
Temporal Modeling and ORM

Terry Halpin

Neumont University, Utah, USA.
e-mail: terry@neumont.edu

Abstract: One difficult task in information modeling is to adequately address
the impact of time. This paper briefly reviews some popular approaches for
modeling temporal data and operations, then provides a conceptual framework
for classifying temporal information, and proposes data model patterns to ad-
dress time-impacted tasks such as modeling histories, and tracking entities
across time as they migrate between roles. Special attention is given to captur-
ing the relevant business rules. While the data modeling discussion focuses on
Object-Role Modeling (ORM), many of the basic principles discussed can be
adapted to other approaches such as Entity Relationship Modeling (ER) and the
Unified Modeling Language (UML).

1 Introduction

One challenging aspect of information modeling is to deal appropriately with tempor-
al data and operations. This paper discusses how various temporal issues can be ad-
dressed at the conceptual level. The treatment focuses on Object-Role Modeling
(ORM), a fact-oriented approach for modeling, transforming, and querying informa-
tion in terms of the underlying facts of interest, where facts and rules may be verba-
lized in language readily understandable by non-technical users of the business do-
main. However, much of the discussion can be adapted to other data modeling
approaches such as Entity Relationship Modeling (ER) [5] and the class diagramming
technique within the Unified Modeling Language (UML) [19].

Unlike ER modeling and UML class diagrams, ORM models are attribute-free,
treating all facts as relationships (unary, binary, ternary etc.). ORM includes proce-
dures for mapping to attribute-based structures, such as those of ER or UML. In addi-
tion to ORM, fact-oriented modeling includes a number of closely related approaches,
such as Natural language Information Analysis Method (NIAM) [29] and Fully-
Communication Oriented Information Modeling (FCO-IM) [1]. For a basic introduc-
tion to ORM see [13], and for a thorough treatment see [15]. For a comparison of
ORM with UML see [11].

Business rules include constraints and derivation rules. Static rules apply to each
state of the information system that models the business domain (e.g. each person was
born on at most one date). Dynamic rules reference at least two states, which may be
either successive (e.g. no employee may be demoted in rank) or separated by some
period (e.g. invoices ought to be paid within 30 days of being issued). While ORM
provides richer graphic support for static rules than ER or UML provide, ORM as yet
cannot match UML’s support for dynamic rules.

Since the 1980s, many extensions to fact-orientation have been proposed to model
temporal aspects and processes. The TOP model [10] allows fact types to be qualified
by a temporal dimension and granularity. TRIDL [4] includes time operators and ac-
tion semantics, but not dynamic constraints. LISA-D [18] supports basic updates.
Task structures and task transactions model various processes [17], with formal
grounding in process algebra. EVORM [24] formalizes first and second order evolu-
tion of information systems. Explorations have been made to address reaction rules
[e.g. 16], and a proposal has been made to extend ORM with a high level textual lan-
guage to specify dynamic rules in a purely declarative fashion [3].

Some fact-based approaches that share similarities with ORM include support for
modeling temporality or system dynamics. For example, one extended fact-based
model caters for different calendric systems and temporal operators [23], T-ORM
provides basic support for temporal object evolution [8], the CRL language in
TEMPORA enables various constraints, derivations and actions to be formulated on
Entity-Relationship-Time (ERT) models [26, 28], and the OSM method includes both
graphical and textual specification of state nets and object interactions [9].

Attribute-based methods such as UML and some extensions of ER incorporate dy-
namic modeling via diagrams (e.g. UML state charts and activity diagrams), with re-
cent approaches such as the Business Process Modeling Notation (BPMN) gaining
popularity for workflow modeling. The MADS (Modeling of Application Data with
Spatio-temporal features) approach [22] extends ER with deep support for temporal
data types and operators. For textual specification of dynamic rules, the most popular
approach is the Object Constraint Language (OCL) [21], but the OCL syntax is often
too mathematical for validation by nontechnical domain experts.

The rest of this paper is structured as follows. Section 2 reviews some standards
and proposals for modeling temporal data and operations. Section 3 discusses concep-
tual issues and patterns for modeling facts that include temporal information. Section
4 proposes data model patterns, including dynamic rules where necessary, to capture
histories of entities as they migrate between roles. Section 5 summarizes the main re-
sults, and lists references.

2 Temporal Data Standards and Proposals

Industrial standards and proposals for temporal data typically identify three main
temporal data types: instant; duration; and period. An instant is a point in time (e.g.
2008 July 4, 2:00 p.m. MDT). A duration is a length of time (e.g. 2 weeks): this term
is used in both 1S0 8601 [19] and XML schema (www.w3.org/TR/xmlschema11-2/),
but is called “interval” in the SQL standard (www.iso.org). A period is an anchored
duration of time (e.g. 2008 July 4 … 2008 July 7 PST). This term is used in
SQL/Temporal (currently on hold), but is called time interval in ISO 8601 and inter-
val in OWL-Time (www.w3.org/TR/owl-time/). Hence the term “interval” needs to
be used with care. In ISO 8601, periods are closed (they have both a start and an end),
but in OWL-Time they may be open (e.g. today onwards). In OWL-Time, a period
with nonzero extent (if closed, it ends after it starts) is a proper period.

time

P1 P2

P1 P2

P2

P1

P1 before P2

P2 after P1

P1 equals P2

P1 meets P2

P2 met_by P1

P1

P2P1 overlaps P2

P2 overlapped_by P1

P1

P2

P1 during P2

P2 contains P1

P1

P2

P1 starts P2

P2 started_by P1

P1

P2

P1 finishes P2

P2 finished_by P1

Most temporal standards draw from ISO 8601, which specifies many temporal
terms, calendric systems (e.g. Gregorian, Julian), time zones (e.g. UTC, MDT), date
and time formats etc. The SQL standard includes basic support for date, time, date-
time and “interval” (in the sense of duration). XML Schema supports these and sever-
al other temporal data types (e.g. gYear for Gregorian year). The Time Markup Lan-
guage (TimeML) covers date/time concepts as well as linguistic expressions to
describe events (www.timeml.org/site/index.html). OWL-Time, a working draft to ex-
tend the Web Ontology Language OWL (www.w3.org/2004/owl) includes a set of
temporal classes and predicates, and logical axioms about these. A subgroup of the
Object management Group (OMG) is currently working to provide a unified treatment
of basic temporal concepts for use in multiple approaches, including SBVR (Seman-
tics of Business Vocabulary and Business Rules).

Instants are strictly ordered on a time axis, and may be compared using temporal
operators such as < (for “is before”) and ≤ (for “is at or before”).

But many different proposals exist for an appropriate set of temporal operators be-
tween periods (time intervals). Many make use of Allen’s operators [1], although
some of these proposals [e.g. 7] wrongly construe many of Allen’s definitions. Fig. 1
visually depicts Allen’s operators as 13 mutually exclusive relationships between an
ordered pair of closed, proper periods P1 and P2.

Fig. 1. Allen’s operators for comparing closed, proper periods

OWL-Time accurately adopts Allen’s operators, but this is unfortunate, as these
operators are often poorly named, poorly defined, or poorly chosen. To begin with,
overlaps and meets are intuitively understood as symmetric, but here are made asym-
metric. If such asymmetric operators are to be used, they should be given intuitive
names (e.g. leftOverlaps, rightOverlaps, leftMeets, rightMeets). Moreover, using our
intuitive understanding of the terms, the contains, starts and finishes operators are too
restrictive (e.g. equals should be treated as a special case of these, and starts should be
a special case of during etc.).

Allen’s before and after operators between periods require that the end of P1 < the
start of P2. This could be acceptable if we adopt a quantized view of time, where time
is composed of atomic chronons, since that would allow the periods to be contiguous.

However if we assume that time is continuous, this would not allow the periods to be
contiguous, which goes against our common sense notion of “before”. For example,
one would normally agree that the Jurassic period is before the Trassic period (it im-
mediately preceded it) and that yesterday is before today. Since OWL-Time and many
other approaches leave the question open whether time is discrete or continuous, this
choice of “before” is bound to confuse.

If time is regarded to be continuous, it is better to define “before” between periods
so that the end of P1 ≤ the start of P2. With this definition, it follows that yesterday is
before today, even if we adopt the ISO 8601 definition of calendar day as a “time in-
terval starting at midnight and ending at the next midnight, the latter being also the
starting instant of the next calendar day” [11]. Note that with this definition, any giv-
en midnight occurs on exactly two calendar days!

With this definition of calendar day, and using Allen’s operators, yesterday meets
today (yesterday’s end is today’s start) but does not overlap with today (since Allens’
overlap requires yesterday’s end to precede today’s start). It seems preferable to de-
fine periods to overlap if and only if they have an instant in common. Apart from be-
ing symmetric, this is consistent with the way overlaps is defined in set theory and
mereology. As illustrated later, it is also useful to distinguish between trivial overlap
(where periods have exactly one instant in common) and nontrivial overlap.

Allen’s meets operator is flawed, not only in being asymmetric, but in failing to ca-
ter for discrete time. If time is discrete, we should define periods to meet if they are
contiguous (the end chronon of one immediately precedes the start chronon of the
other). Note that this is one way to avoid the temporal version of the classic problem
about where the midpoint goes when a line is divided in two [11, p. 110].

Whether or not time is continuous, we can measure time only to a limited accuracy,
which effectively makes it discrete for information modeling purposes. Moreover,
when recording information, we often choose a coarser temporal granularity than is
physically attainable (e.g. we might track a patient’s blood pressure at most daily or
hourly). Pragmatically, we often juxtapose periods of a coarse granularity when track-
ing history rather than treating the end of one period to be the start of the next. For
example, when updating an employee’s salary, the new salary period is typically set
to one day after the previous salary period. This avoids problems such as assigning
two different salaries to an employee at the instant his/her salary is updated.

Another problem with Allen’s operators is that they are often of little use pragmat-
ically. In practice, one often needs instead to apply constraints involving our intuitive
notions or overlapping, nonoverlapping, containment, etc.

Recently we investigated OWL-Time from an ORM perspective, and found it to be
seriously deficient. Apart from its unwise adoption of Allen’s operators, OWL-Time’s
axiomatic development appears to be problematic (partly because of its silence on the
discrete/continuous time issue), and is incomplete. As a simple example of the latter,
Fig. 2 shows an ORM schema for a fragment of the OWL metaschema dealing with
duration descriptions. The inclusive-or constraint (circled dot) and preferred external
uniqueness constraint (circled double-bar), are not captured in OWL-Time, but are
clearly needed. As a general comment about OWL itself, OWL models are much eas-
ier to formulate if generated from ORM rather than working directly in OWL.

TemporalEntity
has

DurationDescription

seconds

Decimal

minutes

hours

days

weeks

months

years

Fig. 2. ORM schema for duration descriptions in OWL-Time (constraints added)

3 Conceptual Modeling of Temporal Facts

At the conceptual level, and ORM in particular, basic temporal object types (e.g. Date
or Period) may be used in models like other object types, with relevant temporal oper-
ators (e.g. –, overlaps) predefined for the type. For ORM, we introduce some useful
classifications. A temporal object type is once-only or repeatable. A once-only tem-
poral object is a single instant or period. Once-only types (e.g. Year(CE),
Month(ym)) are useful for recording when an individual event (non-repeatable) hap-
pened or will happen (e.g. the election of the next US president). A repeatable tem-
poral object corresponds to a set of instants/periods. Repeatable object types (e.g.
Weekday(.code), MonthOfYear(.nr)) are useful for modeling schedules (e.g. a wor-
kout routine).

Periods may be modeled by explicitly indicating their start and end times (if
known), using an external uniqueness constraint to provide an identifier. Durations
may be modeled by a simple object type with a unit for the chosen temporal granulari-
ty, e.g. Age(y:).

For modeling purposes, a fact is a proposition taken to be true by the business, and
a fact type is a set of possible fact instances. We classify fact types as definitional,
once-only, or repeatable. Definitional facts are true by definition, so have no temporal
aspect. For example, the fact type PolygonShape has NrSides is definitional. Each once-
only fact corresponds to a single event. Its truth is determined by an event that can
never be repeated in the business domain (e.g. Terry Halpin was born in Australia).
So ignoring reincarnation, the fact type Person was born in Country is once-only. Each re-
peatable fact corresponds to a set of events. Its truth is determined by any one of a
non-unit-set of repeatable events (e.g. Terry Halpin visited Mexico). So the fact type
Person visited Country is repeatable. For each once-only or repeatable fact type in a mod-
el, we need to determine what (if any) temporal information is needed.

An event may be a point event (occurs at an instant) or a period event (has nonzero
duration, e.g. your reading of this paper). For once-only fact types relating to point
events, if we wish to record when at least some instances of those events occurred,
add a temporal fact type of the desired granularity (e.g., for Person was born in Country,
add Person was born on Date, or Person was born in Year etc.). For once-only fact types relat-
ing to period events, to record when at least some instances of those events occurred,
add temporal fact types of the desired granularity to note the start and end (if known)
of the period (e.g. FirstReading started at Time(dhm), FirstReading ended at Time(dhm)). Here Fir-
stReading may be modeled as an objectification of Person first read Paper, or as a corefe-
renced type identified by FirstReading is by Person, FirstReading is of Paper. If Period is expli-
citly introduced (e.g. FirstReading occupied Period) then the start and end predicates are
attached to Period. If we are not interested in distinguishing start and end, we may
model it as for a point event using coarse granularity (e.g. FirstReading occurred on Date).

While once-only fact types are unchangeable, repeatable fact types may be chan-
geable (e.g. Patient has Temperature, Patient is allergic to Drug). For such fact types, if we are
interested only in the current snapshot then no remodeling is needed (simply update
the fact populations as required). To maintain history of a changeable fact type that is
functional, we may simply insert into its key the relevant role played by a temporal
object type of the desired granularity (e.g. Patient(.nr) at Hour(dh) had Temperature(oC:)).
This flattened approach may be remodeled using nesting or coreferencing in the usual
way. For example, use the fact type TemperatureMeasurement recorded Temperature, where
TemperatureMeasurement is either an objectification of Patient had temperature taken at Hour or
is coreferenced by TemperatureMeasurement is of Patient and TemperatureMeasurement is at
Hour. As a further alternative, a simple identifier may be introduced for the measure-
ment object type, e.g. TemperatureMeasurement(.nr).

To maintain history of nonfunctional fact types that are changeable, the previous
patterns may be modified to include a distinguishing temporal role (e.g. startdate or
starttime), to distinguish different events that make the same fact true. Consider for
example, the report of country visits shown in Fig. 3. For each visit, the start date is
known and possibly the end date is known (“?” denotes a null). Employee 102 visited
The Netherlands twice, and we wish to retain a record of both visits, so we cannot
model visits by the simple fact type Employee visited Country.

Visit: empNr countryCode startdate enddate

 101
101
102
102
102

NL
CA
NL
BE
NL

2000-01-01
2008-02-15
2007-06-05
2007-06-20
2008-06-08

2000-01-15
?
2007-06-20
2007-06-25
?

Fig. 3. Record of visits to countries by employees

Let us assume that for any given date, an employee may start visiting or end visit-
ing at most one country (if this is not true, replace Date by Instant). Fig. 4 shows basic
ORM schemas for this situation, in (a) nested, (b) coreferenced, and (c) flattened
form. Other solutions are to introduce a simple identifier for Visit, or an ordinal num-
ber as part of the identifier (e.g. Fred’s 2nd visit to France). ORM’s current relational
mapping algorithm (Rmap) maps (a) and (b) to (d), and (c) to (e).

Employee
(.nr)

Country
(.code)

Date
(ymd)

… visited … from … to ...

… began visiting … on ...

… began visiting … on …

“Visit !”

Employee
(.nr)

Country
(.code)

Date
(ymd)

ended on

(a) (b)

Visit !

is by

is to

began on

Date
(mdy)

ended on

Employee
(.nr)

Country
(.code)

(c)

Visit (empNr, countryCode, startdate)

VisitPeriod (empNr, countryCode, startdate, enddate)

Visit (empNr, countryCode, startdate, [enddate])(d)

(e)

[startdate]

[enddate]

Fig. 4. Basic ORM schemas for modeling the data in Fig. 3

In verbalizing the data in the Fig. 3 report, it seems most natural to use a quater-

nary for row 1 and a ternary from row 2, leading to the flattened solution (Fig. 4(c)).
But Rmap punishes the modeler for this choice by mapping to the 2-table relational
schema (Fig. 4(e)) instead of the simpler 1-table schema (Fig. 4(d)) obtained from the
nested or coreferenced schemas. As an enhancement to the NORMA tool [6] for
ORM 2, we are modifying Rmap to allow retention of the flattened schema while still
offering the single table relational map by default (the user may override this choice).

If we also want to talk about visits (e.g. to record the main purpose of a visit as
business or pleasure), the nested or coreferenced solutions are far preferable (compare
adding the fact type Visit is for VisitPurpose with adding the quaternary Employee began visit-
ing Country on Date for main- VisitPurpose together with another 3-part subset constraint).

Two temporal constraints need to be added to the schemas in Fig. 4. The first is a
value-comparison constraint that is most easily understood using schema Fig. 4(b).
This constraint may be depicted graphically in ORM 2 [15, p. 290] or verbalized tex-
tually as: For each Visit, existing enddate ≥ startdate. The “existing” qualification applies the
condition only where an end date does exist.

The second constraint requires that no two visits by the same employee overlap
nontrivially in time (the data in rows 3 and 4 of Fig. 3 indicate that trivial overlap is
allowed in this business domain). This constraint cannot be captured graphically in
ORM 2 but can be specified textually in either static form or dynamic form. The static
form is complex (cf. the restaurant seating example in [3]), whereas given the value-
comparison constraint, the dynamic form of the overlap constraint may be rendered
simply: For each Employee, existing previous Visit.enddate ≤ added Visit.startdate. For discus-
sion on the semantics underlying such syntax, see [3].

Note that if we have complete knowledge of all visit periods by an employee, we
could derive the quaternary in Fig. 4(c) from the two ternaries Employee began visiting
Country on Date and Employee ended a visit to Country on Date, with a pair subset constraint
between the Employee-Country role pairs (from the enddate fact type to the startdate fact
type), by ordering visit periods sequentially. However, if we have incomplete knowl-
edge we cannot derive the quaternary, and the two ternaries solution must be rejected
(e.g. the ternary solution allows a population of the two tuples <101, NL, 2000-01-01,
?> and <101, NL, ?, 20008-02-15>, but the employee might have made two visits, not
one visit. This raises a fine point about the notion of elementarity of facts. Assuming
complete knowledge, and the derivation possibility by ordering visit periods, is the
quaternary fact “Employee 101 visited the Country ‘NL’ from the Date ‘2000-01-01’
to the Date ‘2000-01-15’” elementary? We leave further investigation of this issue as
a research topic.

Sometimes, business rules require no overlap (trivial or nontrivial). For example, in
modeling pay awards, it is normal to require for each JobPosition that no two (start-
date, enddate) periods overlap. And if we modify the country visit example to country
habitation, where on a given date a person may start or end residing in at most one
country, the country role is excluded from the identification scheme for habitations,
and no overlap is allowed.

As a final note before ending this section, one difference between the ORM and
CogNIAM (www.pna-group.com) flavors of fact-oriented modeling is that ORM for-
bids the inclusion of nulls in asserted (non-derived) facts. For example, ORM ignores
the null in verbalizing the ternary fact on row 2 of Fig. 3, whereas CogNIAM allows
this row to be verbalized as a quaternary including the null. In ORM we have found it
useful to be able to specify additional constraints on derived fact types, where nulls
are allowed in fact populations, but have found it safer to avoid nulls in asserted fact
types (requiring any asserted fact to be either elementary or existential). Which of
these approaches is better in this regard is left as a topic for further discussion.

4 Modeling History of Migration between Role Subtypes

In previous work [14], we outlined a general approach for modeling histories of enti-
ties as they migrated from one role subtype to another. In this section, after a brief re-
view of some basic concepts, we now extend that work.

A type is rigid if each instance of it must remain in that type for the duration of that
instances’s lifetime (e.g. Person, Tree), otherwise the type is a role type (e.g. Em-
ployee, Cricketer). Over time, an entity may move from one role type to another.
Suppose each role has specific details of interest and we want to maintain this history
of an entity as it changes roles. We now classify role subtypes as once-only or repeat-
able. With a once-only role subtype, objects can never return to play that role again
once they have left the subtype (e.g. Child, SinglePerson). With a repeatable role sub-
type objects can return to play that role again (e.g. Employee, MarriedPerson).

Histories involving transitions between once-only role subtypes may be modeled
using a successive disjunctions pattern. For example, Adult is a subtype of Teenage-
rOrAdult which in turn is a subtype of ChildOrTeenagerOrAdult. Subtype specific de-

Person
(.id)

LifeRole
(.name)plays

“LifeRolePlaying”

{‘Child’,
 ‘Teenager’,
 ‘Adult’}

Person
AsAdult*

Person
AsChild*

PersonAs
Teenager*

Toy
(.name)

PopGroup
(.name)

Book
(ISBN)

has
favorite-

has
favorite-

has
favorite-

*Each PersonAsChild is a LifeRolePlaying involving LifeRole ‘Child’.
*Each PersonAsTeenager is a LifeRolePlaying involving LifeRole ‘Teenager’.
*Each PersonAsAdult is a LifeRolePlaying involving LifeRole ‘Adult’.

For each Person,
in case previous lifeRole =
 ‘Child’: added lifeRole = ‘Teenager
 ‘Teenager’: added lifeRole = ‘Adult’
end cases.

RolePlaying

is by

is of

began on

Date
(mdy)

ended on

Person
(.nr)

Role
(.code)

tails may now be easily retained (e.g. Adult has favorite- Book, TeenagerOrAdult as a
teen had favorite- PopGroup, ChildOrTeenagerOrAdult as a child had favorite- Toy).
This arrangement automatically caters for the linear transition order from role to role.

If the roles are once-only, then an alternative solution is to use what we call the
once-only role playing pattern, augmented by a dynamic constraint to constrain the
possible role transitions. For example, the child-teenager-adult example may be mod-
eled as shown in Fig. 5.

Fig. 5. Example of once-only role playing pattern with dynamic rule

If a role subtype is repeatable, the previous approaches cannot record history of
multiple playings of the same role by the same object. To address this problem, we
provide what we call the repeatable role playing pattern, which includes the start-
time of a role playing as part of its natural identifier. One version of this is shown in
Fig. 6 (minus the dynamic rule). This assumes that a person may begin or end a given
role at most once on the same date (if this is not true, replace Date by Instant). This
pattern allows that a person may begin or end multiple roles on the same date. Alter-
native versions of the pattern introduce either simple identifiers, or ordinal numbers as
partial identifiers, for RolePlaying. A concrete example is given in Fig. 7

Fig. 6. One version of the repeatable role playing pattern

MaritalRolePlaying

is by

is of

began on

Date
(mdy)

ended on

Person
(.nr)

MaritalRole
(.code)

{‘S’, ‘M’, ‘W’, ‘D’}

PersonAs
Widowed*

PersonAs
Married*

PersonAs
Divorced*

PersonAs
Single*

*Each PersonAsSingle is a MaritalRolePlaying that is of MaritalRole ‘S’.
*Each PersonAsMarried is a MaritalRolePlaying that is of MaritalRole ‘M’.
*Each PersonAsDivorced is a MaritalRolePlaying that is of MaritalRole ‘D’.
*Each PersonAsWidowed is a MaritalRolePlaying that is of MaritalRole ‘W’.

For each Person,
in case previous
maritalRolePlaying.maritalRole =
 ‘S’: added value = ‘M’
 ‘M’: added value in (‘W’, ‘D’)
 ‘W’: added value = ‘M’
 ‘D’: added value = ‘M’
end cases.

Fig. 7. Example of repeatable role playing pattern with dynamic rule

5 Conclusion

This paper reviewed some approaches to temporal data and operations, identified
problems with Allen’s operators and OWL-Time, suggested conceptual ways to clas-
sify temporal information, raised some issues regarding elementarity, and proposed
modeling heuristics and data model patterns to address time-impacted tasks such as
modeling histories, and tracking entities across time as they migrate between roles.

While the graphic depiction of ORM models has been implemented in the
NORMA tool, the detailed syntax for textual specification of temporal and dynamic
rules (including scheduling) and the generation of code from such textual rules is still
a work in progress. We plan to extend the NORMA tool to support such rules, and al-
so implement a mapping from ORM to OWL, work on which has already begun. It
may also be worthwhile considering graphical extensions to ORM to directly support
some temporal aspects (e.g. marking types as once-only or repeatable).

References

1. Allen, J. 1983, ‘Maintaining Knowledge about Temporal Intervals’, Communications of

the ACM 26, 11, 832-843.
2. Bakema, G., Zwart, J. & van der Lek, H. 2000, Fully Communication Oriented Informa-

tion Modelling, Ten Hagen Stam, The Netherlands.
3. Balsters, H., Carver, A., Halpin, T. & Morgan, T. 2006, ‘Modeling Dynamic Rules in

ORM’, On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, eds. R.
Meersman, Z. Tari, P. Herrero et al., Montpellier. Springer LNCS 4278, pp. 1201-10.

4. Bruza, P. D. & van der Weide, Th. P 1989, ‘The Semantics of TRIDL’, Technical Report
89-17, Department of Information Systems, University of Nijmegen.

5. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM
Transactions on Database Systems, 1(1), pp. 9−36.

6. Curland, M. & Halpin, T. 2007, ‘Model Driven Development with NORMA’, Proc. 40th
Int. Conf. on System Sciences (HICSS-40), IEEE Computer Society, January 2007.

7. Date, C., Darwen, H. & Lorentzos, N. 2003, Temporal Data and the Relational Model,
Morgan Kaufmann, San Francisco.

8. Edelweiss, N., de Oliveira, J., de Castilho, J., Montanari, E. & Pernici, B. 1994, ‘T-ORM:
Temporal aspects in objects and roles’, Proc. First International Conference. on Object-
Role Modeling, eds T. Halpin & R. Meersman, University of Queensland, pp. 18-27.

9. Embley. D. W. 1998, Object Database Development, Addison-Wesley.
10. Falkenberg, E. D. & van der Weide, Th. P. 1988, ‘Formal Description of the TOP Model’.

Technical Report 88-01, Department of Information Systems, University of Nijmegen.
11. Halpin, T. 2005, ‘Information Modeling in UML and ORM: A Comparison’, Enc.of Inf. n

Science and Technology, vol. 3, ed. M. Khosrow-Pour, IGI, Hershey, pp. 1471-5.
12. Halpin, T. 2005, ‘ORM 2’, On the Move to Meaningful Internet Systems 2005: OTM 2005

Workshops, eds R. Meersman, Z. Tari, et al., Cyprus. Springer LNCS 3762, pp 676-87.
13. Halpin, T. 2006, ‘ORM/NIAM Object-Role Modeling’, Handbook on Information Systems

Architectures, 2nd edn, eds P. Bernus, K. Mertins & G. Schmidt, Springer, Heidelberg, pp.
81-103.

14. Halpin, T. 2007, ‘Subtyping Revisited’, Proc. CAiSE’07 Workshops, vol. 1, eds. B. Pernici
& J. Gulla, Tapir Academic Press, pp. 131-141.

15. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second
Edition, Morgan Kaufmann, San Francisco.

16. Halpin, T. & Wagner, G. 2003, ‘Modeling Reactive Behavior in ORM’. Conceptual Mod-
eling – ER2003, Proc. 22nd ER Conference, Chicago, October 2003, Springer LNCS.

17. ter Hofstede, A. H. M. 1993, ‘Information Modelling in Data Intensive Domains’, PhD
thesis, University of Nijmegen.

18. ter Hofstede, A. H. M., Proper, H. A. & Weide, th. P. van der 1993, ‘Formal definition of
a conceptual language for the description and manipulation of information models’, In-
formation Systems, vol. 18, no. 7, pp. 489-523.

19. ISO 2004, ISO 8601:2004(E): Data elements and interchange formats—Information in-
terchange—Representation of dates and times. ISO, Geneva.

20. Object Management Group 2003, UML 2.0 Superstructure Specification. Online at:
www.omg.org/uml.

21. Object Management Group 2005, UML OCL 2.0 Specification. Online at:
http://www.omg.org/docs/ptc/05-06-06.pdf.

22. Parent, C., Spaccapietra, S. & Zimanyi, E. 2006, Conceptual Modeling for Traditional and
Spatio-Temporal Applications, Springer, Berlin.

23. Petrounias, I. & Loucopoulos, P. 1994, ‘Time Dimension in a Fact-Based Model’, Proc.
First International Conference. on Object-Role Modeling, eds T. Halpin & R. Meersman,
Key Centre for Software Technology, University of Queensland, pp. 1-17.

24. Proper, H. A. 1994, ‘A Theory for Conceptual Modeling of Evolving Application Do-
mains’, PhD thesis, University of Nijmegen.

25. Snodgrass, R. 2000, Developing Time-Oriented Database Applications in SQL, Morgan
Kaufmann, San Francisco.

26. Sowa, J. 2000, Knowledge Representation, Brooks/Cole, Pacific Grove.
27. Theodoulidis C., Loucopoulos P. & Kopanas, V. 1992, ‘A Rule Oriented Formalism for

Active Temporal Databases’, Next Generation CASE Tools, eds K. Lyytinen & V.-P Tah-
vanainen, IOS Press, Amsterdam.

28. Theodoulidis C., Wangler B., & Loucopoulos P. 1992, ‘The Entity-Relationship-Time
Model’, Conceptual Modelling, Databases, and CASE: An Integrated View of Information
Systems Development, ch. 4, pp. 87-115, John Wiley & Sons.

29. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Practice,
Kluwer, Deventer, The Netherlands.

