
Joost: A Measurement Study

Yensy James Hall, Patrick Piemonte, and Matt Weyant
School of Computer Science
Carnegie Mellon University

May 14, 2007

Abstract

The potential to broadcast on-demand television-
quality video to a global audience is now possible
with the introduction of peer-to-peer Internet televi-
sion. Joost, originally known as The Venice Project,
is a peer-to-peer technology created by the founders
of Skype and KaZaA to deliver television-quality, li-
censed video content. It had taken researchers quite
some time to understand the mechanisms and tech-
nologies used by Skype, so this paper will begin to un-
ravel the mysteries of Joost through a measurement
study. Our contribution will be an understanding of
Joost’s application behavior, network behavior, and
peer behavior. We will also attempt to explore rea-
sons of peer selection as well as uncovering the bene-
fit of Joost using peer-to-peer as a method of content
distribution. Our hope is to provide this informa-
tion in order to assist in future design or modeling of
peer-to-peer video distribution systems.

1 Introduction

Originally known as The Venice Project, Joost is a
peer-to-peer application that could revolutionize the
future of entertainment media distribution. It was
created by the founders of Skype and KaZaA to de-
liver television-quality video on-demand over a peer-
to-peer network. This paper will describe our results
of a measurement study to shed light on Joost’s ap-
plication, network, and peer behavior with intent to
assist the future design and modeling of peer-to-peer
video distribution systems.

1.1 Resources

We conducted our study using three distinct Joost
user accounts on three separate test machines. Each
test machine–or test node–was configured to operate
in a specific network environment.

The first test node ran the Mac Intel beta build
of Joost version 0.9.2 while connected to a residen-
tial Comcast cable-modem with 3Mbps of downlink
capacity and 1Mbps of uplink capacity. This node
was installed behind a network address translator
(NAT) and configured with a non-routeable, private
IP address. The test node also had an Intel Core 2
Duo processor, 1 GB SDRAM, and a 120 GB hard
drive. The second and third test nodes ran the Win-
dows XP beta build of Joost version 0.9.2 while con-
nected to the Internet from the same subnet on the
Carnegie Mellon University network. These machines
were connected to the same switch, and were granted
100Mbps full-duplex connections. Each of these uni-
versity test nodes had a Pentium 4 processor, 2GB
of RAM, a 320GB SATA hard drive, and 100Mbps
Ethernet adapters. These machines were also given
static, public IP addresses.

1.2 Data Collection

Using these test nodes we constructed a data col-
lection infrastructure to capture traces of Joost ac-
tivity. A number of software packages were installed
to facilitate our data collection. The two test nodes
connected to the 100Mbps full-duplex university LAN
were running Windows XP Service Pack 2 with Wire-
shark, a packet capture tool based on the WinPcap

1



3.1 library. The cable-modem test node was running
Mac OS 10.4.9 along with tcpdump and the latest
version of the pcap library.

Joost was run on all machines, with the packet
capturing software, for a combined total of nineteen
days, non-continuously, between the dates of April
10th, 2007 and May 3rd, 2007. Altogether, the data
collection infrastructure captured a total of 64 GB of
data.

1.3 Experiments

Using the captured data, we began our analysis
by approaching various questions we had regarding
Joost application behavior and network behavior.
These questions are explored by category in the fol-
lowing list.

1.3.1 Application Behavior Experiments

Our initial experiments were intended to provide
information on the basic application functionality as
well as to determine initialization and reconnection
protocols. We examined the captured packets for the
use of encryption and plain text clues, such as HTTP
header information. Analysis was then performed on
connection sequence packets. Addresses from these
packets as well as various web sources would yield
Joost infrastructure information. We then took a
black box approach to these experiments and blocked
the various ports at which Joost operates in order to
find functionality changes. As a last application be-
havior experiment, we analyzed packet sizes for con-
trol packet and video data packet ratios.

1.3.2 Network Behavior Experiments

Next, we characterized Joost’s network behavior.
We measured and compared the inbound and out-
bound throughput of Joost on both the cable-modem
connection as well as the machines connected to the
university LAN. We also measured how much data
was transferred across the university’s switch to as-
sess the local impact of collocated Joost peers.

1.3.3 Peer Behavior Experiments

Finally, we examined locality awareness with the
following three experiments.

1. We used two test computers (let’s call them A
and B) connected to the 100Mbps full-duplex
university LAN and physically located next to
each other. Both computers were always syn-
chronized on the same Joost channel and one of
them (A) was always about 1 minute ahead. The
idea was to see if the computer that was a little
behind (B) would get its data from the other one
(A). With this setting, we collected 9GB of data,
non-continuously, during a four-day period.

2. We collected over 5GB of data continuously over
a 23 hour period in one of our test machines
connected to the university LAN. We then
extracted the distinct IP addresses of Joost
peers that transmitted data to our client,
and for each address we found its geograph-
ical location by sending an HTTP request
to “http://api.hostip.info/get html.php?ip=”
passing the IP address as a parameter and
parsing the response. The response was given
in plaintext, e.g “Country: UNITED STATES
(US) City: Pittsburgh, PA”. With this ap-
proach, we could not find the location of 31%
of the IP addresses which contributed 4.58% of
the data.

3. We collected 22.1GB of data during a 13 days
period in one of our test computers connected
to the university LAN. These data was not cap-
tured continuously. Our goal was to accumulate
enough data to identify patterns in the selection
of peers over several days.

2 Application Behavior

By analyzing the Joost client application and by
reading information from its website, we concluded
that the application is based on XULRunner, a
Mozilla runtime package [11]. Joost also decodes
video using the CoreAVC H.264 codec developed by

2



CoreCodec [8]. With this technology, Joost creates a
P2P overlay that distributes video content.

Like its sibling P2P networks, KaZaA and Skype,
the signaling traffic between peers and the Joost
servers is encrypted. However, by examining packet
traces we can determine the connections that a Joost
peer makes when it connects to the P2P network. Un-
like the work in [2], Joost does not include a specific
HTTP header to distinguish its traffic from the rest
of the normal Internet traffic. Therefore, we needed
to observe how Joost initially and recurrently joins
the network.

2.1 Installation and Bootstrapping

First, the peer initiates a secure HTTPS con-
nection to www.theveniceproject.com. Then,
the peer initiates three more encrypted HTTPS
sessions. Each of these encrypted sessions con-
nects to lux-backend.joost.net; however, tak-
ing a closer look at the client hello for each
of these sessions shows the actual server be-
ing requested: tolbiac.ops.theveniceproject.com,
adengine.ops.theveniceproject.com, and
tracker.ops.theveniceproject.com respectively.
Luckily, two of these servers have descrip-
tive domain names leading us to believe that
adengine.ops.theveniceproject.com serves the video
advertisements that play between episodes and that
tracker.ops.theveniceproject.com plays a similar role
to that of a BitTorrent tracker. Then, the peer checks
the current version of the software through an HTTP
GET request to version.ops.theveniceproject.com.
Finally, the peer connects to a supernode (snode-
1.lid.ops.theveniceproject.com, in this case) to
establish connections with other peers and begin
accessing video content.

At some point during this initialization process, the
peer negotiates a port number through which com-
munication with other peers and supernodes occurs.
Although the exact protocol for negotiating this port
was not identified, it is highly likely that a modified
STUN protocol was used, similar to what [4] and [5]
observed in their analyses of Skype. Moreover, the
Joost client uses this port number for every subse-
quent video transaction. The consistent usage of this

port enabled us to observe and measure video trans-
fers and transactions.

2.2 Reconnecting

When reconnecting to the Joost network, the same
initialization process occurs. However, the port num-
ber that was negotiated when first connecting to the
network is cached and reused. Next, the peer at-
tempts to reconnect to peers from which it has down-
loaded content previously. The peer sends a small
UDP probe (∼30 bytes) to each peer, which in turn
respond with another small UDP packet (∼30 bytes).

2.3 Joost Server Infrastructure

Joost distributes licensed video content, and un-
like many P2P networks, user-generated content is
not permitted. Thus, all new content is intro-
duced through its own servers. Joost is headquar-
tered in Europe, and as a result, much of its in-
frastructure is also in Europe. In fact, the com-
pany maintains servers in data centers in Belgium
(212.8.163.0/24), the Netherlands (89.251.0.0/23
and 213.207.101.128/25), and the United Kingdom
(212.187.185.0/24). However, much of the content
licensed is also meant for audiences in the United
States, so Joost also maintains a farm of servers in
Los Angeles, California (4.71.105.0/24).

Our analysis of packet traces indicates that Joost
has engineered portions of their infrastructure for
specific tasks. Servers in the 89.251.0.0/24 subnet are
administrative servers and supernodes. Supernodes
in this subnet transmit relatively little data, which
indicates that they are likely serving channel lists and
updated peer lists. Several servers in this subnet are
also the main European web servers for joost.com.

Servers in the 212.8.163.0/24 subnet include the
tolbiac, adengine, and tracker servers mentioned dur-
ing session initialization. Also, a vast amount of video
traffic was received from servers in this subnet, lead-
ing us to believe that the primary content servers also
reside in this subnet.

In fact, during the course of our study we observed
the introduction of two new data centers: Los Ange-
les [9] and London [10].

3



2.4 Controlling Joost

Using our residential test node on the Comcast
high-speed data connection, we conducted several ex-
periments to learn how Joost can be controlled within
a network’s boundary.

Historically, controlling P2P traffic within a net-
work and at its borders is difficult. Firewall traversal
protocols like STUN and TURN are used by P2P
applications to gain traction within network bound-
aries. Thus, predicting on which ports two peers will
communicate and then blocking traffic on those ports
is nearly impossible. P2P applications also do not
confine themselves to a single transport layer proto-
col, using UDP and TCP with equal frequency. Fi-
nally, the distributed nature of P2P makes it nearly
impossible for a network administrator to determine
whether an IP address is a P2P node or a legitimate
user. Additionally, P2P networks have become open
markets for distributing copyrighted video without
permission; so, P2P applications make it intention-
ally difficult for network administrators to stem the
flow of P2P traffic.

But because Joost distributes licensed video con-
tent, it does not need to obfuscate its transport mech-
anisms in the same way as Gnutella or other P2P
networks, making the network security engineer’s job
much easier. We conducted several experiments to
learn how Joost can be controlled within a network’s
boundary. The results of these experiments can be
found in Table 1.

From these results, several conclusions can be
drawn. First, blocking TCP port 80 or 443 is an
effective means of preventing Joost from bootstrap-
ping the P2P network. However, wholesale denial of
service for these ports also prevents legitimate use of
the web. Second, Joost nodes appear to negotiate a
port number on installation using a STUN-like proto-
col; but instead of renegotiating this port number on
reconnect, the local Joost application retains the orig-
inally negotiated port number. Moreover, if this port
is blocked, the application will not attempt to nego-
tiate an open port. Therefore, a security administra-
tor could attempt to block every local port number of
each Joost node within his network, but this is an in-
tractable problem. Moreover, blocking this port does

not stem the flow of traffic from the Joost-operated
content nodes. Third, ordinary Joost nodes receive
video from Joost-operated content servers that oper-
ate on port 33333. Thus, traffic from Joost-operated
nodes can be blocked, but this does not prevent traf-
fic from other ordinary Joost nodes from entering the
network.

In summary, network operators are unlikely to
be able stop users from installing Joost P2P clients
within the network boundary. Because the Joost
client uses common HTTP and HTTPS ports to
communicate with supernodes and administrative
servers, denying Joost its signalling channel is also
unlikely. Blocking individual port numbers is an in-
tractable solution. Thus, the best strategy left is to
block port 33333 at the network border1. Doing so
kills the Joost client’s playback capability, and be-
cause the majority of video traffic comes from Joost-
operated nodes (see Section 4.1.2), we have limited
the amount of data flowing into and out of the net-
work significantly.

2.5 Control and Data Traffic

We analyzed the raw data to determine the break-
down control traffic versus video traffic. Using a tech-
nique from [2], we used packet sizes to determine the
relationship between control and data traffic.

Figure 1 shows the distribution of packet sizes for
all of our collected data. We compared the distri-
bution of packet sizes with and without TCP ACK
packets, but the graphs were almost identical. We
can conclude that at least 45% of the packets are
part of control and acknowledgment traffic, and the
remaining 55% is video traffic. Packets under 200
bytes are considered control packets, and data pack-
ets are 1000 bytes or more.

1While this paper was being written, Joost applied for and
received approval to use TCP and UDP port number 4166.
This port will be used in the Now For Friends edition of the
client software as well as subsequent versions.[12]

4



Experiment Results
Block 80/tcp during installation Installation succeeded; bootstrap failed
Block 80/tcp during video playback Playback failed
Block 443/tcp during installation Installation succeeded; bootstrap failed
Block 443/tcp during video playback Playback failed
Block 33333/udp and 33333/tcp during
video playback

Playback failed; data from ordinary
nodes continued

Block 45587/udp and 45587/tcp during
video playback

Playback failed; data from Joost-
operated nodes continued

Block 8.251.0.0 during installation Installation succeeded; bootstrap failed
Block 212.8.163.0 during playback Playback failed

Table 1: Results of Joost security experiments

Figure 1: CDF of packet sizes

3 Network Behavior

We conducted an analysis of our data for informa-
tion on how Joost’s inbound and outbound through-
put affects a network. In particular, we would like to
know the amount of bandwidth it consumes and how
local network traffic could be affected from a large
adoption of Joost users.

3.1 Rate

Our measurement results show that Joost uses ap-
proximately 700 kbps down and 100 kbps up, regard-
less of the type of network the node is residing on
(Figure 2). Whether a node is on a high-speed LAN
with a static public IP address or on a lower-speed
broadband cable-modem with a NATed IP address,
we found that the throughput of Joost remains con-
sistent while the peer is online.

We realized this throughput behavior may be con-
strained on the cable-modem connection in Figure 2
(a), so we monitored the university LAN test nodes
for any variation. The university LAN test nodes
used slightly more uplink capacity when it was avail-
able, but it was still a minimal amount. Figure 2 (b)
shows the slight increase to about 150 kbps. This in-
dicates that Joost could be slightly more aggressive
with a larger uplink capacity when it is available.

5



3.2 Local Traffic

In terms of Joost adoption and local network traf-
fic, our results could be subject to the fact that Joost
is not prone to increased peer sharing since the ma-
jority of the content is pulled from the Joost infras-
tructure nodes. In section 4, we examined the rela-
tionship between same switch peers and local impact
more closely.

4 Peer Behavior

4.1 Locality

4.1.1 Geographic Locality

From experiment 1 in section 1.3.3 we found that
computer B received only 1.03% of the data from
computer A (0.062 GB out of approximately 6 GB).
Taking into account that the vast majority of the
data that B needed was already in A, we can conclude
that Joost is missing an opportunity to use network
resources efficiently.

In experiment 2, section 1.3.3, we identified 6918
distinct peers providing content to our test computer
during the 23-hour period. These peers were located
in approximately 980 cities in 90 countries. Of all the
incoming data collected, 34.1% came from unknown
cities in the United States, 32.37% came from un-
known cities in the United Kingdom, and and 20.76%
came from unknown cities in Europe.

As Figure 3 shows, the main sources of peers are
the United States and Europe. We did not see any
other area providing a substantial number of peers.

To determine the correlation between distance and
amount of data transferred, we found the amount of
data that each known city contributed, and man-
ually estimated the distance between the city and
Pittsburgh. For the unknown cities in the U.K. we
chose the distance between Pittsburgh and London,
while for the unknown cities in Europe, we chose the
distance between Pittsburgh and Paris. To find the
highest correlation possible, we assumed that the rest
of the unknown locations were in Pittsburgh, so we
assigned distance = 0 to all IPs from an unknown
country or from an unknown city in the US. These

Figure 3: Breakdown of Joost traffic by geographic
location

IPs provided 39% of the data.

Even with the assumptions explained above,
the correlation between geographical distance and
amount of data was -0.013. In other words, we found
no correlation. We did a similar analysis with the
data received only from the United States, and the
correlation was -0.054 (also no correlation).

Of the data collected in experiment 3, sec-
tion 1.3.3, 14.4 GB was inbound traffic to our
test computer. From that data, we identified
four IP prefixes (4.71.105.0/24, 212.187.185.0/24,
212.8.163.0/24, 89.251.0.0/24) that provided a dis-
proportionate amount of data, and found out that
they belong to Joost. We then determined that these
IP prefixes provided 71.24% of the incoming data.

The results of these three experiments indicate that
Joost is not considering geographic locality in the se-
lection of peers. Furthermore, Joost servers are di-
rectly providing users with at least two-thirds of the
content.

6



(a) Residential cable-modem 3Mbps down/1Mbps up connection (b) 100Mbps full-duplex university LAN connection

Figure 2: A comparison of throughput over time

4.1.2 Network Locality

In addition to geographic locality, we wanted to
learn whether Joost took network proximity into ac-
count when selecting peers. We set up a Joost client
connected to a 100Mbps full-duplex university local
area network with a static IP (the ”university” client)
and a Joost client connected to a residential cable-
modem connection with a NATed IP address (the
”home” client). The residential connection had a
downlink capacity of 3Mbps and an uplink capacity of
1Mbps. For this experiment, we used round-trip time
(RTT) to determine whether two peers were close to
each other. We observed the Joost clients during a
one-hour video program, because this is more likely
to be representative of user behavior than letting the
clients run for many hours at a time. This user be-
havior is analogous to how many people watch tele-
vision. We passively captured packet traces of each
of the clients while viewing this program. After dis-
tilling the data to find unique transmitting nodes, we
concentrated on the nodes that contributed 1MB or
more to the video stream. We then measured the
RTT from the receiving client to the transmitting
node using scriptroute’s ICMP and TCP ping facil-
ities. In particular, we wanted to see if Joost’s peer

selection algorithm takes advantage of smaller RTT
to reduce video latency and the cost of large amounts
of data flowing across transit ASes.

During this experiment, we observed different be-
havior between the university and home clients. The
home client had only one set of 9 peers that trans-
mitted over 1MB of video, and all 9 peers in this
set were Joost-owned content servers from the same
/24 subnet located in the United States. The aver-
age RTT of these peers was 91 milliseconds. These
nodes contributed 98% to the overall amount of data
transferred for the hour-long program. The univer-
sity client received video from 15 distinct peers, in
addition to the Joost-owned peers, that contributed
over 1MB to the video stream. Moreover, these in-
dependent nodes contributed 45% of the total data
in the video stream, compared to 52% which is con-
tributed by the Joost-owned content servers. The
independent peers ranged in RTT from 25 to 103 mil-
liseconds with a large cluster of nodes between 60 and
90 milliseconds. The Joost-owned content servers are
87, 91, and 115 milliseconds away for servers located
in the UK, US, and the Netherlands respectively. A
summary of this experiment can be found in Table 3.

Additionally, during the course of this experiment,
Joost released a software update for its client appli-

7



cation that performed a look-up to determine which
Joost-owned content servers to use. The intent of
the release was to increase performance for US-based
Joost clients. However, because our clients were
located close to the east coast, we received data
from Joost-owned servers in California and London
in nearly equal amounts.

For the university client, there is no mathematical
correlation between the amount of data received and
the RTT of the transmitting node. In fact, the small-
est contributor in the top 15 has an RTT within 6 mil-
liseconds of the mean (standard deviation = 22.01),
and the most distant peer delivers the median amount
of data. The home client received 98% of its data
from nodes 91 milliseconds away, but these nodes
represent less than 10% of the peers during the hour-
long program (Figure 5(b)). The remainder of the
home client’s peers had substantially worse RTTs.
However, it appears there may be some type of RTT-
savvy selection algorithm at work. The peers that
transmitted more than 1MB of video to our univer-
sity client had RTTs that were comparable to the
RTTs of Joost-owned content nodes. But indepen-
dent nodes that transmitted data to the home client
had significantly worse RTTs than the Joost-owned
peers. Thus, we can infer that the peer selection al-
gorithm may prefer to receive data from peers that
have an RTT less than or equal to the RTT to the
Joost content nodes.

Looking at Figures 5(a) and 5(b), it is interesting
to note that roughly 80% of university client peers
are within 200ms but only 10% of home client peers
are within the same threshold. It is clear that the
university client had many more peers nearby; thus,
there may be a relationship between the selection of
nearby peers and the upstream or downstream band-
width available to our client.

Unfortunately, RTT may not be a reliable indicator
of actual network proximity. Bottleneck links, link
failures, route asymmetry or AS peering relationships
may affect the RTT. We have left this portion of the
analysis for future work.

4.1.3 Topological Locality

Round-trip time is only one measure of network
proximity. We also considered topological locality
using traceroute hop counts from our receiving node
to the transmitting nodes. We conducted this ex-
periment in parallel with the RTT locality experi-
ment. We used scriptroute’s ICMP and TCP tracer-
oute facilities to determine the number of hops be-
tween our local Joost client and a transmitting peer.
Specifically, we looked at the transmitting peers, who
are not owned by Joost, that contributed more than
1MB of data. For a one-hour program, 15 peers
contributed more than 1MB of data to the univer-
sity client’s video stream. Unfortunately, four nodes
could not be reached. We used a web-based tracer-
oute server to confirm that these nodes were not
reachable via traceroute. Because the home client
only received more than 1MB of data from Joost-
owned servers on the same subnet (18 hops away),
we will focus on the university client. Table 3 sum-
marizes the results of this experiment.

Our client received 80.44MB of video data from
the 11 peers listed in Table 3, which represents 31%
of the total data received. The peers have hop counts
ranging from 15 to 30, but the smallest contributor
has a hop count near the mean and the median. In
this case, ”near” means well within one standard de-
viation. However, these hosts exhibit a weak nega-
tive correlation between hop count and the amount of
data transferred. But this correlation contradicts our
intuition that nodes topological closer to our client
will transmit more data. Thus, it is unlikely that
Joost selects peers based on topological locality.

4.2 Fairness

In this paper, we define fairness of a peer as the
ratio between the video bandwidth sent to the video
bandwidth received by the peer. From the data col-
lected in experiment 3 of section 1.3.3, we found the
fairness ratio to be 7.7/14.4 ∼ 1/2. Also from the
data collected in experiment 1 we obtained a fairness
ratio of 9/20 ∼ 1/2.

These results make sense. Since Joost is directly
providing at least two thirds of the video content to

8



(a) University client. Joost client connected to a 100Mbps full-
duplex LAN with static, public IP address.

(b) Home client. Joost client connected to a 3Mbps down/1Mbps
up residential cable-modem connection with a NATed IP address.

Figure 4: CDF of data transferred per inbound peer

(a) University client. Joost client connected to a 100Mbps full-
duplex LAN with static, public IP address.

(b) Home client. Joost client connected to a 3Mbps down/1Mbps
up residential cable-modem connection with a NATed IP address.

Figure 5: CDF of RTT per inbound peer

9



Server Location RTT Hop Count
Joost admin server (89.251.4.175) NL 113 ms 15
Joost version server (4.71.105.59) US 91 ms 19

Joost supernode (89.251.0.16) NL 113 ms 14
Joost supernode (4.71.105.10) US 91 ms 17

Joost content node (212.8.163.11) BE 115 ms 17
Joost version server (213.207.101.226) NL 97 ms 16
Joost content server (212.187.185.143) GB 87 ms 14

Table 2: Table of RTT and hop count from CMU LAN to a representative subset of Joost-operated nodes
using scriptroute’s ICMP and TCP ping and traceroute facilities.

Host Name RTT (msec) Hops Data (MB)
Host 1 86 16 18.64
Host 2 68 17 18.55
Host 3 59 15 17.74
Host 7 89 17 8.06
Host 8 78 19 4.67
Host 9 103 30 3.80
Host 10 101 20 2.63
Host 12 25 15 2.27
Host 13 61 18 1.70
Host 14 69 15 1.36
Host 15 80 19 1.02
Mean 74.45 18.36 7.31

Median 78 17 3.80
Standard Deviation 22.01 4.27 7.32

Correlation to Data Transferred -0.002 -0.316 N/A

Table 3: Summary of topological locality experiment for the university client.

10



its clients, only one third will have to be supplied
by independent nodes. We think that Joost’s low
fairness ratio is sustainable now only because of the
relatively low user population, and that it will be a
problem in the future in terms of scalability. Hence,
we anticipate that it will change to a number closer
to 1 as the number of users increase.

5 Related Work

There have been many peer-to-peer measurement
studies, but to our knowledge none have studied
Joost. A comprehensive measurement study of
KaZaA’s overlay structure is undertaken in [3]. This
paper provides pointers to several other studies that
cover:

• The identification of peer-to-peer traffic

• Techniques to analyze and characterize peer-to-
peer traffic and file-sharing workloads

• The development of crawling systems for
Gnutella, Napster, and KaZaA

• A study of scalability issues in the Gnutella net-
work

• A study of the problem of search and replication
strategies in unstructured peer-to-peer networks

• A study about the advantages of designing un-
structured peer-to-peer systems based on super
peers

Joost was created by the founders of both KaZaA
and Skype, which have both been studied extensively
([2], [3], [4], [5]). These studies provided some intu-
ition on how Joost may have been engineered. In
particular, [2] measured the workload of KaZaA and
showed that a P2P file-sharing workload does not ex-
hibit a Zipf distribution, which has become the com-
mon statistical model for Web traffic. This paper also
showed that KaZaA users are patient, often waiting
hours or days to receive the requested file. [2] also
discovered that KaZaA does not take advantage of
locality to manage its overlay network and proposed

performance improvements if KaZaA were locality-
aware. [4] and [5] examined Skype’s application be-
havior and supernode infrastructure. [3] looked in
depth at the KaZaA and FastTrack overlay networks
with both active probing and passive trace analysis.

P2P video distribution systems have also been
studied ([1], [6]). Reference [6] studied an on-demand
P2P video system called GridCast. GridCast was
deployed in China in 2006 to over twenty thousand
users, hundreds of which were supported concur-
rently.

6 Conclusion

Although Joost is a peer-to-peer video distribu-
tion technology, it relies heavily on a few centralized
servers to provide the licensed video content. We be-
lieve the centralized nature of Joost is the main fac-
tor that influences its lack of locality awareness and
low fairness ratio. We see scalability issues in this
approach and therefore predict a more distributed
architecture in the future.

From a network usage perspective, Joost consumes
approximately 700 kbps downstream and 120 kbps
upstream, regardless of the total capacity of the net-
work. This is assuming the network upstream capac-
ity it is larger than 1Mbps.

Joost consistently uses port 33333 to send video
data from Joost’s infrastructure servers. This should
allow network administrators to significantly limit
the amount of data flowing into and out of the net-
work by blocking port 33333 at the network border.

Although we noticed that there may be some type
of RTT-savvy selection algorithm at work, we could
not find any mathematical correlation between RTT
and the amount of data transferred from a peer to
our client.

7 Summary

To summarize, we performed a measurement study
of Joost, a peer-to-peer licensed video distribution
service. Our intent was of curiosity, to explore a new
technology to determine its effect before it is publicly

11



released. We analyzed 65GB of captured packet data
from three test nodes over a combined total of nine-
teen days. One test node was used for experiments
on a residential cable-modem connection with 3Mbps
of downlink capacity and 1Mbps of uplink capacity.
The other two test nodes were setup for experimen-
tation on Carnegie Mellon University’s 100Mbps full-
duplex LAN. After the data was collected we looked
at Joost’s application, network, and peer behavior.

Using the data collected from these test nodes, we
performed various experiments to shed light on the
questions we had about Joost. We began perform-
ing experiments to yield information on application
behavior. Joost is based on XULRunner, a Mozilla
runtime package, and uses the CoreAVC H.264 codec.
By examining packets, we determined that Joost uses
encryption for its control packets. We also found
Joost’s connection sequence, how it determines ver-
sion through an HTTP GET request, and how re-
connections are performed. Joost server infrastruc-
ture was also uncovered from extensive research of
connection sequence IP addresses and various web
sources. Experiments were performed to understand
Joost’s behavior when specific ports were blocked.
Packet size data was also analyzed to determine con-
trol packet and video data packet ratios. Joost pack-
ets are 55% video traffic while the rest is control and
acknowledgment data.

Analysis was then performed on the collected data
to determine network behavior and how Joost usage
affects a network. Our measurements concluded that
inbound and outbound traffic remains consistent re-
gardless of connection type. Network traffic was con-
cluded to be reliant on Joost content servers as op-
posed to local network peers.

In terms of peer behavior, we found no correlation
between the distance between two peers (geograph-
ical, RTT, or hop counts) and the amount of data
transferred between them. We did noticed, however,
that there may be some type of RTT-savvy selection
algorithm at work, which gives priority to peers with
RTT less than or equal to the RTT of a Joost content
providing super node.

To conclude, Joost relies heavily on centralized
content servers to provided licensed content while us-
ing the peer-to-peer overlay to service content at a

faster rate. We argued that this approach does not
scale well, and is sustainable today only because of
the relatively low user population. Therefore, we pre-
dict a more distributed architecture in the future that
takes more advantage of peer’s proximity.

References

[1] S. Ali, A. Mathur, and H. Zhang. Measurement
of Commercial Peer-To-Peer Live Video Stream-
ing. In Workshop in Recent Advances in Peer-to-
Peer Streaming, August 2006.

[2] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble,
H. Levy, and J. Zahorjan. Measurement, Model-
ing, and Analysis of a Peer-to-Peer File-Sharing
Workload. In Proceedings of SOSP, 2003.

[3] J. Liang, R. Kumar, and K. W. Ross. The
KaZaA Overlay: A Measurement Study. In
Computer Networks Journal (Elsevier), 2005.

[4] S. Guha, N. Daswani, and R. Jain. An Ex-
perimental Study of the Skype Peer-to-Peer
VoIP System. In Proceedings of IPTPS, Febru-
ary 2006.

[5] S. Baset and H. Schulzrinne. An Analysis of the
Skype Peer-to-Peer Internet Telephony Proto-
col, http://arxiv.org/abs/cs/0412017v1, 2004.

[6] B. Cheng, X. Liu, Z. Zhang, and H. Jin. A
Measurement Study of a Peer-to-Peer Video-
on-Demand System. In Proceedings of IPTPS,
February 2007.

[7] V. Paxson. Strategies for Sound Internet
Measurement. In Proceedings of ACM SIG-
COMM Internet Measurement Conference ’04,
Taormina, Italy, November 2004.

[8] Joost FAQ, http://www.joost.com/support/faq/.

[9] “Los Angeles now serving the
website and Long Tail Storage”,
http://www.joost.com/blog/2007/04/los-
angeles-now-serving-the-website-and-long-
tail-storage.html.

12



[10] “Good Day from London!”,
http://www.joost.com/blog/2007/04/good-
day-from-london!.html.

[11] Mozilla XULRunner,
http://developer.mozilla.org/en/docs/XULRunner.

[12] “Joost got official UDP and TCP
ports 4166 assigned by the IANA”
http://www.joostteam.com/2007/04/23/joost-
got-official-udp-and-tcp-ports-4166-assigned-by-
the-iana/, April 2007.

13


