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Abstract: One difficult task in information modeling is to adequately address 
the impact of time. This paper briefly reviews some popular approaches for 
modeling temporal data and operations, then provides a conceptual framework 
for classifying temporal information, and proposes data model patterns to ad-
dress time-impacted tasks such as modeling histories, and tracking entities 
across time as they migrate between roles. Special attention is given to captur-
ing the relevant business rules. While the data modeling discussion focuses on 
Object-Role Modeling (ORM), many of the basic principles discussed can be 
adapted to other approaches such as Entity Relationship Modeling (ER) and the 
Unified Modeling Language (UML). 

1 Introduction 

One challenging aspect of information modeling is to deal appropriately with tempor-
al data and operations. This paper discusses how various temporal issues can be ad-
dressed at the conceptual level. The treatment focuses on Object-Role Modeling 
(ORM), a fact-oriented approach for modeling, transforming, and querying informa-
tion in terms of the underlying facts of interest, where facts and rules may be verba-
lized in language readily understandable by non-technical users of the business do-
main. However, much of the discussion can be adapted to other data modeling 
approaches such as Entity Relationship Modeling (ER) [5] and the class diagramming 
technique within the Unified Modeling Language (UML) [19].  

Unlike ER modeling and UML class diagrams, ORM models are attribute-free, 
treating all facts as relationships (unary, binary, ternary etc.). ORM includes proce-
dures for mapping to attribute-based structures, such as those of ER or UML. In addi-
tion to ORM, fact-oriented modeling includes a number of closely related approaches, 
such as Natural language Information Analysis Method (NIAM) [29] and Fully-
Communication Oriented Information Modeling (FCO-IM) [1]. For a basic introduc-
tion to ORM see [13], and for a thorough treatment see [15]. For a comparison of 
ORM with UML see [11].  

Business rules include constraints and derivation rules. Static rules apply to each 
state of the information system that models the business domain (e.g. each person was 
born on at most one date). Dynamic rules reference at least two states, which may be 
either successive (e.g. no employee may be demoted in rank) or separated by some 
period (e.g. invoices ought to be paid within 30 days of being issued). While ORM 
provides richer graphic support for static rules than ER or UML provide, ORM as yet 
cannot match UML’s support for dynamic rules.  



Since the 1980s, many extensions to fact-orientation have been proposed to model 
temporal aspects and processes. The TOP model [10] allows fact types to be qualified 
by a temporal dimension and granularity. TRIDL [4] includes time operators and ac-
tion semantics, but not dynamic constraints. LISA-D [18] supports basic updates. 
Task structures and task transactions model various processes [17], with formal 
grounding in process algebra. EVORM [24] formalizes first and second order evolu-
tion of information systems. Explorations have been made to address reaction rules 
[e.g. 16], and a proposal has been made to extend ORM with a high level textual lan-
guage to specify dynamic rules in a purely declarative fashion [3]. 

Some fact-based approaches that share similarities with ORM include support for 
modeling temporality or system dynamics. For example, one extended fact-based 
model caters for different calendric systems and temporal operators [23], T-ORM 
provides basic support for temporal object evolution [8], the CRL language in 
TEMPORA enables various constraints, derivations and actions to be formulated on 
Entity-Relationship-Time (ERT) models [26, 28], and the OSM method includes both 
graphical and textual specification of state nets and object interactions [9]. 

Attribute-based methods such as UML and some extensions of ER incorporate dy-
namic modeling via diagrams (e.g. UML state charts and activity diagrams), with re-
cent approaches such as the Business Process Modeling Notation (BPMN) gaining 
popularity for workflow modeling. The MADS (Modeling of Application Data with 
Spatio-temporal features) approach [22] extends ER with deep support for temporal 
data types and operators. For textual specification of dynamic rules, the most popular 
approach is the Object Constraint Language (OCL) [21], but the OCL syntax is often 
too mathematical for validation by nontechnical domain experts. 

The rest of this paper is structured as follows. Section 2 reviews some standards 
and proposals for modeling temporal data and operations. Section 3 discusses concep-
tual issues and patterns for modeling facts that include temporal information. Section 
4 proposes data model patterns, including dynamic rules where necessary, to capture 
histories of entities as they migrate between roles. Section 5 summarizes the main re-
sults, and lists references. 

2 Temporal Data Standards and Proposals 

Industrial standards and proposals for temporal data typically identify three main 
temporal data types: instant; duration; and period. An instant is a point in time (e.g. 
2008 July 4, 2:00 p.m. MDT). A duration is a length of time (e.g. 2 weeks): this term 
is used in both 1S0 8601 [19] and XML schema (www.w3.org/TR/xmlschema11-2/), 
but is called “interval” in the SQL standard (www.iso.org). A period is an anchored 
duration of time (e.g. 2008 July 4 … 2008 July 7 PST). This term is used in 
SQL/Temporal (currently on hold), but is called time interval in ISO 8601 and inter-
val in OWL-Time (www.w3.org/TR/owl-time/). Hence the term “interval” needs to 
be used with care. In ISO 8601, periods are closed (they have both a start and an end), 
but in OWL-Time they may be open (e.g. today onwards). In OWL-Time, a period 
with nonzero extent (if closed, it ends after it starts) is a proper period. 
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Most temporal standards draw from ISO 8601, which specifies many temporal 
terms, calendric systems (e.g. Gregorian, Julian), time zones (e.g. UTC, MDT), date 
and time formats etc. The SQL standard includes basic support for date, time, date-
time and “interval” (in the sense of duration). XML Schema supports these and sever-
al other temporal data types (e.g. gYear for Gregorian year). The Time Markup Lan-
guage (TimeML) covers date/time concepts as well as linguistic expressions to 
describe events (www.timeml.org/site/index.html). OWL-Time, a working draft to ex-
tend the Web Ontology Language OWL (www.w3.org/2004/owl) includes a set of 
temporal classes and predicates, and logical axioms about these. A subgroup of the 
Object management Group (OMG) is currently working to provide a unified treatment 
of basic temporal concepts for use in multiple approaches, including SBVR (Seman-
tics of Business Vocabulary and Business Rules). 

Instants are strictly ordered on a time axis, and may be compared using temporal 
operators such as < (for “is before”) and ≤ (for “is at or before”).  

But many different proposals exist for an appropriate set of temporal operators be-
tween periods (time intervals). Many make use of Allen’s operators [1], although 
some of these proposals [e.g. 7] wrongly construe many of Allen’s definitions. Fig. 1 
visually depicts Allen’s operators as 13 mutually exclusive relationships between an 
ordered pair of closed, proper periods P1 and P2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Allen’s operators for comparing closed, proper periods 

OWL-Time accurately adopts Allen’s operators, but this is unfortunate, as these 
operators are often poorly named, poorly defined, or poorly chosen. To begin with, 
overlaps and meets are intuitively understood as symmetric, but here are made asym-
metric. If such asymmetric operators are to be used, they should be given intuitive 
names (e.g. leftOverlaps, rightOverlaps, leftMeets, rightMeets). Moreover, using our 
intuitive understanding of the terms, the contains, starts and finishes operators are too 
restrictive (e.g. equals should be treated as a special case of these, and starts should be 
a special case of during etc.).  

Allen’s before and after operators between periods require that the end of P1 < the 
start of P2. This could be acceptable if we adopt a quantized view of time, where time 
is composed of atomic chronons, since that would allow the periods to be contiguous. 



However if we assume that time is continuous, this would not allow the periods to be 
contiguous, which goes against our common sense notion of “before”. For example, 
one would normally agree that the Jurassic period is before the Trassic period (it im-
mediately preceded it) and that yesterday is before today. Since OWL-Time and many 
other approaches leave the question open whether time is discrete or continuous, this 
choice of “before” is bound to confuse.  

If time is regarded to be continuous, it is better to define “before” between periods 
so that the end of P1 ≤ the start of P2. With this definition, it follows that yesterday is 
before today, even if we adopt the ISO 8601 definition of calendar day as a “time in-
terval starting at midnight and ending at the next midnight, the latter being also the 
starting instant of the next calendar day” [11]. Note that with this definition, any giv-
en midnight occurs on exactly two calendar days!  

With this definition of calendar day, and using Allen’s operators, yesterday meets 
today (yesterday’s end is today’s start) but does not overlap with today (since Allens’ 
overlap requires yesterday’s end to precede today’s start). It seems preferable to de-
fine periods to overlap if and only if they have an instant in common. Apart from be-
ing symmetric, this is consistent with the way overlaps is defined in set theory and 
mereology. As illustrated later, it is also useful to distinguish between trivial overlap 
(where periods have exactly one instant in common) and nontrivial overlap. 

Allen’s meets operator is flawed, not only in being asymmetric, but in failing to ca-
ter for discrete time. If time is discrete, we should define periods to meet if they are 
contiguous (the end chronon of one immediately precedes the start chronon of the 
other). Note that this is one way to avoid the temporal version of the classic problem 
about where the midpoint goes when a line is divided in two [11, p. 110]. 

Whether or not time is continuous, we can measure time only to a limited accuracy, 
which effectively makes it discrete for information modeling purposes. Moreover, 
when recording information, we often choose a coarser temporal granularity than is 
physically attainable (e.g. we might track a patient’s blood pressure at most daily or 
hourly). Pragmatically, we often juxtapose periods of a coarse granularity when track-
ing history rather than treating the end of one period to be the start of the next. For 
example, when updating an employee’s salary, the new salary period is typically set 
to one day after the previous salary period. This avoids problems such as assigning 
two different salaries to an employee at the instant his/her salary is updated. 

Another problem with Allen’s operators is that they are often of little use pragmat-
ically. In practice, one often needs instead to apply constraints involving our intuitive 
notions or overlapping, nonoverlapping, containment, etc. 

Recently we investigated OWL-Time from an ORM perspective, and found it to be 
seriously deficient. Apart from its unwise adoption of Allen’s operators, OWL-Time’s 
axiomatic development appears to be problematic (partly because of its silence on the 
discrete/continuous time issue), and is incomplete. As a simple example of the latter, 
Fig. 2 shows an ORM schema for a fragment of the OWL metaschema dealing with 
duration descriptions. The inclusive-or constraint (circled dot) and preferred external 
uniqueness constraint (circled double-bar), are not captured in OWL-Time, but are 
clearly needed. As a general comment about OWL itself, OWL models are much eas-
ier to formulate if generated from ORM rather than working directly in OWL.  
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Fig. 2. ORM schema for duration descriptions in OWL-Time (constraints added) 

3 Conceptual Modeling of Temporal Facts  

At the conceptual level, and ORM in particular, basic temporal object types (e.g. Date 
or Period) may be used in models like other object types, with relevant temporal oper-
ators (e.g. –, overlaps) predefined for the type. For ORM, we introduce some useful 
classifications. A temporal object type is once-only or repeatable. A once-only tem-
poral object is a single instant or period. Once-only types (e.g. Year(CE), 
Month(ym)) are useful for recording when an individual event (non-repeatable) hap-
pened or will happen (e.g. the election of the next US president). A repeatable tem-
poral object corresponds to a set of instants/periods. Repeatable object types (e.g. 
Weekday(.code), MonthOfYear(.nr)) are useful for modeling schedules (e.g. a wor-
kout routine). 

Periods may be modeled by explicitly indicating their start and end times (if 
known), using an external uniqueness constraint to provide an identifier. Durations 
may be modeled by a simple object type with a unit for the chosen temporal granulari-
ty, e.g. Age(y:).  

For modeling purposes, a fact is a proposition taken to be true by the business, and 
a fact type is a set of possible fact instances. We classify fact types as definitional, 
once-only, or repeatable. Definitional facts are true by definition, so have no temporal 
aspect. For example, the fact type PolygonShape has NrSides is definitional. Each once-
only fact corresponds to a single event. Its truth is determined by an event that can 
never be repeated in the business domain (e.g. Terry Halpin was born in Australia). 
So ignoring reincarnation, the fact type Person was born in Country is once-only. Each re-
peatable fact corresponds to a set of events. Its truth is determined by any one of a 
non-unit-set of repeatable events (e.g. Terry Halpin visited Mexico). So the fact type 
Person visited Country is repeatable. For each once-only or repeatable fact type in a mod-
el, we need to determine what (if any) temporal information is needed. 



An event may be a point event (occurs at an instant) or a period event (has nonzero 
duration, e.g. your reading of this paper). For once-only fact types relating to point 
events, if we wish to record when at least some instances of those events occurred, 
add a temporal fact type of the desired granularity (e.g., for Person was born in Country, 
add Person was born on Date, or Person was born in Year etc.). For once-only fact types relat-
ing to period events, to record when at least some instances of those events occurred, 
add temporal fact types of the desired granularity to note the start and end (if known) 
of the period (e.g. FirstReading started at Time(dhm), FirstReading ended at Time(dhm)). Here Fir-
stReading may be modeled as an objectification of Person first read Paper, or as a corefe-
renced type identified by FirstReading is by Person, FirstReading is of Paper. If Period is expli-
citly introduced (e.g. FirstReading occupied Period) then the start and end predicates are 
attached to Period. If we are not interested in distinguishing start and end, we may 
model it as for a point event using coarse granularity (e.g. FirstReading occurred on Date). 

While once-only fact types are unchangeable, repeatable fact types may be chan-
geable (e.g. Patient has Temperature, Patient is allergic to Drug). For such fact types, if we are 
interested only in the current snapshot then no remodeling is needed (simply update 
the fact populations as required). To maintain history of a changeable fact type that is 
functional, we may simply insert into its key the relevant role played by a temporal 
object type of the desired granularity (e.g. Patient(.nr) at Hour(dh) had Temperature(oC:)). 
This flattened approach may be remodeled using nesting or coreferencing in the usual 
way. For example, use the fact type TemperatureMeasurement recorded Temperature, where 
TemperatureMeasurement is either an objectification of Patient had temperature taken at Hour or 
is coreferenced by TemperatureMeasurement is of Patient and TemperatureMeasurement is at 
Hour. As a further alternative, a simple identifier may be introduced for the measure-
ment object type, e.g. TemperatureMeasurement(.nr). 

To maintain history of nonfunctional fact types that are changeable, the previous 
patterns may be modified to include a distinguishing temporal role (e.g. startdate or 
starttime), to distinguish different events that make the same fact true. Consider for 
example, the report of country visits shown in Fig. 3. For each visit, the start date is 
known and possibly the end date is known (“?” denotes a null). Employee 102 visited 
The Netherlands twice, and we wish to retain a record of both visits, so we cannot 
model visits by the simple fact type Employee visited Country. 

 
Visit: empNr countryCode startdate enddate 

 101 
101 
102 
102 
102 

NL 
CA 
NL 
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NL 

2000-01-01 
2008-02-15 
2007-06-05 
2007-06-20 
2008-06-08 

2000-01-15 
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2007-06-20 
2007-06-25 
? 

Fig. 3. Record of visits to countries by employees 

Let us assume that for any given date, an employee may start visiting or end visit-
ing at most one country (if this is not true, replace Date by Instant). Fig. 4 shows basic 
ORM schemas for this situation, in (a) nested, (b) coreferenced, and (c) flattened 
form. Other solutions are to introduce a simple identifier for Visit, or an ordinal num-
ber as part of the identifier (e.g. Fred’s 2nd visit to France). ORM’s current relational 
mapping algorithm (Rmap) maps (a) and (b) to (d), and (c) to (e).  
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Fig. 4. Basic ORM schemas for modeling the data in Fig. 3 

 
In verbalizing the data in the Fig. 3 report, it seems most natural to use a quater-

nary for row 1 and a ternary from row 2, leading to the flattened solution (Fig. 4(c)). 
But Rmap punishes the modeler for this choice by mapping to the 2-table relational 
schema (Fig. 4(e)) instead of the simpler 1-table schema (Fig. 4(d)) obtained from the 
nested or coreferenced schemas. As an enhancement to the NORMA tool [6] for 
ORM 2, we are modifying Rmap to allow retention of the flattened schema while still 
offering the single table relational map by default (the user may override this choice). 

If we also want to talk about visits (e.g. to record the main purpose of a visit as 
business or pleasure), the nested or coreferenced solutions are far preferable (compare 
adding the fact type Visit is for VisitPurpose with adding the quaternary Employee began visit-
ing Country on Date for main- VisitPurpose together with another 3-part subset constraint). 

Two temporal constraints need to be added to the schemas in Fig. 4. The first is a 
value-comparison constraint that is most easily understood using schema Fig. 4(b). 
This constraint may be depicted graphically in ORM 2 [15, p. 290] or verbalized tex-
tually as: For each Visit, existing enddate ≥ startdate. The “existing” qualification applies the 
condition only where an end date does exist. 

The second constraint requires that no two visits by the same employee overlap 
nontrivially in time (the data in rows 3 and 4 of Fig. 3 indicate that trivial overlap is 
allowed in this business domain). This constraint cannot be captured graphically in 
ORM 2 but can be specified textually in either static form or dynamic form. The static 
form is complex (cf. the restaurant seating example in [3]), whereas given the value-
comparison constraint, the dynamic form of the overlap constraint may be rendered 
simply: For each Employee, existing previous Visit.enddate ≤ added Visit.startdate. For discus-
sion on the semantics underlying such syntax, see [3]. 



Note that if we have complete knowledge of all visit periods by an employee, we 
could derive the quaternary in Fig. 4(c) from the two ternaries Employee began visiting 
Country on Date and Employee ended a visit to Country on Date, with a pair subset constraint 
between the Employee-Country role pairs (from the enddate fact type to the startdate fact 
type), by ordering visit periods sequentially. However, if we have incomplete knowl-
edge we cannot derive the quaternary, and the two ternaries solution must be rejected 
(e.g. the ternary solution allows a population of the two tuples <101, NL, 2000-01-01, 
?> and <101, NL, ?, 20008-02-15>, but the employee might have made two visits, not 
one visit. This raises a fine point about the notion of elementarity of facts. Assuming 
complete knowledge, and the derivation possibility by ordering visit periods, is the 
quaternary fact “Employee 101 visited the Country ‘NL’ from the Date ‘2000-01-01’ 
to the Date ‘2000-01-15’” elementary? We leave further investigation of this issue as 
a research topic. 

Sometimes, business rules require no overlap (trivial or nontrivial). For example, in 
modeling pay awards, it is normal to require for each JobPosition that no two (start-
date, enddate) periods overlap. And if we modify the country visit example to country 
habitation, where on a given date a person may start or end residing in at most one 
country, the country role is excluded from the identification scheme for habitations, 
and no overlap is allowed. 

As a final note before ending this section, one difference between the ORM and 
CogNIAM (www.pna-group.com) flavors of fact-oriented modeling is that ORM for-
bids the inclusion of nulls in asserted (non-derived) facts. For example, ORM ignores 
the null in verbalizing the ternary fact on row 2 of Fig. 3, whereas CogNIAM allows 
this row to be verbalized as a quaternary including the null. In ORM we have found it 
useful to be able to specify additional constraints on derived fact types, where nulls 
are allowed in fact populations, but have found it safer to avoid nulls in asserted fact 
types (requiring any asserted fact to be either elementary or existential). Which of 
these approaches is better in this regard is left as a topic for further discussion. 

4 Modeling History of Migration between Role Subtypes 

In previous work [14], we outlined a general approach for modeling histories of enti-
ties as they migrated from one role subtype to another. In this section, after a brief re-
view of some basic concepts, we now extend that work.  

A type is rigid if each instance of it must remain in that type for the duration of that 
instances’s lifetime (e.g. Person, Tree), otherwise the type is a role type (e.g. Em-
ployee, Cricketer). Over time, an entity may move from one role type to another. 
Suppose each role has specific details of interest and we want to maintain this history 
of an entity as it changes roles. We now classify role subtypes as once-only or repeat-
able. With a once-only role subtype, objects can never return to play that role again 
once they have left the subtype (e.g. Child, SinglePerson). With a repeatable role sub-
type objects can return to play that role again (e.g. Employee, MarriedPerson). 

Histories involving transitions between once-only role subtypes may be modeled 
using a successive disjunctions pattern. For example, Adult is a subtype of Teenage-
rOrAdult which in turn is a subtype of ChildOrTeenagerOrAdult. Subtype specific de-
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*Each PersonAsChild is a LifeRolePlaying involving LifeRole ‘Child’.
*Each PersonAsTeenager is a LifeRolePlaying involving LifeRole ‘Teenager’.
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tails may now be easily retained (e.g. Adult has favorite- Book, TeenagerOrAdult as a 
teen had favorite- PopGroup, ChildOrTeenagerOrAdult as a child had favorite- Toy). 
This arrangement automatically caters for the linear transition order from role to role. 

If the roles are once-only, then an alternative solution is to use what we call the 
once-only role playing pattern, augmented by a dynamic constraint to constrain the 
possible role transitions. For example, the child-teenager-adult example may be mod-
eled as shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Example of once-only role playing pattern with dynamic rule 

If a role subtype is repeatable, the previous approaches cannot record history of 
multiple playings of the same role by the same object. To address this problem, we 
provide what we call the repeatable role playing pattern, which includes the start-
time of a role playing as part of its natural identifier. One version of this is shown in 
Fig. 6 (minus the dynamic rule). This assumes that a person may begin or end a given 
role at most once on the same date (if this is not true, replace Date by Instant). This 
pattern allows that a person may begin or end multiple roles on the same date. Alter-
native versions of the pattern introduce either simple identifiers, or ordinal numbers as 
partial identifiers, for RolePlaying. A concrete example is given in Fig. 7 

 
 
 
 
 
 
 
 
 
 

Fig. 6. One version of the repeatable role playing pattern 
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*Each PersonAsDivorced is a MaritalRolePlaying that is of MaritalRole ‘D’.
*Each PersonAsWidowed is a MaritalRolePlaying that is of MaritalRole ‘W’.

For each Person,
in case previous
maritalRolePlaying.maritalRole =
   ‘S’: added value = ‘M’
   ‘M’: added value in (‘W’, ‘D’)
   ‘W’: added value = ‘M’
   ‘D’: added value = ‘M’
end cases.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Example of repeatable role playing pattern with dynamic rule 

5 Conclusion 

This paper reviewed some approaches to temporal data and operations, identified 
problems with Allen’s operators and OWL-Time, suggested conceptual ways to clas-
sify temporal information, raised some issues regarding elementarity, and proposed 
modeling heuristics and data model patterns to address time-impacted tasks such as 
modeling histories, and tracking entities across time as they migrate between roles.  

While the graphic depiction of ORM models has been implemented in the 
NORMA tool, the detailed syntax for textual specification of temporal and dynamic 
rules (including scheduling) and the generation of code from such textual rules is still 
a work in progress. We plan to extend the NORMA tool to support such rules, and al-
so implement a mapping from ORM to OWL, work on which has already begun. It 
may also be worthwhile considering graphical extensions to ORM to directly support 
some temporal aspects (e.g. marking types as once-only or repeatable). 
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