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ABSTRACT

Many of the current sentence compression techniques at-
tempt to produce a shortened form of a sentence by relying
on syntactic structure such as dependency tree representa-
tions. While the performance of sentence compression has
been improving, these approaches require a full parse of the
sentence before performing sentence compression, making it
difficult to perform compression in real time. In this paper,
we examine the possibilities of performing incremental sen-
tence compression using long short-term memory (LSTM)
recurrent neural networks (RNN). The decision of whether
to remove a word is done at each time step, without wait-
ing for the end of the sentence. Various RNN parameters are
investigated, including the number of layers and network con-
nections. Furthermore, we also propose using a pretraining
method in which the network is pretrained as an autoencoder.
Experimental results reveal that our method obtains compres-
sion rates similar to human references and a better accuracy
than the state-of-the-art tree transduction models.

Index Terms— Sentence compression, recurrent neural
network, long short term memory

1. INTRODUCTION

Today, there is increasing demand for real-time broadcast
closed captioning services that can convey spoken utterances
using text on a television, video screen, or other visual dis-
play with minimum delay. These closed captions are mostly
created for deaf and hard-of-hearing individuals to assist in
comprehension [1]. Since the text information needs to reach
the audience within the time the relevant video information
is displayed on the screen, the closed caption captioning
process has to be done simultaneously with the visual and
audio display. However, it is often the case that the num-
ber of spoken words that need to be transcribed exceeds the
maximum number of words that people can read in real time
on a TV screen. Therefore, the development of an automatic
closed captioning system requires not only high-speed speech
recognition but also real-time sentence compression.
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Sentence compression is a text-to-text rewriting method
that produces a shortened form of a sentence while retain-
ing the most important information [2]. Research on sen-
tence compression has been extensively pursued across dif-
ferent modeling paradigms. Specifically, extractive sentence
compression focuses on word deletion; a target compressed
sentence is formed by dropping any subset of words from the
input sentence [3]. Many solutions to the compression prob-
lem have been cast as a translation task between two sentences
in the same language based on a parallel corpus of original
and compressed sentences.

To date, the work by Knight and Marcu [3] proposed a
noisy-channel formulation using a Synchronous Context-Free
Grammar (SCFG) [4, 5], and a variety of improvements exist
including those capable of handling syntactically complex ex-
pressions [6] and head-driven Markovization of SCFG dele-
tion rules [7]. A number of other approaches also exist in
the speech domain; Clarke and Lapata [8] use integer linear
programming (ILP) to infer globally optimal compressions in
broadcast news, and Liu and Liu [9] model the speech ut-
terance compression task as a sequence labeling problem us-
ing conditional random fields (CRF). However, one notable
method in extractive sentence compression is the tree trans-
duction formulation by Cohn and Lapata [10, 11, 12]. In this
method, sentence compression is seen as rewriting a parse tree
into a smaller one. Specifically, the model adopts the syn-
chronous tree substitution grammar (STSG) formalism [6],
which can construct non-isomorphic tree structures while us-
ing efficient inference algorithms.

While the performance of sentence compression has been
improving, these approaches require a full parse of the sen-
tence before performing sentence compression, making it dif-
ficult to perform compression as part of a real-time closed-
captioning process. The motivation in the current study is to
examine the possibilities of performing incremental sentence
compression using recurrent neural networks (RNN). The de-
cision of whether to remove a word is done at each time step,
without waiting for the end of the sentence. In addition, be-
cause the available parallel training data for the sentence com-
pression task is relatively small, we also propose a method to
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use pretraining to learn representations of the sentence using
large unsupervised data before fine-tuning the sentence com-
pression data.

2. RELATED WORKS

An RNN is a type of neural network that has feedback con-
nections, such that in each time-step layers in the net will also
receive inputs by using the output values at the previous time
step. Consequently RNNs can be considered deep neural net-
works (DNNs) with the number of layers being proportional
to the number of time steps. These additional feedback con-
nections allow RNNs to remember and process information
from previous time steps, making them a powerful and ex-
pressive model for sequential tasks.

To date, RNNs have provided advantages in various
speech and language processing tasks. One of the first appli-
cation of RNNSs in speech processing was to use it as phone
modeling and phone probability estimation [13, 14]. RNNs
have also been widely applied for text classification [15].
Perhaps the most successful application of RNNs in recent
years has been their use in RNN language models (LMs) [16],
which have demonstrated outstanding performance in a vari-
ety of tasks, including speech recognition [16, 17], machine
translation [18], and learning word embeddings [19, 20].
More recently, many research works have focused on utiliz-
ing RNNs for spoken language understanding [21, 22].

However, to the authors’ knowledge, there has been no
attempt to apply RNNs to solving the problem of sentence
compression. In this study, we utilize RNNs for incremen-
tal sentence compression. Specifically, we apply long short-
term memory (LSTM) RNNs to predict whether to remove
a word at each time step. Furthermore, we explore various
RNN structures and propose modifications to the standard
RNN layers as well as the use of pretraining methods.

3. COMPRESSION MODELING WITH LSTM-RNN
3.1. Basic LSTM-RNN

In this sentence compression task, we utilize the classic El-
man RNN architecture [23] shown in Fig. 1. Each layer rep-
resents a set of neurons, and the layers are connected with
weights. The input layer x; represents the input word at time
t, and the hidden layer h; is activated by the current input z;
and the previous hidden activation h;_1:

hy = Singid(thJJt + Whnhi—1 + bh), (D)
where W, and W},;, are the weight matrices between the in-
put and hidden layers, and between the hidden and previous
hidden layers, respectively. The output determines the proba-
bility distribution over whether the word is important or unim-
portant:

oy = softmax(Wp,hy + by). 2)
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Parameters by, and b, are bias vectors connected to hidden and
output units, respectively. Here, hg as a base for recursion is
assumed to be 0.

Training the RNN is done using the back-propagation
through time (BPTT) algorithm [24, 25], which is a modifi-
cation of the conventional back-propagation algorithm used
in feed-forward neural network training, while sharing the
connection weights across different time steps. Here, three
time-steps are used in the unfolding process.

Qutput

by
Ot
)

softmax

Fig. 1. Overview of RNNs.

In order to avoid the problem of vanishing gradients that
plague standard RNNs, we utilize LSTM cells [26], which are
memory cells modulated with four gates: previous value in-
put, input gate, output gate and forget gate. Because LSTM
cells have linear feedback loops between the states of multi-
ple time steps, the error remains constant, allowing for more
effectively capturing long-distance dependencies.

3.2. Various Network Structures

We explore various network structures and propose modifica-
tions to the basic LSTM-RNN layers as shown in Fig. 2:

¢ Basic LSTM (denoted as “LSTM-basic”)
We used a basic LSTM with one input layer, one out-
put layer, and one hidden layer (including the recurrent
layer).

LSTM with a continuous representation layer (de-
noted as “LSTM-basic+cont”)

To handle the sparseness of the input representation, we
extend the above LSTM structure to include a continu-
ous representation layer placed between the input and
hidden layers, with the same size as the hidden layer.
The motivation is to learn a better word representation
in a smooth continuous space. In this layer, the hyper-
bolic tangent tanh(Wypx: + by) is applied.



* LSTM with a continuous representation layer and
extra connection (denoted as “LSTM-basic+cont+ex

t”)

To support the decision at the output layer, we further
extend the LSTM-basic+cont structure with an extra

connection from the continuous representation layer to
the output layer.
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Fig. 2. Various RNN structures.

v

dden }H‘ Output ‘

representation

LSTM with pretraining as auto-encoder (PAE)
— Denoted as “LLSTM-basic+cont+ext+pae”

Pretraining:
Current Continuous Hidden Current
word representation word
Fine-tuning: [ \l’
% Contmuou_s %‘ Hi W Output
representation

Fig. 3. LSTM with pretraining method as an autoencoder.

3.3. Pretraining Method

Because the available parallel training data for the sentence
compression task is relatively small, we also propose a
method to use pretraining to learn representations of a sen-
tence using large unsupervised data before fine-tuning the
sentence compression data.

First, we modified the “LSTM-basic+cont+ext” design
so that the output layer had the same size as the input layer,
without recurrent and extra connections. Then, we pre-
trained it as an autoencoder that outputs exactly the same
value as the input. After pretraining, we changed the output
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layer back to “LSTM-basic+cont+ext” and performed fine-
tuning. Fig. 3 illustrates the structure, denoted as “LSTM-
basic+cont+ext+pae.”

We also attempted other methods where we pretrained
the model as a language model that predicts the next word.
But the performance is below the performance obtained with
autoencoder pretraining. This might be because the method
tuned the network for the next word but not for the current
word. Therefore, we decided to only use pretraining as an
autoencoder.

4. EXPERIMENTAL SETUP
4.1. Corpora

The experiments were conducted on CLwritten and CLspo-
ken corpora', which are widely used for evaluating sentence
compression techniques [8]. Samples of both CLWritten and
CLSpoken are shown in Table 1. The former was created by
sampling from written sources including the British National
Corpus (BNC) and the American News text corpus, while the
latter was created by manually transcribed speech of broad-
cast news stories. Since CLSpoken is created from a speech
corpus, it often contains incomplete and ungrammatical ut-
terances and speech artifacts such as disfluencies, false starts
and hesitations.

Table 1.
‘ Data Set |

CLWritten and CLSpoken sample data.

Original | Compressed

The powerful balance
of these figure compo-
sitions is highlighted

The balance is high-
lighted when they are

CLWritten | when they are trans- | transposed into tubes
posed into tubes and | and sheets of metal.
sheets of metal.

Laurie had a w.armth Laurie had a warmth
of personality in all . .

L . with people and poli-
his doings with people | .

e tics.
and politics.
All th hi - .
those things sug Those things suggest

gest to. most voters that the White House

CLSpoken | that the White House

is hiding something. is hiding something.

Most international
airports that service
large planes like this
are 4,000 meters, dou-
ble in length, and it
may be a contributing
factor.

Most  international
airports that service
large planes are 4,000
meters, and it may be
a contributing factor.

The corresponding shortened/compressed form of all sen-
tences were created manually. Here, the annotators were
asked to produce the smallest possible target compression by
deleting extraneous words from the source, without changing
the word order and the meaning of the sentences.

!CLWritten and CLSpoken: http://homepages.inf.ed.ac.uk/s0460084/data/



The total number of sentences and the corresponding
shortened/compressed pairs in CLWritten is 1433, which
were taken from 82 articles, while CLSpoken consist of 1370
pairs taken from 50 articles. After some preprocessing, we
had 1,400 pairs from CLWritten and 1,280 pairs from CLSpo-
ken. To ensure sufficient training data for the LSTM, we used
1000 pairs of our data for training and the remainder to test
the model. This was done for both CLWritten and CLSpoken.
To allow pretraining to learn representations of the sentences,
we used 50,000 sentences of web-crawled news data from the
IWSLT 2011 Evaluation Campaign [27].

4.2. T3 Baseline Model

As a baseline, we used state-of-the-art tree transduction mod-
els [12]. These models use a tree-rewriting process that
changes the tree from the original parse tree to a compressed
parse tree. Specifically, the model adopts weighted STSGs
[6].

Here, two things are learned from the training data: the
rewrite rules and their weights. The original and compressed
sentences are first aligned word by word, and then the rewrit-
ing rules are extracted and their frequency is counted. Based
on the rules and their frequency, the model is then trained
using support vector machines (SVM) [28]. In these exper-
iments, the tree transduction models are implemented using
the Tree Transduction Toolkit (T3)?, which includes training
using SVMstruct?.

4.3. RNN Parameters

Each hidden layer in the RNN designs uses 100 neurons. Dur-
ing training, the optimum result is obtained with threshold
t = 0.5, where t >= 0.5 is regarded as important and £ < 0.5
is regarded as unimportant.

In the input layer, the standard 1-of-|V'| word represen-
tation is used, in which the i-th word of the vocabulary V'
is encoded with a |V |-dimensional vector, where the i-th el-
ement is set as 1 and all others are 0. We performed some
preliminary experiments where we used three different vari-
eties of input context when feeding the words into the neu-
ral net, including unigram, bigram and trigram. Here, the n-
gram input vector is a concatenation of n word vectors. For
example, the bigram input vector would be encoded as a 2V -
dimensional vector, in which the vector is constructed by con-
catenating unigram word vectors for the current and previous
words. However, the compression rate using unigram is al-
ready quite high, and the use of bigram and trigram inputs
further increases the compression rate. This might due to data
sparseness problems. Therefore, we simplified the problems
by only using the unigram type of input.

For every experiment, we use the PyBrain library* for

2T3: http://staffwww.dcs.shef.ac.uk/people/T.Cohn/t3/
3http://svmlight joachims.org/svm_struct.html
4PyBrain: http://pybrain.org/
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training and testing the RNN model.

4.4. Evaluation Method

Following the evaluation criteria defined in [29], we investi-
gated the experiments’ results based on two factors:

¢ Compression rate: How much the original sentence
remains after compression
Compression rate is defined as the length of the com-
pressed sentence divided by the original length, where
lower values indicate shorter sentences.

Accuracy or importance factor: How much of the
important information is retained from the original.
Accuracy is evaluated using simple string accuracy
(SSA) [30], which is based on string edit distance be-
tween the compression output generated by the system
and the reference string.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the accuracy of the proposed com-
pression method. First, however, we examine the level of
compression achieved by each method for the various archi-
tectures’. The key solution is to remove as many words as
possible while retaining the important information. Here, the
compression rate of a human annotator is 72%, and we treat
this as the optimum solution.

5.1. Examination of Compression Rate

LSTM-basic+cont+ext+pae ] ‘ | 0.82
LSTM-basic+cont+ext | ‘ | 0.80
LSTM-basic+cont | 0.81
LSTM-basic 0.97
Baseline 0.53
0 07

Compression rate

Fig. 4. Compression rate of various NN structures: “LSTM-
basic,” “LSTM-basic+cont,” “LSTM-basic+cont+ext,” and
“LSTM-basic+cont+ext+pae,” in comparison with tree
transduction baseline on CLWritten data (note that human
annotator compression rate is 72%).

SFor the neural models, adjusting the threshold parameter can make an
arbitrarily short or long compression, with a threshold of 0 resulting in a
compression rate of 1 or a threshold of 1 resulting in a compression rate of 0,
but tuning this parameter in detail is beyond the scope of this work



Here, we examine the compression rate of networks with
various structures. Four different structures were evaluated:
“LSTM-basic,” “LSTM-basic+cont,” “LSTM-basic+cont+ext,”
and “LSTM-basic+cont+ext+pae” as described in Section 3.
The neural networks were also trained and tested with
CLWritten data. Fig. 4 shows the compression rate of these
various RNN structures. For comparison, we also include the
baseline result.

The results show that the T3 baseline tends to over-delete
content, resulting in a quite low compression rate compared to
the compression rate achieved by human annotators. It should
be emphasized that, unfortunately, T3 does not provide any
flexibility for user control over varying compression rates, so
the results presented here reflect whatever output T3 gener-
ated for a given sentence. The tendency of T3 to produce a
low compression rate has also been discussed by others when
using T3 for sentence compression [31, 32, 33].

On the other hand, “LSTM-basic” produced a rather high
compression rate, very close to 1. This indicates that the pro-
posed systems provide almost no compression at all. This
might be due to data sparseness problems. However, the re-
sults reveal that the proposed system incorporating a continu-
ous representation layer seems to help handle the sparseness
of the 1-of-|V| representation. The compression rate reaches
81%, which is close to the human annotator’s compression
rate. The results by “LSTM-basic+cont+ext” and “LSTM-
basic+cont+ext+pae’” seem to yield a similar compression rate
to that of “LSTM-basic+cont.” This shows that the main el-
ement influencing the compression rate is the addition of the
continuous word representation, as opposed to the extra layers
or pretraining.

5.2. Evaluation based on Accuracy

0.8
0.7 _ -
0.6 - | mBaseline
§ 05 1 | mLSTM-basic+cont
504 - —
8
<03 | DOLSTM-basic+cont+ext
02 1 | oustv-
0.1 - — basic+cont+ext+pae
0 4
CLWritten CLSpoken

Fig. 5. Accuracy score of various NN structures: “LSTM-
basic,” “LSTM-basic+cont,” “LSTM-basic+cont+ext,” and
“LSTM-basic+cont+ext+pae,” in comparison with tree
transduction baseline on both CLWritten and CLSpoken data.

In this section, we investigate the performance of var-
ious RNN structures based on accuracy. Here, we use
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only our proposed models that provide a compression rate
close to human annotators, which are “LSTM-basic+cont,”
“LSTM-basic+cont+ext,” and “LSTM-basic+cont+ext+pae.”
The neural networks are trained and tested with CLWritten
and CLSpoken. For comparison, we also include the baseline
result.

Fig. 5 shows accuracy scores using the various RNN
methods. The results reveal that all proposed systems pro-
vide much better accuracy than the baseline; the best one is
given by “LSTM-basic+cont+ext+pae.” This indicates that
although the pretraining method does not significantly affect
the compression rate, it still contributes to increased perfor-
mance.

6. CONCLUSIONS

In this study, we investigated the use of LSTM recurrent
networks in performing incremental sentence compression.
In addition, we also analyzed various input layers, RNN
structures, and pretraining methods. The results reveal that
RNN-based sentence compression could obtain compression
output comparable or superior to tree transduction mod-
els. The optimal performance was provided by the “LSTM-
basic+cont+ext+pae” structure, since it gives a similar com-
pression rate to that of a human annotator and thus improves
the accuracy over the baseline.

At this point, we do not yet take into account the sen-
tence’s grammatical information. In the future, we will incor-
porate grammatical information and analyze the results with
evaluation criteria based on grammaticality. In this way, we
will investigate other structures in order to further compress
sentences while improving accuracy. Furthermore, since our
current investigations are based on the assumption that ASR
is correct, in the future we will investigate the robustness of
our model to ASR errors.
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