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ABSTRACT

The Multi-Genre Broadcast challenge is an official challenge of the
IEEE Automatic Speech Recognition and Understanding Workshop.
This paper presents NAISTs contribution to the premiere of this
challenge. The presented speech-to-text system for English makes
use of various front-ends (e.g., MFCC, i-vector and FBANK), DNN
acoustic models and several language models for decoding and
rescoring (N-gram, RNNLM). Subsets of the training data with
varying sizes were evaluated with respect to the overall training
quality. Two speech segmentation systems were developed for the
challenge, based on DNNs and GMM-HMMs. Recognition was
performed in three stages: Decoding, lattice rescoring and system
combination. This paper focuses on the system combination exper-
iments and presents a rank-score based system weighting approach,
which gave better performance compared to a normal system com-
bination strategy. The DNN based ASR system trained on MFCC
+ i-vector features with the SMBR training criterion gives the best
performance of 27.8% WER, and thus significantly outperforms the
baseline DNN-HMM sMBR yielding 33.7% WER.

Index Terms— speech recognition, ASRU MGB, broadcast,
evaluation system, system development

1. INTRODUCTION

This paper describes NAISTs contribution to the Multi-Genre Broad-
cast (MGB) challenge', an evaluation campaign for state-of-the-art
automatic speech recognition systems that need to be capable of re-
liably transcribing audio from a multi-genre, multi-topic and multi-
channel domain. Fixed sets of audio and text data for training were
provided, as well as a pronunciation lexicon, which allows for a
comparison of multiple systems on matching data and conditions.
Participants were free to join any of the four provided tasks. NAIST
entered the challenge by participating in the speech-to-text transcrip-
tion of broadcast television task, which is a standard speech tran-
scription task, where systems have to operate on a diverse collec-
tion of BBC television shows. The evaluation and the individual
tracks are described in detail in [1]. Our contribution to the chal-
lenge comes in the form of an English speech recognition system
that has been built from scratch, utilizing the Kaldi speech recogni-
tion toolkit [2].

The developed speech-to-text system makes use of various front-
ends, deep neural net (DNN) acoustic models and several language
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models for decoding and rescoring (see Subsections 2.1 and 2.2, re-
spectively). This paper also discusses several approaches to auto-
matic segmentation (see Section 4), as one non-mandatory sub-task
of the challenge was to automatically obtain utterance time stamps
prior to decoding.

System combination is a common approach for high perfor-
mance speech recognition, especially if recognition in real-time
is not the major concern. Recognizer output voting error reduc-
tion (ROVER) [3] and confusion network combination (CNC) are
among the most popular methods. ROVER generally allows for
some form of weighting with the help of confidence scores, which
is inherent to CNC. Studies like [4] and [5] affirm the advantages
of confidence based weighting strategies. However, it is common
practice that systems which contribute to a combination do so with
equal shares: Besides word or segment based weighting, systems
contribute equally to the final output. This strategy however might
fail in cases where system performances are unbalanced. The better
hypotheses might simply be overpowered by suboptimal alterna-
tives.

We investigated the potentially positive effects of weighted sys-
tem combination that makes use of weights on system level. Our
weighting scheme is data driven and utilizes a rank-score: Each sys-
tem, according to its rank when judged by its recognition accuracy
on a development set, contributes to the combination with an individ-
ual weight. System weights are correlated to the rank-scores of the
systems. The experimental results show a consistently better perfor-
mance compared to normal system combination strategies. We were
able to reproduce the findings of [4] that standard and confidence-
weighted ROVER on two systems is outperformed by lattice-based
combination strategies, but prevails for combinations of more than
two systems. Moreover, we were able to observe that the benefits by
system-based weighting are significantly higher for ROVER than for
the lattice-based combination alternatives, so that ROVER even has
the potential to outperform the latter. Our best combination resulted
in a WER of 27.5% on the development set. A detailed description
of our approach is found in Subsection 2.3, and the results of the
combination experiments are described in Subsection 5.3.

2. OVERALL SYSTEM

In this section, we describe the acoustic, language model training,
and also system the system combination strategy. An overview of
our system is illustrated in Figure 1.
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Fig. 1. System overview

2.1. Acoustic model training

We tested several acoustic model training strategies during develop-
ment. Deep neural network acoustic models trained with 2 different
types of input features were adopted, where one are either standard
MFCC + i-vector or FBANK + i-vector features. The DNN with
standard MFCC input features is trained by the cross-entropy crite-
rion, whereas the DNN with standard feature (MFCC, FBANK) + i-
vector features is a p-norm deep neural network [6], which is trained
with both cross-entropy (CE) and state-level minimum Bayes risk
(sMBR) training criterion [7, 8]. The full training procedure is illus-
trated in Figure 2.

2.1.1. I-Vector extraction

The i-vector was initially introduced for speaker recognition tasks
[9], and recently has drawn researcher attention in the field of speech
recognition. The i-vector w is defined in the context of the following
term,

M =m+ Tw, (€9

where M is the utterance supervector which depends on speaker and
channel dependent components [10], m is the mean supervector of
a universal background model (UBM), T is low rank rectangular
total variability matrix, and w is the i-vector following the standard
normal distribution N (0, I).

Given input feature frames Y, the i-vector w can be defined by
the mean of the posterior distribution P(w|Y'), where this posterior
distribution is a Gaussian distribution [11].

The matrix T, which refers to the i-vector extractor, is trained
for every second feature frame to speed up the training. The i-vector
extractor and the UBM models used for the experiments described
in this paper were trained using 338 hours of training data including
48,587 speakers. The UBM model has 512 Gaussian components.
As mentioned before, two different types of speech features (MFCC
and FBANK) were utilized.

2.1.2. DNN cross-entropy

The first DNN model can be considered a standard DNN acoustic
model with 6 hidden layers, where each layer consists of 2048 nodes.
The non-linear sigmoid activation function is applied in each hidden
layer, and the softmax function is applied in the output layer. The
input features are LDA + MLLT + fMLLR on top of MFCC. The
feature frames are also spliced with 5 preceding and 5 succeeding
frames, resulting in the final 440 dimensional DNN input feature
vector covering 11 frames of context.

First, we performed the pre-training with deep belief network
(RBM) [12]. After that, the DNN was trained using the back-
propagation algorithm and stochastic gradient descent with frame
cross-entropy (CE) criterion as implemented by the Kaldi speech
recognition toolkit [2].
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2.1.3. P-norm DNN

As a second type of model, the p-norm deep neural network [6] was
adopted. The p-norm is a “dimension-reducing” non-linearity that is
inspired by maxout

1/p
y = x|, = (Z x#’) 7 @)

i

where here the vector x represents a bundled set of 10 feature vec-
tors, p is the normalized parameter and is set to 2 as it showed the
best performance as described in [6]. The number of hidden lay-
ers is 6. The 40 dimensional MFCC or FBANK feature vectors and
the 100 dimensional i-vectors are stacked to form a 140 dimensional
DNN input feature.

The parameters are trained by using either CE or sMBR criterion
as implemented in Kaldi. For each type of input features, two DNN
models are trained, one by the CE criterion, the other by the sMBR
criterion. After decoding, the decoding lattices of both systems are
combined to produce the final decoding lattices.

2.2. Language model
2.2.1. N-gram

N-grams have long been a standard language modeling technique
for ASR, where N — 1 words are used as context to predict the next
word. The larger the context, the more data is required to avoid the
data sparsity problem. During the experiments described here, two
N-gram language models were trained with Kneser-Ney smoothing
[13] implemented in SRILM language modeling [14], a 3-gram LM
pruned with probability 10~® for decoding purposes, and a full 4-
gram model for rescoring in a second pass. All available textual
training data was used for the training of these models.

2.2.2. RNNLMs

Recurrent neural network language models have shown to have an
advantage over the standard N-gram language model. There are sev-
eral reasons for this, perhaps the most notable being that RNNLMs
can capture the context of entire utterances, which is difficult to do
in with standard N-grams. [15, 16] have also shown that RNNLMs
can significantly improve the performance of speech recognition, es-
pecially when RNN models are interpolated with N-gram language
models. However, the drawback of RNNLMs is the computational
complexity. Therefore, this type of language model is usually used
for rescoring in two-pass decoding systems.

The systems that we developed for the MGB challenge adopt
a class-based RNNLM [15], whose 3-layer topology is illustrated
in Figure 3. The hidden activation values of previous word tokens
are concatenated with the current word vector to form a new input
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vector for the network. The probability of w;, which is the i** word
belonging to class ¢; is calculated as

P(w1|x1) = P(wZ|C,,SZ)P(Cl|S1) (3)

The RNNLM is comprised of 150 hidden nodes and 400 classes. The
model is trained using the threaded version of the RNNLM toolkit.
It took about 5 days to finish the training process.
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Fig. 3. RNNLM:s topology

2.3. Rank-score based combination

One focus of these experiments was on the introduction of a weight-
ing scheme which takes into consideration the potency of the con-
tributing systems. A straightforward and widely used approach is to
employ equal weights to all system outputs. However, in a scenario
where various systems differ greatly in performance, this strategy
might nullify the positive effects of hypothesis combination or even
lead to a degradation in accuracy, as errors introduced by weaker
systems might overpower the correct hypotheses of the more accu-
rate systems. This effect was indeed observable during combination
experiments with equally weighted contributions.

In order to maximize the positive effects of combination, we
introduced a method for output weighting on system level. Our
weighting scheme is data driven and makes use of a rank-score: Each
system, according to its rank when judged by its recognition accu-
racy on a development set, contributes to the combination with an

individual weight. System weights are conditioned to the rank-score
of the systems. Letrank(s,) € {1, ..., |S|} be the rank of a system
sn € S, where the system s* with the highest accuracy acc(s™) has
rank 1. The rank-score of a system s, is

acc(sn) - (|S| + 1 — rank(sy)) @)

A numerically lower rank indicates a system with higher perfor-
mance. We weighted the individual systems during lattice combina-
tion according to:

acc(sn) - (|S| + 1 — rank(sn))
anes acc(sn) - (JS| + 1 — rank(sy))

weight (s, ) = (5)

For ROVER, an approximate method was used due to the fact
that direct weighting was not possible. Instead, systems were taken
into consideration multiple times for the combination, according to
their respective ranks: In a combination of 4 systems, the best system
enters ROVER 4 times, the second best 3 times and so on.

3. TRAINING DATA

3.1. Original data

As described in [1], the original data is created via a two-step re-
finement, where the original transcription from BBC is aligned to
the audio and a score for data selection is computed for quality mea-
surement. After refinement, a total of 1005 hours of training data is
released along with the score for each segment. Phone matched error
rate (PMER) and word matched error rate (WMER) range from O to
100.

3.2. Data selection

We performed data selection to maximize the use of the provided
training material. The procedure shall be elaborated briefly. The
purpose was to determine the most suitable data subset for acoustic
model training.

Data was selected according to the WMER measure. For exper-
iments, 4 sub data sets were selected based of WMER 10, 15 and
20. Then, a GMM-HMM speaker adapted model for each data set
was trained. Finally, held-out data from the development set cover-
ing 2000 utterances was decoded to calculate the WER. The results
are listed in Table 3.2.

As a result, although the difference is small one can see that the
data set with a WMER of 15 gives the best results in terms of WER.
The size of the data is approximately 338 hours, which is also an
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appropriate amount of data to train the acoustic model. This data
was used for the acoustic model training for all further experiments.

[ WMER [ Size (hours) [ WER ‘

10 240 63.70
15 338 63.12
20 400 63.15

Table 1. The WER of GMM-HMM models trained on different data
sub-sets.

4. AUTOMATIC SEGMENTATION

The evaluation set was provided with an automatically generated
segmentation by the organizers. However, participants were encour-
aged to produce their own segmentations, i.e., to find means to auto-
matically write utterance time stamps given the raw audio data. We
evaluated the effectiveness of two different approaches to automatic
segmentation of audio data, which are:

a) NN based segmentation on feature vectors, followed by
smoothing. A deep neural network was trained to perform a 2-class
classification of input feature vectors into frame based speech and
non-speech tokens. Smoothing is performed by merging neighbor-
ing features across their respective classes, where tolerance parame-
ter for noise enclosure allows for optimizing towards less fractured
utterance segments. Padding is applied to cushion the sharp de-
cisions that are inherent to the frame based classifier. b) GMM
based segmentation using a speech and a non-speech model. This
method uses a Viterbi based decoder and GMM-HMM models to
classify consecutively observed feature vectors into the two broad
sound categories. The mechanics of the general framework are com-
parable to the one presented in [17]. Padding is applied during a
post-processing step.

4.1. NN based segmentation

The NN based segmentation framework makes use of a deep feed-
forward neural net to perform a binary classification of the feature
vectors into speech or non-speech. The neural net is comprised of 5
hidden layers, where the first 4 layers are composed of 1024 nodes
each, and the 5th layer has 512 nodes. The non-linear tanh function
is used as an activation function for each hidden layer as well as the
output layer. To avoid the over-fitting problem, the Lo regularization
method has been adopted, with Lo set to 0.0001. The neural net is
trained using the standard back-propagation algorithm. The learning
rate is initialized at 0.1 and scaled by 0.5 when the validation error
reduction between two consecutive epochs is less than 0.05. The
training process will stop when the learning rate falls below a value
of 0.0002.

4.2. GMM based segmentation

The GMM segmenter is essentially a speech recognizer that is capa-
ble of discriminating two classes of sounds. This system has been
built with the Janus speech recognition toolkit [18]. Segments are
modeled as single HMM states, where the minimal segment lengths
are directly modeled by the HMM topology. Each GMM consists
of 128 Gaussians. The dimension is given by the input feature vec-
tor type. The acoustic model is trained according to the maximum
likelihood criterion, where the GMMs grow incrementally in several
iterations of “split-and-merge” training [19].
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4.3. Segmentation Data Selection

Due to the fact that the provided acoustic training data did not come
with labels for noise in the recordings, the assumption “everything
in between annotated speech parts is likely to be noise” was made.
Thus, speech samples were extracted from audio segments annotated
as speech, and non-speech samples were extracted from the gaps in
between speech segments. In contrast to the acoustic model training
for the ASR systems, this extraction was done on the full set of pro-
vided training data, as the timing informations had to be complete
in order to most likely only extract non-speech from un-annotated
audio segments. Only a random subset of the overall data was used
for training, as preliminary tests showed that an exhaustive use of the
data was not resulting in better segmentations. Ultimately, each seg-
menter described here was trained on 38 hours of speech data, and 26
hours of non-speech data randomly selected from the training data.

4.4. Development

During system development, various feature vector types were uti-
lized for both segmentation approaches. Besides 13 dimensional
standard MFCC features, stacked MFCCs with a context of 2 (the
2 preceding and 2 succeeding vectors are stacked to the center vec-
tor, here denoted as MFCC-2) as well as 42 dimensional LDA trans-
formed MFCCs after stacking with a context of 7 were taken into
consideration for a cross-feature and cross-framework comparison
on segmentation accuracy. The respective contexts proved to be
good choices during preliminary experiments. Future experiments
might be conducted for optimizing those parameters. For evaluating
segmentation accuracy, the provided segmentation was considered
the ground truth. Segment coverage was computed on frame level
and evaluated in terms of accuracy and receiver operating character-
istic. System parameters such as the padding factors were tuned on
the development set. Table 2 lists the performance of all configura-
tions on the official challenge development set.

[ Segmentation | Feat [ ACC] TP] TN |
MFCC 70.6% | 89.5% | 33.1%
NN MFCC-2 | 71.5% | 89.3% | 36.3%
LDA 73.7% | 86.2% | 49.0%
MEFCC 71.5% | 85.1% | 44.4%
GMM MFCC-2 | 71.6% | 90.8% | 33.7%
LDA 76.6% | 93.0% | 44.1%

Table 2. Segmentation accuracy (ACC), true positive (TP) rate
and true negative (TN) rate of the individual models and front-ends
(Feat), computed on the challenge development set given the pro-
vided segmentation.

Albeit all systems showing a rather poor accuracy, the GMM
based system with LDA front-end provided the most accurate seg-
mentation results, and also gained the highest TP rate while still
maintaining a competitive TN rate, given the alternative systems.
The contrastive submission makes use of this segmentation ap-
proach.

5. ASR PERFORMANCE

We built several systems for the evaluation, featuring various front-
ends, acoustic model types and training criteria. The training data for
acoustic modeling was fixed on one subset of the provided material
prior to system development. Likewise, all systems are based on the
same phoneme set and language model training data.



Rescoring
[ System | Features | Criterion | Activation function | 4-gram LM | RNNLM
1 MECC cross-entropy | sigmoid 37.1% 36.2%
2 FBANK + i-vector | cross-entropy | p-norm 30.8% 30.1%
3 MFCC + i-vector cross-entropy | p-norm 30.1% 29.3%
4 MFCC + i-vector sMBR p-norm 28.5% 27.8%

Table 3. Individual system performances of all DNN based recognizers in WER after rescoring.

Systems Rescoring
1 T2]3]4 ] 4gam | RNNLM
VIV V|V | 284% 28.0%
v VIV | 28.6% 28.4%
VIV |V | 283% 28.0%
v v 28.1% 27.9%
vV IV | 28.6% 28.1%

Table 4. Performance of the lattice combined systems in WER,
when applying equal weights for all systems.

Systems Rescoring
1 T2]3]4 ] 4gam | RNNLM
VIV Vv Vv | 287% 28.0%
v VI Vv | 287% 28.0%
VIV |V | 285% 27.8%
v v | 289% 29.5%
v | v | 309% 30.5%

Table 5. Performance of the ROVER combined systems in WER,
when applying equal weights for all systems.

5.1. Decoding

First, a GMM-HMM based system was trained, which, in addition
to providing a baseline, was the basis for all subsequent DNN based
systems. Of these, four types were trained, each utilizing one dis-
tinct input feature type: MFCC, MFCC + i-vector, and FBANK +
i-vector, where the model for the second feature type was trained
with two different training criteria (see section 2.1). Decoding was
performed with the pruned 3-gram language model, followed by lat-
tice rescoring with a 4-gram and RNNLM language model.

5.2. Single system performance

Table 3 lists the performances of all single systems on the develop-
ment set. By comparing systems 2 and 3, it can be seen that the
MEFCC + i-vector feature vectors lead to a better performance than
FBANK + i-vector. The results also reveal that the systems using the
combination of standard features and i-vector features outperforms
the one using the standard MFCC features alone. Due to the rel-
atively poor performance of the GMM-HMM system compared to
the DNN systems, these numbers were omitted from the table.

The primary submission is the decoding result of the DNN i-
vector trained with the SMBR criterion after rescoring with the 4-
gram LM. This is due to unfinished RNNLM rescoring and system
combination at the time of the final submission date. The contrastive
submission is generated by the same system, but on the custom seg-
mentation provided by the GMM based framework presented in Sec-
tion 4.

Systems Rescoring
I T 2 ] 3 [ 4 [4gram [ RNNLM
0.09 | 020 | 0.30 | 041 | 28.2% 27.9%
0.15 0.34 | 0.51 | 28.3% 28.0%
0.16 | 0.33 | 0.51 | 282% 27.8%
329 67.1 | 27.9% 27.8%
329 | 67.1 | 28.4% 27.9%

Table 6. Performance of the combined systems in WER, when ap-
plying the rank-score based weighting.

Systems Rescoring
1] 2 3 4 | 4-gram | RNNLM
1 2 3 4 28.2% 27.5%
1 2 3 28.1% 27.6%
1 2 3 28.3% 27.5%
1 2 28.4% 27.7%
1 2 28.4% 27.7%

Table 7. Performance of the ROVER combined systems in WER,
when applying the rank-score based weighting.

5.3. System combination performance

We evaluated different combination methods using ROVER and de-
coding lattices, as well as system combination with the rank-score
function.

Tables 4 and 5 show the results of lattice combination and
ROVER respectively, when using equal weights. With lattice com-
bination, it was possible to produce slight improvements for the
N-gram rescored outputs, exceeding the performance of the best sin-
gle system. System combination after RNNLM rescoring however
did not lead to any improvements that would outperform the best sin-
gle system. This might be due to the nature of the lattice output after
RNNLM rescoring. The pre-selection of n-best lists for each system
output might limit the possibilities of system combination to further
enhance the decoding results. The ROVER combination was not
able to introduce improvements to the final hypothesis, when only
two systems were contributing to the combination. When multiple
systems were combined, no ROVER combination could outperform
the best single system after 4-gram rescoring and RNNLM rescor-
ing, respectively. However, our numbers affirm the observations
made in [4], that ROVER has the potence to outperform lattice
based combination, when more than two systems are fused together.

Table 6 lists the performance of lattice combination using the
rank-score based weighting method from Subsection 2.3. The first
four columns list the individual system weights. Weights were com-
puted separately for both rescoring types, however, they happen to be
entirely identical, thus the compressed way of presentation. The con-
sistent decrease in WER for all tested combinations proof that rank-
based weighting reliably improves system combination efficiency.
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Taking into consideration all available systems, performance can be
improved from 28.5% (highest scoring single system) to 28.2% after
N-gram LM based rescoring. By limiting the combination to two
specific systems, WER further drops to 27.9%. Upon closer inspec-
tion this seems reasonable, as the two systems involved utilize fairly
different input features (FBANK + i-vector and MFCC + i-vector)
and training criteria (cross-entropy and sMBR), but both perform
comparatively well, so that combination has the potential to affect
the overall outcome of the decoding.

For ROVER, implicit weighting was not possible. To simulate
the effect, hypotheses were taken into consideration multiple times
for the combination, according to their respective ranks, using the
method described in Subsection 2.3. As can be seen in Table 7,
ranked ROVER can achieve the same performance as lattice com-
bination after N-gram rescoring, and moreover clearly outperforms
lattice combination after RNNLM rescoring, pushing the optimal
recognition performance after combination to 27.5% WER.

It is noteworthy that for all presented systems in this section,
minimum Bayes risk (MBR) [20] decoding given the combined lat-
tices was applied to minimize the expected WER.

6. CONCLUSION

This paper described the structure and development of NAISTs En-
glish ASR system for the ASRU MGB 2015 challenge. Different
architectures of deep neural network based models as well as var-
ious types of input features such as MFCC, FBANK and i-vector
have been evaluated. The results show that the p-norm DNN trained
on combined MFCC + i-vector feature vectors following the sMBR
training criterion gives the best performance for a single system,
achieving 27.8% WER. This significantly outperforms the baseline
system which yields 48.5% WER. The results allow the observa-
tion that standard system combination helps to reduce the WER on
N-gram rescored lattices. The potence of system combination can
be significantly enhanced by using a rank-score based weighting on
system level, where systems contribute to the combination in accor-
dance to their individual performance. In doing so, we were able
to improve combination results on N-gram rescored lattices. Where
lattice rescoring was not able to improve on RNNLM rescored lat-
tices any further, ranked ROVER pushed the performance by re-
combination on word level, achieving 27.5% WER, which was the
highest value we achieved during these experiments.
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