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Abstract. We introduce a layer-wise unsupervised domain adaptation
approach for semantic segmentation. Instead of merely matching the out-
put distributions of the source and target domains, our approach aligns
the distributions of activations of intermediate layers. This scheme ex-
hibits two key advantages. First, matching across intermediate layers
introduces more constraints for training the network in the target do-
main, making the optimization problem better conditioned. Second, the
matched activations at each layer provide similar inputs to the next layer
for both training and adaptation, and thus alleviate covariate shift. We
use a Generative Adversarial Network (or GAN) to align activation dis-
tributions. Experimental results show that our approach achieves state-
of-the-art results on a variety of popular domain adaptation tasks, in-
cluding (1) from GTA to Cityscapes for semantic segmentation, (2) from
SYNTHIA to Cityscapes for semantic segmentation, and (3) adaptations
on USPS and MNIST for image classification.

Keywords: Domain adaptation, image classification, semantic segmen-
tation, activation matching, GTA, SYNTHIA, Cityscapes, USPS and
MNIST

1 Introduction

In this paper, we propose a novel approach for unsupervised domain adaptation.
Our goal is to transfer a pre-trained network from a source domain, with an
abundance of labels, to a relevant, but unlabeled target domain. This problem
is inherently ill-posed, and the success or failure of domain adaptation is largely
driven by assumptions placed on the source and target domains. A widely used
assumption is that the underlying label distributions (e.g., from the output layer)
of the source and target domains are similar (c.f. [1]). However, this assumption
only provides a weak training signal for the target network. Because of this, exist-
ing techniques usually utilize additional generic constraints on network weights
to make the training procedure better conditioned.

3 The website of this paper is https://rsents.github.io/dam.html
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The key idea of our approach is to align the activation distributions of in-
termediate layers. This strategy places more constraints on the target network,
and thus improves the quality of the transferred network. Specifically, our ap-
proach aligns layer-wise distributions in two ways. First, we derive a closed-form
matching criterion, under the assumption that the activation distribution is i.i.d.
Gaussian. Second, we relax the i.i.d. Gaussian assumption, and match the em-
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Fig.1: Given a pretrained CNN in the source domain, we seek to adapt it to
a target domain. In this example, the source domain consists of screenshots
from the GTA game, while the target domain are real-word images from the
Cityscapes dataset.

pirical distributions of activations using a Generative Adversarial Network [2].
Aligning activation distribution by itself is not enough, as distribution align-
ments only place modest constraints on network weights. There are multiple
possible target networks that match activation distributions, many of which do
not transfer any knowledge. This motivates us to include an additional regular-
izer on the target network, which keeps it close to the source throughout the
training.

We evaluated the proposed approach on the tasks of image classification
and dense semantic segmentation. In both cases, our approach out-performs
state-of-the-art techniques for unsupervised domain adaptation. We also did an
extensive ablation study, which demonstrates the importance of all components
of our approach. Specifically, we show that matching intermediate activations
always leads to a higher performance. Although regularization does not seems
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to have significant effect in image classification, it improves both robustness and
performance in semantic image segmentation.

2 Related Works

Transfer learning is a fundamental problem in machine learning with a wide
range of applications in computer vision. It is beyond the scope of this paper
to review all relevant works. We refer to [1,3-12] for some recent advances and
to [13,14] for surveys on visual domain adaptation. In the following, we review
recent works that are relevant to the approach presented in this paper.

Distribution-alignment based methods seek to align the source and target
distributions in some common space, which provide regularization for training
the target network. Thus, we can classify a distribution-based method based
on the common spaces as well as the methods being used for aligning distribu-
tions. Saenko et al. [15] proposed a pairwise metric transform for visual domain
adaptation. Early deep adaptive works align first and second order statistics for
domain adaptation [16,17]. More recent methods utilize generative adversarial
networks [18] to align the source and target distributions [19]. Other distribution
alignment methods include optimizing symmetric confusion metric [20] and the
inverted label objective [1] . Our method differs from these methods in that we
perform alignments across multiple layers in a deep network.

Map-based methods. Another solution to address unsupervised domain adap-
tation is to explicitly establish a map that aligns space of images in the source
domain to the space of images in the target domain. This map allows us to
transfer the labels from the source domain to the target domain either explic-
itly or implicitly. As a consequence, it allows us to train the network from the
target domain using the labels from the source domain. Liu and Tuzel [21] per-
formed weight sharing using hand-encoded layers to training a pair of generative
models between two relative domains. For the task of image segmentation and
classification, their method requires that some instances from the target domain
are labeled. Ghifary et al. [22] used an additional reconstruction object in the
target domain to prioritize distribution alignment in the unsupervised domain
adaptation setting.

Another line of research applies generative adversarial networks to explicitly
convert target images into source images. These approaches include the ones
that learn from paired data [23-25] as well as from unpaired data [9,26-30].
State-of-the-art techniques [29, 30] usually train a pair of maps between the
source and target domains and enforce the consistency between them. Hoffman
et al. [31] recently showed that combining image translation with unsupervised
domain adaptation greatly improves the final accuracy of the adapted model.
In experiments, we borrow this idea and combine our domain adaptation with
image translation.
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Visual domain adaptation for semantic segmentation. In contrast of the
large body of works on visual domain adaptation for classification, less works
have focused on visual domain adaptation for semantic segmentation. Levinkov
and Fritz [32] first studied this problem by updating trained initial models during
testing time using a sequential Bayesian model. Their method works well across
weather conditions on similar road layouts. Hoffman et al. [33] and Ros et al. [34]
pre-train a large model from multiple sources and then fine-tune on a sparsely
labeled target domain via distillation and additional generic constraints on label
distributions. Recently, Chen et al. [35] and Zhang et al. [5] align label distri-
butions and/or class specific distributions as well as object priors for semantic
segmentation. In contrast, we look into aligning distributions of activations of
intermediate layers.

3 Overview

Fig.2: Overview of the network architecture. (Top row) Network of the source
domain. (Middle) Discriminators used to distinguish different dataset. (Bottom)
Network of the target domain.

Consider a source domain X°® and a target domain X*. With P® and P! we
denote the empirical distributions of X* and X!, respectively. Instances from the
source domain are labeled (e.g., with class labels or pixel-wise semantic labels).
Suppose we have a task-specific network architecture F' with L layers. Let F'*
denote the pre-trained network architecture in the source domain, and 6° its
weights. To ease the discussion, we assume F* is a feed-forward network, where
ff denotes the i-th layer. Extensions to DAG structured networks are straight
forward. Let

Ff=fio-off.

be the sub-network that consists of the first i layers. Our goal is to learn a
network F? with parameters ' on the target domain. Since we do not have
any label in the target domain, this problem is ill-posed. We thus constrain the
problem in three ways.
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Label distributions. We assume the underlying label distributions of the
source and target domains are similar (e.g., distributions of class labels per-
pixel), as is common for unsupervised domain adaptation [1]. This assumption
clearly places certain constraints on the network of the target domain. However,
it is easy to configure networks to match pixel-wise label distributions, without
assigning any meaningful labels in the target domain. By itself, aligning label
distributions is clearly insufficient.

Activation distributions. One of the key observations in this paper is that
the domain shift does not just happen at the output layer, but anywhere in-
side the network. We address this by placing the additional constraint that the
distributions of intermediate activations are similar between the source domain
and the target domain. Such assumptions have been used [7] for specific layers
and with simplified distributional assumptions. We propose to enforce it across
all the layers for general activation patterns. While activation matching pro-
vides considerably more constraints on supervised domain adaption than merely
aligning the label distributions, it is not yet sufficient — one can still design a
target network so that it matches activation distributions but outputs different
pixel-wise labels.

Weight drift The fundamental underlying assumption of domain adaptation is
that the source representation carries some information about the target domain,
and only needs to adapt slightly to perform well on the target. However, none of
the above losses capture this gradual change. We thus add a regularizer between
the source and target networks, to ensure that the filters do not change much
during adaptation.

4 Approach

In this section, we present our approach for layer-wise unsupervised domain
adaptation. We first present a general formulation. We then describe an effective
two-stage approach that yields an approximate solution. Let A7 = F?(z®) be the
activation at the i-th layer of network F'* on a source image z® € P*, and A! be
the corresponding activation of the target network on a different target image
z' € P'. Each spatial location is regarded as an i.i.d. sample. Let P(A$) and
P(A!) be the distributions of these two activations over our entire source and
target sets, respectively. Our objective is to match these distributions as well
as possible, while keeping source and target networks close to each other. We
express this in a constrained optimization framework:

minimize  ||6* — 6*||?

o (1)

subject to  P(A$) ~ P(A}), 1<i< L.
We use = to denote that the two distributions should match. This optimization
problem is clearly hard. The major challenge lies on estimating high dimensional
distributions of activation maps and matching them. We present two relaxations
to this optimization problem.
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4.1 Gaussian i.i.d. matching

A common practice for weight initialization of a neural network is that all acti-
vations are Gaussian i.i.d. [36]. More precisely, denote A7, as the activation of
channel k of layer ¢ of the source network. , we assume A7, follows a Gaussian
distribution with mean p;, and standard deviation o7 . We denote Aﬁ) . as the
corresponding activation from the target domain under the same Gaussian i.i.d.
assumption. In this setting, matching these activation distributions simplifies to
matching the mean and standard deviations of activations between the source
and target domains. We do this by scaling and shifting activations.

Specifically, consider scaling the weights of the target network at layer i, F}
by a factor «; , and adding a bias f3; ; for channel k. Each new target activation
Aﬁ i is simply a shifted and scaled version of the old one:

t t
Ai g = ik Aj g + Bik
The same applies to the mean and variance:
~t ¢ At t
Big = Qikhty + Bik, and 65 = k0 g

This gives us a clear path to match source and target distributions with
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Under a Gaussian i.i.d. assumption, it is sufficient to shift and scale the output
of each layer using the following transformation

. o ok
t
3

5 (Ff(2") = i) + i, (2)
where p; and o; are the channel-wise mean and standard deviation in the source
and target domain, respectively. Moreover, if the filters and activations are full
rank, Equation (2) is a unique solution to Objective (1). Equation (2) reduces to
AdaBN [37] and or more generally AutoDIAL [7] if applied directly to a batch
normalization layer.

A major drawback of this simple matching is that the i.i.d. assumption ig-
nores any structure in the data. Next, we show how to match the activation
distributions in a more structured way.

4.2 (General matching

Instead of directly matching the activations in Equation (1) using a hard con-
straint, we relax the constraint by minimizing a loss function. In this paper, we
employ the Jensen-Shannon divergence (JSD) J(P(A$), P(A!)) for comparing
two distributions. A nice property of JSD is that it is zero if and only if the two
distributions match, and positive in all other cases. The new objective is

L
: s _ pt2 s t
min [[6° — 67| +>\;J(P(AZ),P(AZ)), 3)
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where A measures the strength with which we enforce the constraint.

We optimize objective (3) using a generative adversarial networks (GAN) [2]
The GAN effectively minimizes the Jensen-Shannon divergence in (3). It formu-
lates a two player game between a generator, in our case the domain adaptation
algorithm, and a discriminator that separates the source and target domains.
GANSs can be hard to train, particularly when the source and target distribu-
tions are different. We found that a careful initialization using the Gaussian
activation matching, Section 4.1, was crucial for successful transfer. In addition,
we used Least Square Generative Adversarial Network [38] for semantic segmen-
tation, as it further stablized the training. For digit classification, a classical
GAN [2] was sufficient.

5 Experimentals

We evaluate our approach on several tasks: digit image classification and seman-
tic segmentation. For digit image classification we transfer among three datasets:
MNIST [39], USPS [40] and SVHN [40]. These three datasets share a common
label space corresponding to digits 0 to 9. MNIST and USPS feature grayscale
handwritten digits, while SVHN contains color images of house numbers from
Google Street View. We follow the evaluation protocol of ADDA [1] and transfer
MNIST — USPS, USPS — MNIST and SVHN — MNIST. For each pair of
datasets we report the classification accuracy on the target set.

For semantic segmentation we transfer between three datasets: Cityscapes
[41], GTA [42] and SYNTHIA [43]. Cityscapes features real world scenes of a car
driving through 50 European cities. GTA and SYNTHIA try to mimic Cityscapes
as well as possible in simulation. While Cityscapes only contains 2975 pixel accu-
rate training images, both synthetic datasets are considerably larger with 9400
for SYNTHIA and 24966 for GTA. We transfer semantic segmentation models
from both synthetic datasets to Cityscapes. We evaluate our representation on
the 1525 test images of Cityscapes, using three standard metrics: Intersection
over Union (IoU) over the entire dataset, pixel-wise classification accuracy, and
class-weighted classification accuracy.

For each task we compare to several baselines, and the prior state of the
art. Our baselines include: The source model without adaptation, and a fully
supervised model trained on the target domain. We compare to ADDA on all
tasks, and the current state of the art [5] on Cityscapes. In addition, we also
compare to a recent public available method CYCADA [31].

Network Architecture. For image classification, we adapt LeNet [39]. The
choice of the discriminator is critical here. We adapt the same settings as ADDA [1],
with a three-layer network, i.e., two 500-unit hidden layers and one final classifi-
cation layer. We only add the discriminators in the last two layers of the source
and target networks. In order to balance the influence of different activation
maps, we multiply 0.1 to the scale of penultimate layer. For classification we
pre-train the discriminator for 500 iterations, before training it jointly with the
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Fig. 3: Can you tell if two images are from the same domain or not by just looking
at a single activation inside the network? Here, we show two histograms (orange
or blue) of activations for a specific unit in the network. The histograms either
come from two different images in the same domain, or different domains. Can
you tell which is which? See footnote*for the result.

target network. Adam optimizer was used for training. For digit classification,
we found it to be more stable to add one GAN at a time, after the training for
the previous GAN converged.

We use ERFNet [42] for semantic segmentation. ERFNet consists of multiple
down-sampling layers and residual-like modules. Compared to other networks
for semantic segmentation, ERFNet provides a desired balance between segmen-
tation accuracy and efficiency. For computational reasons, we skip the decoder
of the ERFNet and use a simple bi-linear up-sampling. We choose Least Square
Generative Adversarial Network [38] as our discriminator. GPU memory is the
main limitation on the number of discriminators. We evenly distribute the dis-
criminators among all layers for the segmentation task(4th/17, 8h/17, 12th/17,
17th/17) and it worked well enough. We explored various locations of the dis-
criminator for digit classification, and the last two layers worked best.

Hyper-parameters We exhaustively explored the hyper-parameter A, and
found A = 0.1 with a batch of 12 images yielded the best result. The method is
quite robust, with all of these settings coming within 3% of the optimal setting.

We start the evaluation by verifying the core premise of this paper: A Domain
Shift occurs throughout all layers of a network, not just the final layer. To test
this premise we devise a little game called: Source-or-Not.

5.1 Source-or-Not

To illustrate that intermediate activations mismatch throughout a network be-
tween source and target domain we devised a little game: Source-or-Not. For
a network pre-trained on a source domain X?®, we pick a random layer [, and
a random unit ¢ within that layer. We then choose two images either from the
same or different domains, and plot the distribution of activations A;; of that
single unit across all spatial locations. The objective of the game is to tell from
the activation distribution, if the two images came from the same dataset or
from different ones. Figure 3 shows an example of this. After some calibration,
a human observer almost exclusively wins the Source-or-Not game.
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Approach MNIST—USPS USPS—MNIST SVHN—MNIST
Supervised baseline 96.4 99.9 99.9

No adaptation 77.8 70.7 60.3

ADDA [1] 90.2+0.9 97.2+04 72.0 £ 0.6
ADDA [1] + our regularization 90.5 + 0.5 97.4+0.6 73.5+£0.8

Long et al. [44] 85.0 90.9 69.9

GAM (no regularization) 95.6 + 0.6 97.8 £ 0.6 73.6 £ 0.6
GAM (full) 95.7£0.5 98.0 £ 0.5 74.6 £1.1

Table 1: Classification accuracy in percentage for transfer between MNIST,
USPS, and SVHN. Higher is better. GAM stands general activation matching.

We will look how our deep activation matching deals with the domain shift.
We start with digit classification experiments.

5.2 Classification

For digit classification, we compare our methods, Gaussian i.i.d. matching and
General Activation Matching (or GAM), to the current state of the art, ADDA [1],
the algorithm of Long et al. [44] and various ablations of our algorithm. For
ADDA, we report the performance of running their code on our platform. How-
ever, we got slightly different results than reported in the original paper, despite
running their code as is.

We use almost the same settings as ADDA. We use batch size 128 and a
learning rate of le4. SGD is used with a momentum of 0.9. The model is trained
for 20000 iterations in all tasks. We scaled 0.1 for GAN losses for the next-to-last
layer. We half the weight regularization losses for all layers.

Table 1 shows our results. Compared to results reported by ADDA, our
baseline performs significantly better for USPS to MNIST, while for SVHN to
MNIST it does slightly worse. For each task, domain adaptation leads to a
significant boost over a source-only model, bridging the gap between source- and
target- trained models by over two thirds. Adding our weight regularization term
to the baseline already gives ADDA a slight boost. However the most significant
boost throughout all domains comes from the general activation matching using
adversarial networks.

This clearly establishes that matching the distribution of intermediate layers
in a deep network matters for domain adaptation.

Distributional mismatch An underlying assumption in our work is that the
source and target labels follow the same distribution. This is true for the nicely
balanced MNIST, SVHN, and USPS, but might not hold in general. To study

4 Solution of the Source-or-Not game in Figure 3: First 2 - cityscapes vs GTA, last 2
- Cityscapes vs Cityscapes.
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Source Target no adaptation GAM (full)
Odd SVHN Full MNIST 32.5 36.9
Even SVHN Full MNIST 34.1 37.6
Full SVHN Odd MNIST 50.8 29.8
Full SVHN Even MNIST 69.8 44.0
Odd MNIST Full USPS 47.8 50.5
Even MNIST Full USPS 37.1 42.8
Full MNIST Odd USPS 87.6 72.8
Full MNIST Even USPS 73.7 80.1

Table 2: Domain adaptation with mismatched label distributions. Full uses the
original dataset, odd removes half of the odd digits, even removes half of the
even digits.

the effect of a distributional mismatch between training and testing we trained
and evaluated on subsets of the datasets with skewed label distributions. We
tried three subsets for each dataset: The full dataset (Full), half of the odd
digits removed (Odd), half of the even digits removed (Even). The test set was
unchanged. The results are summarized on Table 2.

Training on anything other than the full dataset significantly drops the gen-
eralization performance of both source-only classifier and our adapted model.
However, here adaptation is able to recover a significant part of the lost per-
formance. This shows that our GAM does not overly rely on the distributions
matching exactly, but is able to tolerate some distributional mismatch. However,
when the target and test set do not match (Odd and Even Target) our method
fails, as it adapts to the wrong test distribution.

Next, we show how GAM performs on semantic segmentation.

5.3 Semantic segmentation

Domain adaptation generally assumes that the source and target domains share
similar label distributions. However this might not always be true. We first es-
tablish a baseline for the optimal (oracle) classifier that perfectly matches the
source label distribution.

Oracle performance To compute this oracle performance we first count label
frequencies in both the source and target domain. Let n and n! be the number
of pixels labeled [ in the source and target domains, respectively. For each label
[, the maximal intersection in the IoU score is max(n}, n}), while the union is
n; + n! — max(ny,nt). This allows us to compute an upper bound on the IoU,
pixel- and class-wise accuracy without labeling a single image. Table 3 shows the
result. If we perfectly follow GTA label distribution we can never exceed 55%
IoU accuracy, or 82% pixel-wise accuracy.
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Experiments Arch. Global accuracy Class accuracy IoU
Oracle (source distribution) 82 72 55

Supervised baseline A - - 65.0
No transfer A 45 28.9 15.8
i.i.d Gaussian matching A 72 41.3 28.0
ADDA A 79.4 42.6 28.6
ADDA + our regularization A 80.3 42.4 30.5
GAM (full) A 80.6 44.2 31.3
Curriculum [5] (no transfer) B - - 23.1
Curriculum [5] B - - 28.9
No transfer (ours) B - - 18.8
GAM (full) B 809 43.8 32.6
CyCADA [31] C 823 72.4 395
ADDA C - 39.2
GAM (full) C 811 73.1 40.2

Table 3: Experimental results of different models evaluating in Cityscapes
datasets. We fine-tune all the experiments from the original model, which only
have 15.8 ToU. Different evaluation metrics are used in evaluation. Our approach
achieves the best performance in every evaluation metric. Architecture A is
ERFNet, B is VGG16-FCN8s, C is Dilated Residual Network.

Baselines Here, we again compare to a fully supervised baseline, trained using
target labels, a baseline without any transfer, ADDA, and the current state-of-
the-art, curriculum domain adaptation [5] and CyCADA [31].

GTA to Cityscapes We randomly cropped images to 1024 x 512 and feed them
to networks. We use ADAM optimizer with a batch size of 12. As for this task,
every discriminator has the same scale and we did not find better performance
when we changed the scale. We also doubled the weight regularization loss for all
layers.As shown in Table 3, the transfer from GTA to Cityscapes is much more
challenging than digit classification. The baseline algorithm without any domain
transfer results in a drop of 16 in terms of IoU accuracy, while a fully super-
vised model achieves 65.0. However the performance almost doubles through the
simple i.i.d Gaussian matching. The Gaussian matching performs nearly as well
as the best prior work, ADDA. Adding our regularizer to ADDA again boosts
its performance, but not as much as our complete General Activation Matching.
Here, the prior state of the art trained a slightly different baseline model, per-
forming at 23.1% IoU without transfer, however their transfer algorithm does
not lead to a large improvement on top of the initialization.

Both the ADDA baseline and our General Activation Matching do not per-
form well without a regularization term. This is in part due to filters collapsing
as we train the adversarial network. Figure 5 shows how the regularization term
helps both ADDA and our method train longer without a collapse in transfer
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Fig. 4: Qualitative results. Cars are blue, buildings are gray. Roads are purple
and the sidewalks are dark purple, trees green. The quantitative improvement is
directly reflected in the increased segmentation quality of our transferred model.

accuracy. For ADDA, relatively early in training, many of the filters and acti-
vations go towards zero and do not recover. With early stopping, the resulting
model performs only marginally better than the no-adaptation baseline. For a
fair comparison, we compare to the ADDA at peak performance, before filters
collapsed.

Curriculum uses a slightly different architecture. We use their architecture
to both train a source model from scratch and adapt the model using GAM.
GAM significantly outperforms Curriculum despite a lower baseline (no transfer)
performance.

Finally, we compare to CyCADA and ADDA on the Dilated Residual Net-
work [45]. We follow Hoffmanet al. [31] and pretrain our source model on trans-
lated images of the CycleGAN [29] model. We also provide an ADDA baseline
in this training setup. GAM again outperforms all prior works and shows state
of the art performance.

Figure 4 shows a visual comparison among different transfer algorithms.
While the gains of transfer learning from GTA to Cityscapes are impressive,
we are still far from the supervised performance. A reason for this might be
that the source dataset is too different from the target. This motivates us to try
another synthetic dataset.
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Experiments Global accuracy Class accuracy IoU

Source only 77.30 59.21 45.19

GAM (full) 92.67 74.32 62.26 (+17.07)
Curriculum [5] (no transfer) - - 17.4
Curriculum [5] - - 29.0 (+11.6)
GAM (finetune from [5]) - - 30.7

Table 4: Transfer from SYNTHIA to Cityscapes. We compare to the state of the
art using a slightly different baseline model. Despite this our algorithm yields a
larger improvement over the baseline.

SYNTHIA to Cityscapes For SYNTHIA we pre-train the model on the
same 22 source classes as Zhang et al. [5], and transfer the same 16 classes
to Cityscapes. This setup is slightly different from the GTA to Cityscapes ex-
periment, where we transferred all classes.

We compare to Curriculum domain adaptation, the current state-of-the-art,
using the same models as in previous experiments. Table 4 shows the results. In
this setup, our baseline performs significantly better than the reported state of
the art. In addition, we also achieved a larger absolute improvement from our
domain adaptation algorithm. This is in part due to the poor performance of
the baseline model in Curriculum. If we finetune GAM on that same baseline,
we see only a modest increase in performance over the full Curriculum system.

We have clearly established that Deep Activation Matching performs at, or
higher than the current state of the art in unsupervised domain adaptation. In
a final experiment, we see how well our approach compares to fine-tuning on a
small set of labeled target images.

5.4 Comparison to fine tuning

The final question we would like to address in this paper is: How many labeled
images is a state-of-the-art transfer learning algorithm worth. The answer is
30—60, as we show in Figures 6. Fine-tuning a pre-trained model on just 30 — 60
images will do as well as transfer learning on hundreds. In other words, if the
authors would have labeled Cityscapes images, instead of writing this paper they
would have obtained a higher transfer learning performance.

However, this is only part of the story. First, as Figure 6 shows, fine-tuning
our transferred representation, still yields a boost of 2 — 3% in accuracy. Second,
this experiment assumes that we have labels in the target domain, which is only
true for proxy-tasks we study in computer vision, and might not hold for robotics
or autonomous driving tasks.



14 Haoshuo Huang, Qixing Huang and Philipp Krahenbiihl

30 -

N}
a

= General Activation Matching
—— ADDA
ADDA + our regularizer

Intersection over Union(loU)
N
S

Intersection over Union(loU)
N
)

=== Baseline
e Qur approach
0 5 10 15 20 25 30 35 40
' ' ' ' | \ Number of target images
0 50 100 150 200 250 300
Training epoches

Fig.6: Comparison of our state of the

Fig. 5: Test accuracy of our model over
several training iterations. Learning
our General Activation matching with-
out a regularization term leads to a
collapse in filters, and diminishes per-
formance.

art domain transfer algorithm to fine-
tuning on a limited set of target im-
ages. We fine-tune both our represen-
tation, and the baseline without any
transfer. Our representation starts out
below the transfer baseline due to over-

fitting.

6 Conclusions

In summary, we propose a novel approach for domain adaptation, based on closed
form or adversarial activation matching of activation functions. Our experiments
show that we can significantly outperform the state-of-the-art both in terms of
robustness and performance.

There are ample opportunities for future research. For example, it would be
interesting to study other ways to matching activation functions. In addition,
which layers to match activation functions desire deeper analysis. Finally, so far
we have studied domain adaptation among two networks, the same idea can be
applied to match activation functions across multiple domains.
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