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Neural MT Models
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How we Calculate Probabilities
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Closeness of output embedding and context
+ bias. Choose word with highest score
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A Visual Example

W h bsoftmax(                   +      )p =
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Problems w/ Softmax
● Computationally inefficient at training time
● Computationally inefficient at test time
● Many parameters
● Sub-optimal accuracy
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Calculation/Parameter Efficient 
Softmax Variants
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Negative Sampling/
Noise Contrastive Estimation

● Calculate the denominator over a subset

W c b+ W' c b'+

Negative samples according to distribution q
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Lots of Alternatives!
● Noise contrastive estimation: train a model to 

discriminate between true and false examples

● Negative sampling: e.g. word2vec

● BlackOut

Ref: Chris Dyer, 2014. Notes on Noise Contrastive Estimation and Negative Sampling

Used in MT: 
Eriguchi et al. 2016: Tree-to-sequence attentional neural machine translation
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GPUifying Noise Contrastive 
Estimation

● Creating the negative samples and arranging memory 
is expensive on GPU

● Simple solution: sample the negative samples once for 
each mini-batch

Zoph et al. 2016. Simple, Fast Noise-Contrastive
Estimation for Large RNN Vocabularies
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Summary of Negative Sampling 
Approaches

● Train time efficiency: Much faster!
● Test time efficiency: Same
● Number of parameters: Same
● Test time accuracy: A little worse?
● Code complexity: Moderate
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Vocabulary Selection
● Select the vocabulary on a per-sentence basis

L'Hostis et al. 2016. Vocabulary Selection Strategies for NMT
Mi 2016. Vocabulary Manipulation for NMT
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Summary of Vocabulary Selection
● Train time efficiency: A little faster
● Test time efficiency: Much faster!
● Number of parameters: Same
● Test time accuracy: Better or a little worse
● Code complexity: Moderate
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Class-based Softmax
● Predict P(class|hidden), then P(word|class,hidden)
● Because P(w|c,h) is 0 for all but one class, efficient 

computation

Goodman 2001. Classes for Fast Maximum Entropy Training
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Hierarchical Softmax
● Tree-structured prediction of word ID
● Usually modeled as a sequence of binary decisions

Morin and Bengio 2005: Hierarchical Probabilistic NNLM

0 1 1 1 0 → word 14
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Summary of Class-based 
Softmaxes

● Train time efficiency: Faster on CPU, Pain to GPU
● Test time efficiency: Worse
● Number of parameters: More
● Test time accuracy: Slightly worse to slightly better
● Code complexity: High
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Binary Code Prediction
● Just directly predict the binary code of the word ID

● Like hierarchical softmax, but with shared weights at 
every layer → fewer parameters, easy to GPU

Oda et al. 2017: NMT Via Binary Code Prediction
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Two Improvements

Hybrid model Error correcting codes
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Summary of Binary Code 
Prediction

● Train time efficiency: Faster
● Test time efficiency: Faster (12x on CPU!)
● Number of parameters: Fewer
● Test time accuracy: Slightly worse
● Code complexity: Moderate
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Parameter Sharing
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Parameter Sharing
● We have two |V| x |h| matrices in the decoder:

● Input word embeddings, which we look up and feed into 
the RNN

● Output word embeddings, which are the weight matrix 
W in the softmax

● Simple idea: tie their weights together

Press et al. 2016: Using the output embedding to improve
language models
Inan et al. 2016: Tying Word Vectors and Word Classifiers:
A Loss Framework for Language Modeling
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Summary of Parameter Sharing
● Train time efficiency: Same
● Test time efficiency: Same
● Number of parameters: Fewer
● Test time accuracy: Better
● Code complexity: Low
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Incorporating External 
Information
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Problems w/ Lexical Choice in 
Neural MT

Arthur et al. 2016:
Incorporating Discrete Translation Lexicons in NMT
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When Does Translation Succeed?
(in Output Embedding Space)
I come from Tunisia
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When Does Translation Fail?
Embeddings Version

I come from Tunisia
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When Does Translation Fail?
Bias Version

I come from Tunisia
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What about Traditional Symbolic 
Models?

his father likes Tunisia

kare
no
chichi
wa
chunijia
ga
suki
da

P(kare|his) = 0.5
P(no|his) = 0.5
P(chichi|father) = 1.0
P(chunijia|

   Tunisia) = 1.0
P(suki|likes) = 0.5
P(da|likes)     = 0.5

1-to-1 alignment
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Even if We Make a Mistake...

his father likes Tunisia

kare
no
chichi
wa
chunijia
ga
suki
da

P(kare|his) = 0.5
P(no|his) = 0.5
P(chichi|Tunisia) = 1.0
P(chunijia|

      father) = 1.0
P(suki|likes) = 0.5
P(da|likes)     = 0.5

Different mistakes
than neural MT

☓

☓

Soft alignment
possible
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Calculating Lexicon Probabilities

I   come   from Tunisia
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Incorporating w/ Neural MT
● softmax bias:

● Linear interpolation:

p(e
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) = softmax( W * h
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  + b + log (lex
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To prevent -∞ scores
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Summary of External Lexicons
● Train time efficiency: Worse
● Test time efficiency: Worse
● Number of parameters: Same
● Test time accuracy: Better to Much Better
● Code complexity: High
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Other Varieties of Biases
● Copying source words as-is

● Remembering and copying target words
Were called cache models, now called pointer ★
sentinel models★ :)

Gu et al. 2016. Incorporating copying mechanism in
sequence-to-sequence learning

Gulcehre et al. 2016. Pointing the unknown words

Merity et al. 2016. Pointer Sentinel Mixture Models
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Use of External Phrase Tables

Tang et al. 2016. NMT with External Phrase Memory
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Conclusion
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Conclusion
● Lots of softmax alternatives for neural MT

→ Consider them in your systems!
● But there is no fast at train, fast at test, accurate, 

small, and simple method
→ Consider making one yourself!


