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In statistical machine translation (SMT), the optimization of the system parameters to maximize
translation accuracy is now a fundamental part of virtually all modern systems. In this article,
we survey 12 years of research on optimization for SMT, from the seminal work on discriminative
models (Och and Ney 2002) and minimum error rate training (Och 2003), to the most recent
advances. Starting with a brief introduction to the fundamentals of SMT systems, we follow by
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Then: Symbolic Translation Models

* First step: learn component models to maximize likelihood
» Translation model P(ylIx) -- e.g. P( movie | eiga )
« Language model P(Y) -- e.g. P(hate | |)
* Reordering model -- e.g. P(<swap> | eiga, ga kirai)
 Length model P(lYI) -- e.g. word penalty for each word added

« Second step: learning log-linear combination to maximize
translation accuracy [Och 2004 ]

log P(Y' | X) = ZM@(X, Y)/Z

Minimum Error Rate Training in Statistical Machine Translation (Och 2004)
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Now:

Auto regresswe Neural Netvvorks
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o All parameters trained end-to-end, usually to maximize

likelihood (not accuracy!)



Standard MT System
Training/Decoding



Decoder Structure
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Maximum Likelihood
Training

 Maximum the likelihood of predicting the next word
In the reterence given the previous words

(E|F)=—log P(E | F)

T
= — ) log P(e; | Fie1,... e;_1)

t=1

* Also called "teacher torcing’
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e Jeacher forcing assumes feeding correct previous input,
but at test time we may make mistakes that propagate

encoder , |

L
classify classify classify classify classify
| | | | |
| / | / | / I/ |

 Exposure bias: The model is not exposed to mistakes during
training, and cannot deal with them at test

* Really important! One main source of commonly witnessed
phenomena such as repeating.
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Problem 2: Disregard to
Evaluation Metrics

* |Inthe end, we want good translations

 (Good translations can be measured with metrics,
e.g. BLEU or METEOR

* Really important! Causes systematic problems:
* Hypothesis-reference length mismatch

* Dropped/repeated content
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A Clear Example

My (winning) submission to Workshop on Asian
Translation 2016 [Neubig 16]

BLEU Length Ratio

MLE MLE+Length  MinRisk MLE MLE+Length  MinRisk

* Just training for (sentence-level) BLEU largely fixes
length problems, and does much better than heuristics

Lexicons and Minimum Risk Training for Neural Machine Translation: NAIST-CMU at WAT2016 (Neubig 16)
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Error

e (3enerate a translation

E = argmax;P(E | F)
» Calculate its "badness’ (e.g. 1-BLEU, 1-METEOR)
error(E, E) = 1 — BLEU(E, F)
 \We would like to minimize error

- Problem: argmax is not differentiable, and thus not
conducive to gradient-based optimization
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* A clever trick for gradient-free optimization of /inear models
* Pick a single direction in feature space

o Exactly calculate the loss surface in this direction only
(over an n-best list for every hypothesis)
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A Smooth Approximation:
RISK [smith+ 2006, Shen+ 2015]

* Risk Iis defined as the expected error

~

risk(F, E,0) = Y P(E | F;0)error(E, E).
E

 This is includes the probabillity in the objective
function -> differentiable!

Minimum Risk Annealing for Training Log-Linear Models (Smith and Eisner 2006)
Minimum risk training for neural machine translation (Shen et al. 2015)
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Sub-sampling

* Create a small sample of sentences (5-50), and
calculate risk over that

risk(F, E,S) = Z

EcS

* Samples can be created using random sampling or
n-best search

* |t random sampling, make sure to deduplicate
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Policy Gradient/REINFORCE

* Alternative way of maximizing expected reward,
minimizing risk

A\ A\

éreinforce (X, Y) — _R(Y7 Y) lOg P(Y ‘ X)

* Qutputs that get a bigger reward will get a higher
welight

* Can show this converges to minimum-risk solution
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When Training goes Bad...
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't Happens to the Best of Us

e Emalil from a famous MT researcher:

‘we also re-implemented MRT, but so
far, training has been very unstable,
and after a improving for a bit, our
models develop a bias towards
oroducing ever-shorter translations...’




My Current Recipe for Stabilizing
MRT/Reinforcement Learning
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Warm-start

o Start training with maximum likelihood, then switch
over to REINFORCE

 Works only in the scenarios where we can run MLE
(not latent variables or standard RL settings)

« MIXER (Ranzato et al. 2016) gradually transitions from
MLE to the full objective



Adding a Baseline



Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence



Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

"This Is an easy sentence”
“‘Buffalo Buftalo Buffalo”




Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward
"This Is an easy sentence” 0.8
“‘Buffalo Buftalo Buffalo” 0.3




Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline
"This Is an easy sentence” 0.8 0.95
“Buffalo Buffalo Buftalo” 0.3 0.1




Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2




Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2

 \We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected



Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2

 \We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

Zbaselime()() — _(R(}A/7 Y) o B(ff)) lOgP(ff | X)



Adding a Baseline

* Basic idea: we have expectations about our reward
for a particular sentence

Reward Baseline B-R
“This Is an easy sentence” 0.8 0.95 -0.15
“Buffalo Buffalo Buffalo” 0.3 0.1 0.2

 \We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

Zbaselime()() — _(R(}A/7 Y) o B(ff)) lOgP(ff | X)

* (Be careful to not backprop through the baseline)
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Increasing Batch Size

* Because each sample will be high variance, we
can sample many different examples before
performing update

* We can increase the number of examples (roll-outs)
done before an update to stabilize

* We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)
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Adding lemperature

P(E | F;0)Y7 .
risk(F, E,0,7,S5) = Z ( |Z’ ) error(FE, F)
EE€S

* [emperature adjusts the peakiness of the
dlstrlbutlon

1= 025 1=0.05

432101234432101234432101234432101234

 With a small sample, setting temperature > 1

accounts for unsampled hypotheses that should be
INn the denominator
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Phrase-based SMT MERT and
NMT MinRisk/REINFORCE

NMT+

MinRisk PBMT+MERT

NMT

Model PBMT

Optimized 5-30 Log-linear

Parameters e Weights (others MLE)
Obijective Risk Error
Metric Granularity Sentence Level Corpus Level

n-best Lists Re-generated Accumulated
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Optimized Parameters

Can we reduce the number of parameters

optimized for NMT? %& ‘

« Maybe we can optimize
only some parts of the \f \?

model?
Freezing Subnetworks to Encoder

Analyze Domain Adaptation in = Source. 0
NMT. Thompson et al. 2018 g

« Maybe we can express ::

models as a linear

combination of a few

hyper-parameters? W=> a;W
Contextualized Parameter P

Generation for Universal NMT.
Platanios et al. 2018.
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Objective

e Can we move closer to minimizing error, which is what we
want to do in the first place”

 Maybe we can gradually anneal the temperature to

move towards a peakier distribution?
Minimum risk annealing for training log-linear models. Smith and Eisner
2000.

T=1 T=0.5 T=0.25 T=0.05

2 2 2 2
1.5 1.5 15 1.5
\/ 1 1 1
0.5 0.5 0.5 0.5
0 0 0 0

4 3 2 1 0 1 2 3 44 3 -2 -1 0 1 2 3 44 3 -2 -1 0 1 2 3 44 3 -2 -1 0 1 2 3 4

_—
Training progression
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Metric Granularity

Two ways of measuring metrics

o Sentence-level: Measure sentence-by-sentence,
average

o Corpus: Sum sufficient statistics, calculate score

Regular BLEU is corpus-level, but mini-batch NMT
optimization algorithms calculate sentence level

This causes problems, e.g. in sentence length!
Optimizing for sentence-level BLEU+1 yields short translations. Naklov et al. 2012.

Maybe we can keep a running average of the sufficient

statistics to approximate corpus BLEU?
Online large-margin training of syntactic and structural translation features. Chiang et
al. 2008.
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N-pest Lists

 |[n MERT for PBMT, we would accumulate n-best
iIsts across epochs:

Epoch 1 Epoch 2 Epoch 3

n-best 1 n-best 1

new n-best 2 new n-best 2

new n-pest 3

* Greatly stabilizes training! Even if model learns horrible
parameters, it still has good hypotheses from which to recover.

 Maybe we could do the same for NMT? Analogous to
experience replay in RL:

Self-improving reactive agents based on reinforcement learning, planning and teaching. Lin
1992,
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summary

Neural MT has come a long way, and we can
optimize for accuracy

This is iImportant, fixes lots of problems that we'd
otherwise use heuristic hacks for

But no-one does it... Problems of stability speed.

Still lots to remember from the past!

Optimization for Statistical Machine Translation, a Survey (Neubig and
Watanabe 2016)

Thanks! Questions?



