’.

The Business Services Bus

Logistics Bus

Human Resources Bus

The Business Services Bus concept, first coined by CBDI Forum, is a way to tie together
services into logical sets that reflect the structure of the business and are designed for wide-
spread use across the enterprise. The Human Resources Bus would for example contain the set
of services that underpin HR applications for the enterprise. The logical grouping and design of
each bus ensures that there is minimal duplication plus uniformity in naming, ordering, and
types of parameters.

OptimalJ provides a domain service modeling capability that positively encourages analysts to
architect the service bus in the domain services model. The Business Services Bus concept
extends the Domain Model of the organization by identifying the functionality required by the
various departments in an organization and expressing that functionality in a collection of IT
services. This approach brings the full benefit of SOA. Simply exposing some methods in
your code as a Web Service creates only limited benefits to the organization and can create
maintenance problems if done badly.

Isolating service interfaces from implementation

CBDI Forum Limited 2003 SOA and OptimalJ 3

The well-designed service bus acts as a façade for the more detailed implementation software
that lies behind. Some early attempts at using Web Services simply exposed software functions
that already existed in old applications. This often resulted in services that were not consistent
nor of the right level of granularity. A service façade can be used to aggregate and normalize
existing functionality into an SOA.

Modeling SOA
It is our experience that in order to realize the benefits of SOA, a business model should include
a service model which accurately reflects the implementation of services in the code. The
documentation and graphical representation of the service domain encourages re-use and
ensures a logical consistency between services. OptimalJ’s Domain Model includes a service
model where your business operations are modeled. OptimalJ transforms these business
operations into services. Consistency between the business model and the generated
application is ensured and over the life of the applications; the ability to re-use and re-factor
new applications from existing services is massively improved through the existence of an
accurate and up to date model.

OptimalJ’s domain modeling capability ensures that your service bus is designed
specifically to your company’s business requirements and is not just a random collection
of session beans that have been given a Web Service interface.

Model Driven Architecture
OptimalJ is a full implementation of MDA 2 as outlined by the OMG. OMG’s approach
describes separate models; the Platform Independent Model (PIM) and the Platform Specific
Model (PSM), which maps to code to create a viable application. OptimalJ implements these
two models as the Domain Model and the Application Model, and maps the code to a Code
Model. Transformation from one model to the next is carried out by OptimalJ using a set of
rules known as transformation patterns.

The Domain Model is created in OptimalJ or a separate modeling tool and must be based on
UML. Services are defined as a domain service and these typically define a business operation,
its name, inputs, outputs and description.
The Application Model generated from the Domain Model defines the DBMS model (data
entities), the Web model (web components definitions) and the EJB model. Services in the
Domain Model are represented as session components.
The Code Model generated from the Application Model consists of Java beans (EJB Session
and Entities), JSP web pages, deployment descriptors for the selected target platform and
WSDL files for Web Services.

Figure 1 shows how a service in the Domain Model is transformed into a session component in
the application model.

CBDI Forum Limited 2003 SOA and OptimalJ 4

code
name
balance

GetBalance

EJB Model

Account Service

Domain Model

View Service

AddBalance

EJBSessionBean

AccountSvc EJBSession
Method GetBalance(
IN: name=code type= String
IN: name=name type= String
OUT: name=balance type= Float
)

Domain Service

Code

code
name
balance

GetBalance

EJB Model

Account Service

Domain Model

View Service

AddBalance

EJBSessionBean

AccountSvc EJBSession
Method GetBalance(
IN: name=code type= String
IN: name=name type= String
OUT: name=balance type= Float
)

Domain Service

Code

Figure 1: Service Model to EJB Model Transformation

The second transformation step takes the Application Model and generates Java code and
deployment descriptors for the application. Code that is fixed by the model is ‘guarded’ and
can’t be changed by developers. Services become methods in session beans and developers
use the 'free' blocks in the code to customize the business logic for the method. Code added
into free blocks is preserved when the application is re-generated from the model.

An important feature in OptimalJ is the facility it gives its users to customize the code
generation pattern so that company standards can be accommodated. This also provides hooks
to add company policies for the deployment descriptors and other generated XML files.

There are increasingly in the market, proprietary J2EE frameworks that tie companies into run-
time components and black box classes. We believe that OptimalJ’s open, standards-based
approach will be much more acceptable to corporate IT strategists and is in keeping with the
‘open platform’ paradigm.

MDA ensures that the implemented software is in step with the business model and
increases productivity by automatically generating code that conforms to SOA.

Web Services and OptimalJ

OptimalJ supports the provision and consumption of Web Services and generates all the Java
code to support them on all the targeted J2EE servers. The two most important standards at the
heart of Web Services are:

• WSDL (Web Services Description Language)
• SOAP (Simple Object Access Protocol)

CBDI Forum Limited 2003 SOA and OptimalJ 5

WSDL is the XML standard for describing the message structure and port address of a Web
Service. With the WSDL file, a consumer of Web Services can identify exactly the parameters
and address of the service. In OptimalJ, the WSDL is imported and used to automatically
generate a component that calls the service. When providing a service, the Java bean which
implements the interface to the service has to be expressed as a WSDL document. In OptimalJ
this is transparent to the developer; when generating the code OptimalJ makes use of the
industry standard Apache AXIS implementation to carry out the translation from Java class to
WSDL. The AXIS implementation fully complies with WS-I interoperability standards so that
your services can be consumed by, for example, .NET clients.

SOAP is the XML protocol, which ensures that the parameters and response messages can be
formatted as XML text in order to complete the end-to-end communication. The SOAP
protocol can be implemented using different transport mechanisms, but HTTP and SMTP are
the only two in use.

At the time of writing, targeted J2EE servers differ in their support for Web Services.
OptimalJ’s Web Services implementation generates the deployment descriptors required for the
J2EE application server selected as the target platform.

Web Service Provision with OptimalJ

A SOA in OptimalJ starts with the Domain Model. The Domain Model includes the Domain
Service Model where you model business operations. Domain services may need to make use
of business objects to store and retrieve data and these are included in the domain service as
domain views. A domain service, once transformed to the Web and EJB model, creates a
session bean with methods for the service operations. The session bean is the façade for the
entity beans.

Session
bean

Entity beans Session facade Web Service

http
Server

(SOAP)

WSDL

view

Figure 2: Session bean and service module architecture

Important steps in designing and implementing a Web Service using OptimalJ are as follows:

CBDI Forum Limited 2003 SOA and OptimalJ 6

1. Define the domain service in the business model defining business operations.

2. Generate the EJB model from the domain service; this step creates an

EJBSessionComponent in the Application Model.

3. Generate a Web Service from the EJBSessionComponent; this creates a Web Service
component and a WSDL file.

4. Generate code from the application models for the EJBSessionComponent and Web

Service connector; this builds the session beans to implement the service logic as pre-
defined in the domain service, the WSDL, deployment descriptors and interface session
bean.

5. Customize the Java code for the session bean to implement the business methods.

6. Copy the WSDL file to a virtual directory on the web server in order to publish the

service interface.

Domain Model

EJB Model

Web Service
Module

EJB

Generate Web Service
from EJB

Generate Code

Generate Code

Add implementation
logic

Java beans

WSDD
(Deployment)

WS

Generate App.
Model from Domain

Model domain service

View Service

WEB

JSP

WEB Model

JSP Test Page
for service

WSDL

Analyst

Developer

Domain Model

EJB Model

Web Service
Module

EJB

Generate Web Service
from EJB

Generate Code

Generate Code

Add implementation
logic

Java beans

WSDD
(Deployment)

WS

Generate App.
Model from Domain

Model domain service

View Service

WEB

JSP

WEB Model

JSP Test Page
for service

WSDL

Analyst

Developer

Figure 3: Web Service Implementation In OptimalJ

CBDI Forum Limited 2003 SOA and OptimalJ 7

Consuming Web Services in OptimalJ
A Web Service can be called from your OptimalJ application without writing any code by hand.
The process includes importing the WSDL definition of the target service in the connector
model and then the generation of a domain service derived from the connector model. From
this, a session bean can be generated (and its deployment descriptor) to act as a wrapper for the
new capability. Once you have created the EJB model, a web page to test the service can be
created, all without having to write a line of Java. The step-by-step process is as follows:

1. Locate the service you require, this may be on your local network or an external web
server such as WWW.XMETHODS.COM.

2. Once you have the web address of the WSDL file, use the menu option Import Web

Service WSDL from file… to create a connector model for the service.

This creates a connector model from which the Java proxy will be generated using JAX-
RPC classes to invoke the remote service. You could stop there if you wanted to write
code to make use of this proxy, or continue by building a Domain Model for the service.

3. EITHER: Select the new connector model in the repository and use the Generate

domain from connector menu option to create a domain service and class model for
the service. Custom data structures used in the service will result in new classes in your
Domain Model and the process is modeled as a domain service. See Figure 4.
Additionally a JSP will be generated for testing purposes.

OR: Select the new connector model in the repository and use the Generate EJB from
connector menu option to create an EJB that acts as a client to the Web Service. See
Figure 5. In this case no JSP will be generated

4. From the new Domain Model you can generate a session bean to act as a wrapper for
the service and a Web model to test the service. The JSP pages generated from the Web
model allow you to start testing the service by entering parameters in the web form and
checking the results. The JSP page uses the session bean to invoke the Web Service
proxy code generated in step 2.

OptimalJ - Extreme Productivity
What stands out from Compuware’s approach to Web Services is the complete absence of any
need to get out the Java JAX-RPC documentation, or the application server manual. The
annoying ‘glue’ code and XML config. files are built for you using the supplied patterns. The
absence of any runtime layer also means that once the code is built and deployed to the target
server your application runs within the application server container; there are no black boxes to
add uncertainty when tracing or maintaining your code. If you change the application server
your Java classes do not need any tweaks; just re-target the new server and generate the
required deployment files.

CBDI Forum Limited 2003 SOA and OptimalJ 8

OptimalJ hides the complexity of the deployment platform by generating all the necessary
deployment archives and descriptors leaving developers and designers more time to build
a coherent architecture that fully supports the business.

wsdl

Web service

Connector
Model

import

Domain Model

EJB Model

G
en

er
at

e

Generate

Generate
Code

Java session
beans

Generate
Proxy

http

wsdlwsdl

Web service

Connector
Model

import

Domain Model

EJB Model

G
en

er
at

e

Generate

Generate
Code

Java session
beans

Generate
Proxy

http

Figure 4: Consuming a Web Service in OptimalJ

wsdl

Web service

Connector
Model

import

EJB Model

Generate EJB from
Connector

Generate
Code

Java session
beans

Generate
Proxy

http

wsdlwsdl

Web service

Connector
Model

import

EJB Model

Generate EJB from
Connector

Generate
Code

Java session
beans

Generate
Proxy

http

Figure 5: Consuming a Web Service in OptimalJ

CBDI Forum Limited 2003 SOA and OptimalJ 9

OptimalJ Roadmap
We understand future releases of OptimalJ will address four priorities for development:

• Developer and design tool integration
• Support for testing
• J2EE platform support
• Workflow support

The first point is important because OptimalJ’s capabilities cross boundaries of analysis, design
and code development. It is a Compuware priority to support the leading Java IDEs. Currently
OptimalJ 2.2 supports Borland’s JBuilder and NetBeans. IBM’s WSAD and SunONE are
scheduled for a future release. The ability to generate code for testing is another feature that
has been identified for the forthcoming releases.

Further integration with the J2EE stacks of the leading J2EE players, such as Sun, IBM, BEA
and Oracle will ensure that OptimalJ exploits the capabilities of the deployment platform and
seamless integration with developer tools will improve productivity.

Support for evolving standards, not only for MDA but also business process execution
(BPEL/WSCI), will continue to be a focus of the OptimalJ development programme.
Compuware currently has a fully featured workflow modeling and execution product,
OptimalFlow; this capability will be ported to the J2EE environment and integrated with
OptimalJ.

Conclusions
There is clearly much more to SOA than the ability to provide and consume web services.
Many advantages accrue from the MDA approach and the combination of MDA and Web
Services should enable enterprises to move rapidly towards the SOA goal. The following table
summarizes the main points raised in this report.

Web Services support OptimalJ offers full and declarative support for Web Services

including deployment descriptors for your target server and WSDL.
Service Modeling A business-level service model for operations that can be

transformed by OptimalJ into services. Web Services consumed by
the application are represented in the model.

Model/Code Synchronization The Domain Service Model and implemented code are always in
step, through use of guarded and free blocks

Code Generation for Service
Layer

Automatic generation of a EJB session bean to implement each
service

Pattern Customization Code generation is driven by a pattern that can be customized to
comply with company standards and styles.

Test Pages Generation of JSP test pages

CBDI Forum Limited 2003 SOA and OptimalJ 10

Links and Footnotes
Footnote 1 CBDI white paper ‘MDA and Governance’

Footnote 2, MDA http://cgi.omg.org/docs/ormsc/01-07-01.pdf

Compuware http://www.compuware.com/

Java Central http://javacentral.compuware.com/

CBDI http://www.cbdiforum.com/

The Author

The author welcomes any questions or comments on this report. He can be contacted at:

jonathan.stephenson@cbdiforum.com

CBDI Forum Limited 2003 SOA and OptimalJ 11

http://www.compuware.com/
http://javacentral.compuware.com/
http://www.cbdiforum.com/
mailto:Jonathan.Stephenson@cbdiforum.com
SFHSAK0

Insight for Web Service &
Software Component Practice

Subscribe to the

CBDI Journal

The CBDI Journal is
published monthly. In
addition to the CBDI
Journal, subscription
includes electronic
access to all back
numbers that now
represent a significant
resource library. There
are individual and
corporate subscriptions
schemes.

Corporate subscription
includes access to our
workshop materials.

For more details and to
subscribe see:
www.cbdiforum.com
 CBDI Forum Limited 2003
CBDI Raison d’etre

We aim to provide unique insight on component and web service technologies and
processes for the software industry and its customers. To provide high quality analysis
and other information resources on best practice in business software creation, reuse
and management. To maintain the highest level of independence.

Modus Operandi

CBDI has three channels:

• Subscription services - provision of continuous commentary and information.

• Workshops and seminars - providing in-depth briefing and guidance on
advanced architectures, processes and practices.

• Consulting - including related product management and marketing advice,
application audit and guidance, technical and business evaluation for
investment

How we compare with others

We are not a mass market, media oriented organization. All material published by the
forum is unique. The majority of material is published by our own analysts, or
commissioned from others, and under strict editorial control to ensure accuracy. We
rigorously exclude spurious marketing.

We aim to provide depth insight that covers a narrow topic footprint in a deeper way
than the other analysts, and in particular cover not just the technology, but also the
architectures, usage, practices and processes.

Also we are unusual as analysts we do not simply echo what the vendors say, we are a
think tank, identifying new ideas, opportunities and providing stimulus for thinking.

We try to be thought leaders providing ideas generation and a rich source of
conceptual thinking based on practical, real world feedback.

Who reads CBDI Journal?

Technical and Application Architects, Business analysts, Consultants, CTOs,

Designers, Product strategists, Senior Developers, Project Managers etc .

Subscription is split 40% USA, 50% Europe.

Contact us:

For further information on any of our services contact us at: info@cbdiforum.com or
+353 2838073 (Ireland)

	Introduction
	Service Oriented Architecture
	The Business Services Bus
	Isolating service interfaces from implementation
	Modeling SOA

	Model Driven Architecture
	Web Services and OptimalJ
	Web Service Provision with OptimalJ
	Consuming Web Services in OptimalJ
	OptimalJ - Extreme Productivity

	OptimalJ Roadmap
	Conclusions
	
	Web Services support
	Test Pages

	Links and Footnotes
	The Author

