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Human Language Families

- Afro-Asiatic
[l Berber
[ Chadic
[ Cushitic
O Semitic

- Altaic
B Japanese (possibly Altaic)
[l Korean (possibly Altaic)
[ Mongolian
B Tungusic
B Turkic

] American Indian (several families)

B Australian (several families)

] Austro-Asiatic

B Austronesian

B Basque (isolate)

[] Caucasian

[l Dravidian

& Eskimo-Aleut

- Indo-European

[ Albanian

B Armenian

[] Baltic

[ Celtic

B Germanic

B Greek

B Indic

I ranian

B Romance

H Slavic
[ Khoisan
Bl Niger-Congo
[ Nilo-Saharan
[ Paleo-Siberian (several families)
[ Papuan (several families)
- Sino-Tibetan

[ Chinese

B Tibeto-Burman
B Tai-Kadai
B Uralic

source: https://www.reddit.com/r/linguistics/comments/pusin/world_languages_map_xpost_from_rmapporn/
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subj obj subj

Anna apple eating IS

-----------------
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Describing Systems of Language

Book Discussion

s
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Main Page SpaniSh
Help

Fortunately, the gender of Spanish nouns is usually pretty
easy to work out. Some very simple rules-of-thumb:

e [f a noun ends in g, it's likely to be feminine. Example:
bolsa (bag).

e If it ends in 0, or a consonant, it's likely to be
masculine. Examples: libro (book), mévil (mobile
phone).

There are some exceptions though, but you will learn
these as you attain new vocabulary.
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Describing Systems of Language

Book Discussion

s

ALyt

Main Page SpaniSh
Help

Fortunately, the gender of Spanish nouns is usually pretty
easy to work out. Some very simple rules-of-thumb:

e |f a noun ends in a, it's likely to be feminine. Example:
bolsa (bag).
e If it ends in 0, or a consonant, it's likely to be
masculine. Examples: libro (book), mévil (mobile
phone). When we want to turn a noun into plural, we follow these

There are some exceptions though, but you will learn e

these as you attain new vocabulary. e If the noun ends in a vowel add -s Example: un gato
(a cat); unos gatos - (some cats).
e If the noun ends in a consonant add -es. Example: e/
papel (the sheet of paper); los papeles (the sheets of

paper).
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Why is this challenging?
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NLP already does some of this!
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NLP already does some of this!
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Dependency Parsing

---------------

Shina ' POS Tagging
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Our Proposed Pipeline
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nary, et al.
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nary, et al.

"Automatic extraction of rules governing morphological agreement." EMNLP (2020).

"When is Wall a Pared and when a Muro?--Extracting Rules Governing Lexical Selection." EMNLP (2021).

"AUTOLEX: An Automatic Framework for Linguistic Exploration." arXiv (2022).

"Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning." arXiv (2022).
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Our Proposed Pipeline

(Low-resource) Language AutoLEX: Automatic
Analysis Language Explorer
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Our Proposed Pipeline

(Low-resource) Language AutoLEX: Automatic
Analysis Language Explorer
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Applications
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Documentation

Chaudhary, et al. "Automatic extraction of rules governing morphological agreement." EMNLP (2020).
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AutoLEX: Automatic Language Explorer

Extract and visualize answers to different linguistic questions
In both human- and machine-readable formats
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AutoLEX: Automatic Language Explorer

— o — Extract and visualize answers to different linguistic questions
ordered in Marathi? .~ in both human- and machine-readable formats
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AutoLEX: Automatic Language Explorer

" How are subjects TN Extract and visualize answers to different linguistic questions
ordered in Marathi? .~ in both human- and machine-readable formats
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AutoLEX: Automatic Language Explorer

) o aro subjont — Extract and visualize answers to different linguistic questions
ordered in Marathi? .~ in both human- and machine-readable formats
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Word Order
Generally the word order for subject-verb is before i.e. subject before verb

Some examples are: Examples

> subject is after verb when:

verb is also governing= %I (kaay)

Text corpus AutoLEX (Examples )
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How are subjects
ordered in Marathi? P

[ext corpus

AutoLEX: Automatic Language Explorer

Extract and visualize answers to different linguistic questions

Formulate the linguistic question

Into a classification task

'

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

'

Extract and Visualize Rules

N

in both human- and machine-readable formats

Word Order

Generally the word order for subject-verb is before i.e. subject before verb

subject is after verb when:

verb is also governing= &I (kaay)
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AutoLEX: Automatic Language Explorer

7 How are subjects TN Extract and visualize answers to different linguistic questions
. ordered in Marathi? .~ in both human- and machine-readable formats
1 l Predict relevant features

(e.g. POS tags, dependency tree)
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Extract Features and *
Construct Training Data 5
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; Expert annotations
for feature extraction model

Expert annotations
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order

Affix Usage
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order

Affix Usage

Case Marking
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Word Usage
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order
Morpho-Syntax

Affix Usage

Case Marking

Word Usage
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order
Morpho-Syntax

Affix Usage

Case Marking
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Types of Grammar Aspects covered in AutoLEX

Agreement

Word Order

Morpho-Syntax
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Types of Grammar Aspects covered in AutoLEX

Linguistic Question
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Formulate the linguistic question
Into a classification task

l Morpho-Syntax

Agreement

Word Order

Extract Features and
Construct Training Data

'

Learn an Interpretable Model

l Lexical Semantics | AW/ RIEET-N
Extract and Visualize Rules Carnegie
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Types of Grammar Aspects covered in AutoLEX

Linguistic Question

2

Morpho-Syntax
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Word Order

THE WORLD ATLA

OF LANGUAGE STRUCTURES

ONLINE

Home Features

S

Chapters Languages References Authors

Features

A feature is a structural property of language that describes one aspect of cross-linguistic diversity. A WALS feature has between 2 and 28 different values, shown by different colours on the maps. Most features correspond straightforwardly to chapters, but some
chapters are about multiple features.

Showing 1 to 56 of 56 entries (filtered from 192 total entries)

Id .

Search

81A

81B

82A

83A

84A

85A

86A

87A

88A

Name

Search

Order of Subject, Object and Verb

Languages with two Dominant Orders of Subject, Object, and Verb
Order of Subject and Verb

Order of Object and Verb

Order of Object, Oblique, and Verb

Order of Adposition and Noun Phrase

Order of Genitive and Noun

Order of Adjective and Noun

Order of Demonstrative and Noun

12 AUTOLEX:An Automatic Framework for Linguistic Exploration
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Authors

Matthew S.

Matthew S.

Matthew S.

Matthew S.

Matthew S.

Matthew S.

Matthew S.

Matthew S.

Matthew S.

«— Previous

Dryer
Dryer
Dryer
Dryer
Dryer with Orin D. Gensler
Dryer
Dryer
Dryer

Dryer

1 Next —

Area

Word Orc V|

Word Order

Word Order

Word Order

Word Order

Word Order

Word Order

Word Order

Word Order

Word Order

K-

Search

1376

67

1496

1518

500

1184

1249

1367

1225

Details

Values

Values

Values

Values

Values

Values

Values

Values

Values
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Word Order

Language *  Value Reference
Search --any-- Vv
Aari @ OV Hayward 1990a: passim
Abau @ Ov Bailey 1975: passim
Abipdn @ VO Najlis 1966: passim 80, 87
Abkhaz @ OV Hewitt 1979: 103
Abui @ OV Kratochvil 2007: 11, 18
Abun @ VO Berry 1995b: 5
Acehnese (O No dominant order Durie 1985: passim
Achagua @ VO Wilson and Levinsohn 1992: 2
Achang @ Ov Dai and Cui 1985: 71
Acholi @ VO Crazzolara 1955: 43
Achuar @ OV Fast and Fast 1981: 77
Achumawi @ VO Olmsted 1977: passim
Acoma (O No dominant order Maring 1967: 107
Adang @ OV Haan 2001: 220
Adioukrou @ VO Herault 1978: 27-37, 249, 251, 253-255, passim
Adyghe (Abzakh) @ OV Paris 1989: 219-220
Carnegie
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Word Order

Language “  Value Reference
Search --any-- Vv
Aari @ OV Hayward 1990a: passim
Abau @ OV Bailey 1975: passim
Abipon @ VO Najlis 1966: passim 80, 87
Abkhaz @ OV Hewitt 1979: 103
Abui @ OV Kratochvil 2007: 11, 18
Abun @ VO Berry 1995b: 5 e P o A P A A A R S A Pl 0 T A AP oS
Sp—— e s s | ONlY the most dominant order is annotated in
Achagua @ VO Wilson and Levinsohn 1992: 2 B o B o ‘
Achang @ OV Dai and Cui 1985: 71
Acholi @ VO Crazzolara 1955: 43
Achuar @ OV Fast and Fast 1981: 77
Achumawi @ VO Olmsted 1977: passim
Acoma (O No dominant order Maring 1967: 107
Adang @ OV Haan 2001: 220
Adioukrou @ VO Herault 1978: 27-37, 249, 251, 253-255, passim
Adyghe (Abzakh) @ OV Paris 1989: 219-220
Carnegie
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Word Order
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Word Order
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Word Order
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Word Order

ob]

Verb-Object

Object-Verb
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Word Order

ob]

Verb-Object

Object-Verb
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Word Order: Formulate Linguistic Question
obj

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules

Carnegie
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Word Order: Formulate Linguistic Question

apple
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Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

apple

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

'

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

'

Learn an Interpretable Model

'

Extract and Visualize Rules

Carnegie

14 AUTOLEX:An Automatic Framework for Linguistic Exploration Me!lOIl )
Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig. In Submission n UIllVGI‘Slty




Word Order: Formulate Linguistic Question

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

Before

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

f( apple | Before
{ )

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

f( apple | Before
fi( eating |y  After

Formulate the linguistic question
into a classification task

}

Extract Features and
Construct Training Data

}

Learn an Interpretable Model

}

Extract and Visualize Rules
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

15

.

Extract Features and
Construct Training Data

.
'
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

.

Extract Features and
Construct Training Data

'
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

!

Wh at Extract Features and
Construct Training Data

'
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

POS Tagging

.

Extract Features and
Construct Training Data

'
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

Dependency Parsing

POS Tagging

.

Extract Features and
Construct Training Data

'
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Word Order: Formulate Linguistic Question

When are objects before or after the verbs in English?

Dependency Parsing

POS Tagging

Morphological Analysis

.

Extract Features and
Construct Training Data

'
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

obj

.

Extract Features and
Construct Training Data

'

.

---------------

( Pronlype = Int )

'

Carnegie
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

[ Tense=Pres )

.

Extract Features and
Construct Training Data

'
'
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

( Tense=Pres )

Input Features Label

.

Extract Features and
Construct Training Data

'
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

[ Tense=Pres )

Input Features Label

.

Extract Features and
Construct Training Data

{§ eating apple | Before |
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

[ Tense=Pres j

Input Features Label

.

Extract Features and
f ( ap p I e ) B ef O r e Construci Training Data
{ va | caiva B Aftr |
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

( Tense=Pres ]

Input Features Label
|
............................................... Extract Feat_ur_es andt a
{§ eating § apple | is-object-NOUN Before °°"s""°iT'a'"'"g -
{@ What eating 'SObJeCtPRON After l
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Word Order: Extract Features and Training Data

When are objects before or after the verbs in English?

[ Tense=Pres )

Input Features Label

.

Extract Features and

. Construct Training Data
i@ eating J§ apple | |s object-NOUN ' iis-verb-tense- present Before | .
{@ What eating [§) |s object- PRON is-object- Interrogatlve After '
|s -verb-tense- present Carnegie
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Word Order: Learn a Model

When are objects before or after the verbs in English?

Formulate the linguistic question
into a classification task

'

Extract Features and
Construct Training Data

|

Learn an Interpretable Model

|

Extract and Visualize Rules
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Mellon

17 AUTOLEX:An Automatic Framework for Linguistic Exploration . .
University

Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig. In Submission n




Word Order: Learn a Model

When are objects before or after the verbs in English?

root

Formulate the linguistic question
into a classification task

|

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Learn a Model

When are objects before or after the verbs in English?

root

Formulate the linguistic question
into a classification task

|

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Learn a Model

When are objects before or after the verbs in English?

root

Formulate the linguistic question
into a classification task

|

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Learn a Model

When are objects before or after the verbs in English?

17

root

Leaf 1:
After

[Rule: When object is an interrogative pronoun, it comes BEFORE the verb |

N

Formulate the linguistic question
into a classification task

|

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Data

When are objects before or after the verbs in English?

Formulate the linguistic question
into a classification task

'

Extract Features and
Construct Training Data

'

Learn an Interpretable Model

'

Extract and Visualize Rules
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Word Order: Data

When are objects before or after the verbs in English?

« Compare the model in a clean setting — Syntactic Universal Dependencies (SUD)

Formulate the linguistic question
into a classification task

'

Extract Features and
Construct Training Data

|

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Data

When are objects before or after the verbs in English?

« Compare the model in a clean setting — Syntactic Universal Dependencies (SUD)

 Prefers syntactic heads over content heads — more conducive to our goal of rule extraction

Formulate the linguistic question
into a classification task

|

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Data

When are objects before or after the verbs in English?

« Compare the model in a clean setting — Syntactic Universal Dependencies (SUD)

 Prefers syntactic heads over content heads — more conducive to our goal of rule extraction

Formulate the linguistic question
into a classification task

e Expert-annotated syntactic analysis for >60 languages '

Extract Features and
Construct Training Data

!

Learn an Interpretable Model

|

Extract and Visualize Rules
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Word Order: Automated Evaluation

When are objects before or after the verbs in English?

Apply model
on held-out sentences

Carnegie
Mellon
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Word Order: Automated Evaluation

When are objects before or after the verbs in English?

B Syntax [ Baseline

99
Apply model 98 5
on held-out sentences § '
> g 08
Baseline: most frequent >

©
N
o

label In test data
Leaf 1:

(o
\l

en-object-verb
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Mellon

AUTOLEX:An Automatic Framework for Linguistic Exploration . .
University

Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig. In Submission n

19




Word Order: Automated Evaluation

When are objects before or after the verbs in English?

19
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B Syntax [ Baseline

4
Apply model -0.5

on held-out sentences § '
> g 67

Baseline: most frequent O

- < 635

label In test data -
60

es-adjective-noun

Carnegie
Mellon
University




Word Order: Automated Evaluation

When are objects before or after the verbs in English?

B Syntax [ Baseline

~
AN

Apply model
on held-out sentences

~
O
o

\/
Accuracy
@))

\I

Baseline: most frequent

label in test data 63.5
Leaf 1:
o

es-adjective-noun
Using syntactic signals insufficient!|
Carnegie

Mellon
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Word Order: Types of Features

grandes
great

libros fueron compradosporg la nina pequena
books were bought by Bthe gl girl small
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Word Order: Types of Features

grandes libros
great ooks
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Word Order: Types of Features

grandes libros
great ooks
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Word Order: Types of Features

grandes libros
great ooks

%s-adj | head-1s-noun head-1s-noun 1s-ad]
1s-ordinal deprel-1s-mod deprel-1s-mod

syntactic
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Word Order: Types of Features
grandes libros
great ooks

%s-adj | head-1s-noun head-1s-noun 1s-ad]
1s-ordinal deprel-1s-mod deprel-1s-mod

syntactic

dep-lemma head-lemma dep-lemma head-lemma

lexical

-1s-gran -1s-l1bro -1s-nifia -1s-pequeno
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Word Order: Types of Features

grandes libros
great ooks

--------------------------------------------------

@s—adj | head-1s-noun head-1s-noun 1s-adj
is-ordinal deprel-1s-mod deprel-1s-mod

syntactic

dep-lemma  head-lemma dep- head-lemma

lexical

-is-gran -1s-11bro -is-nifia -is-pequeio
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Word Order: Types of Features

mod mod
/\ /\
grandes libros nina pequena

great books girl small

ADJ NOUN NOUN ADJ
2(. .. \
Eg ?S'adJ . head-is-noun head-is-noun is-adj
g | 1s-ordinal deprel-is-mod deprel-is-mod
S | dep-lemma  head-lemma dep-lemma  head-lemma
& | -is-gran -1s-libro -is-nifia -is-pequetio
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Word Order: Types of Features

mod mod
/\ /\
grandes libros nina pequena
great books girl small
ADJ NOUN NOUN ADJ
>
2(. .. \
Eg ?S'adJ . head-is-noun head-is-noun is-adj
g | 1s-ordinal deprel-is-mod deprel-is-mod
S | dep-lemma  head-lemma dep-lemma  head-lemma
& | -is-gran -1s-libro -is-nifia -is-pequetio
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Word Order: Types of Features
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Word Order: Types of Features
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Word Order: Types of Features
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Word Order: Types of Features
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Word Order: Types of Features
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Word Order: Extract rules

Formulate the linguistic question
into a classification task

|
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Construct Training Data
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Learn an Interpretable Model

|
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Word Order: Extract rules

Leaf 1:
After: 1000 Before: 8000
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Word Order: Extract rules

Leaf 1:
After: 1000 Before: 1800

Statistical threshold
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Word Order: Extract rules

Leaf 1:
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Word Order: Visualize rules

Formulate the linguistic question
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Word Order: Visualize rules

Order of adjectives with respect to the syntactic head noun

The dominant order in the corpus is after

Word Order
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Word Order: Visualize rules

Order of adjectives with respect to the syntactic head noun . ,
o Dominant order in the corpus

The dominant order in the corpus is after

Word Order /Features that lead to a leaf makes a rule

adjective is before noun when:

Formulate the linguistic question

adjective has Iemma: primero into a classification task
(Examples ) |
OR
Extract Features and
Construct Training Data
adjective with Degree = Cmp l
adjective has lemma= mayor
(Examp|93) Learn an Interpretable Model
OR l
Extract and Visualize Rules
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Word Order: Visualize rules

Rule: Adjective like “Primera” come before noun
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Word Order: Visualize rules

Rule: Adjective like “Primera” come before noun
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Word Order: Visualize rules

Rule: Adjective like “Primera” come before noun
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S
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Agreement [

When should a head-dependent agree on
gender and when it shouldn’t?
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Quality Evaluation

Q1. Looking at the examples below, is the rule
O precisely defining a linguistic distinction
too specific
too general
not corresponding to a real linguistic distinction in the language
cannnot decide as the examples are incorrectly parsed

Q2. If you selected any of the first three options in Q1, does it match the rules you provided earlier? If you selected the fourth
option in Q1, leave blank.
O Yes, precisely

Yes, not exactly but somewhat
No, but | was aware of such a construction
No, | was not aware of this before

Q3. Do the features accurately describe the group of positive samples below? If this is a "default" rule, leave blank.

O Yes
No

Partially correct

If there's an alternative set of features that more accurately or concisely describe them, please briefly describe them in
the comment box.

Other comments:
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Quality Evaluation

29

Q1. Looking at the examples below, is the rule
O precisely defining a linguistic distinction
too specific
too general Correctness
not corresponding to a real linguistic distinction in the language

cannnot decide as the examples are incorrectly parsed

Q2. If you selected any of the first three options in Q1, does it match the rules you provided earlier? If you selected the fourth
option in Q1, leave blank.
O Yes, precisely

Yes, not exactly but somewhat

No, but | was aware of such a construction Prior knOWIGdge

No, | was not aware of this before
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B precise W too-specific too-general B not-a-rule
0.75

Total: 161 rules

> 80% rules are valid,
0.25 I I I 40% valid rules too specific/general
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Results: Quality Evaluation

adjective is after its head noun

Features that make up this rule Even for well studied languages,
Active Features Inactive Features system discovers *new rules

adjective's head is a= PRON -

Examples that agree with label: after: The adjective is denoted by ***

DDDDDDDM]’TDTW

/_"—E -A'-\f-"“ —A—

1/ please let me know if you need anything  ***else**

D B D 00 0 ERowmCEE D

-

-

Please Iet us know |f you need anything Hxg|gERRE

0 0 0 [proNY " YADI n

e W - s — — —

2/ No pancreatitis or anythlng weegbnormal*

2 00 D oD OoEOMEDH B OB

e WP P

Then take the Ieash off and do nothlng wxalser** byt that .
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e Applied AutoLEX on Kannada (kan) which has NO syntactic parser
but has related language data with small in-person data
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e Creating a curriculum is a challenging process —— grammar coverage, examples, exercises ...

e AutoLEX has shown potential in doing some aspects of this automatically
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Word Usage: Semantic Subdivisions

e Different languages carve up the semantic space differently
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e Crowdsourced study where participants recruited online had to predict correct word usage in context
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 Apply AutoLEX to extract grammar aspects for teaching two Indian languages

Kannada - s:&cs

Dravidian language family

Indo-Aryan language family

“Classical language status”

e Under-resourced settings w.r.t pedagogical resources as well as NLP models/resources

e Access to in-service teachers that teach these languages to English speakers
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POS + Morphology Inflection + Word Order
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POS + Morphology

POS + Morphology

POS + Phrase Structure + Morphology

POS + Phrase Structure + Morphology

POS + Lexical-Semantic

Grammar Concept/Question

types of action verbs, verbs for spatial awareness
how to arrange verbs?

how to make Perfect/Simple Present Tense?

how to make present participle?

What are nouns, pronouns (usage in 1P/2P/3P)
possessive pronoun, locative prepositions, particles
how to denote location?
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Lemma

& (kar)
& (kar)
& (kar)
& (kar)
& (kar)
& (kar)
& (kar)
& (kar)
& (kar)
& (kar)

&Y (kar)

Morphosyntactic
Attributes

2;Plur

Acc;Sing
Nom;Sing
3;Past;Sing
1;Plur

3;Sing
3;Nom;Past;Sing
3;Past;Plur

Acc

3:Plur;Pres

General Info

39

Fem

oot (keli)
Fat (keli)

& (karavi)

& (kelya)

N

NA

B (karun)

&1 (kara)

baTo (kelyamule)
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Gender

Neut

P0G (karanya)
&I (karane)
Fa (kele)

PR1d (karaave)

Fat (keli)

Masc

&l (kelaa)
&l (kelaa)
P (karaave)
1A (karawa)
&l (kelaa)
PId (kareet)

®¥dld (kartaat)

Examples
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colors POS + Morphology Inflection how to make present participle?
spatial demonstratives (e.g. this/that) POS + Morphology What are nouns, pronouns (usage in 1P/2P/3P
animals POS + Morphology possessive pronoun, locative prepositions, particles
places (e.qg. city, village, garden, jungle) POS + Phrase Structure + Morphology how to denote location?
occupations POS + Phrase Structure + Morphology how to make compoud nouns?
day, night, weather, time POS + Lexical-Semantic types of adjectives (e.g. countable, immeasurable)

General Info Agreement Word Order

Affix Usage
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AutoLEX: Selection of Grammar Aspects

e |n consultation with the curriculum designers

ol (laa) suffix is used when:

current word is in the neighborhood of the word= 31¢& (atak)

current word is in the neighborhood of the word= J&dTd (sruvaat)
current word with Number = Sing Examples

dT (chaa) suffix is used when:

current word is in the neighborhood of the word= HcJ (mrityu)
current word is the= modifer Examples

General Info Agreement Word Order Affix Usage

Carnegie
Mellon
University

39 Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning
Chaudhary, Sampath, Sheshadri, Anastasopoulos, Neubig. In Submission. n




AutoLEX: Selection of Grammar Aspects

e |n consultation with the curriculum designers

e Perused existing Kannada textbooks to identify popular grammar points

Vocab Type Grammar Category / in terms of NLP task Grammar Concept/Question

Book- L1 family (immediate) POS + Word Order types of action verbs, verbs for spatial awareness
numerals (cardinals) POS + Word Order how to arrange verbs?
plants, fruits, body parts, food POS + Morphology Inflection + Word Order how to make Perfect/Simple Present Tense?
colors POS + Morphology Inflection how to make present participle?
spatial demonstratives (e.g. this/that) POS + Morphology What are nouns, pronouns (usage in 1P/2P/3P)
animals POS + Morphology possessive pronoun, locative prepositions, particles
places (e.qg. city, village, garden, jungle) POS + Phrase Structure + Morphology how to denote location?
occupations POS + Phrase Structure + Morphology how to make compoud nouns?
day, night, weather, time POS + Lexical-Semantic types of adjectives (e.g. countable, immeasurable)

General Info Agreement Word Order

Affix Usage

Carnegie

39 Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning Me!lOIl .
Chaudhary, Sampath, Sheshadri, Anastasopoulos, Neubig. In Submission. n Unlvel'Slty




AutoLEX: Selection of Grammar Aspects

e |n consultation with the curriculum designers

e Perused existing Kannada textbooks to identify popular grammar points

Vocab Type Grammar Category / in terms of NLP task Grammar Concept/Question

Book- L1 family (immediate) POS + Word Order types of action verbs, verbs for spatial awareness
numerals (cardinals) POS + Word Order how to arrange verbs?
plants, fruits, body parts, food POS + Morphology Inflection + Word Order how to make Perfect/Simple Present Tense?
colors POS + Morphology Inflection how to make present participle?
spatial demonstratives (e.g. this/that) POS + Morphology What are nouns, pronouns (usage in 1P/2P/3P)
animals POS + Morphology possessive pronoun, locative prepositions, particles
places (e.qg. city, village, garden, jungle) POS + Phrase Structure + Morphology how to denote location?
occupations POS + Phrase Structure + Morphology how to make compoud nouns?
day, night, weather, time POS + Lexical-Semantic types of adjectives (e.g. countable, immeasurable)

General Info Agreement Word Order Affix Usage Word Usage

Carnegie

39 Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning Me!lOIl .
Chaudhary, Sampath, Sheshadri, Anastasopoulos, Neubig. In Submission. n Unlvel'Slty




AutoLEX: Selection of Grammar Aspects

e Type Words

luestion

Book- L1 food (n) verbs for spatial awareness

?

Simple Present Tense?
participle?

ouns (usage in 1P/2P/3P)
locative prepositions, particles
n?

d nouns?

g. countable, immeasurable)

relationships (n)

General Info Agreement Word Order Affix Usage Word Usage
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AutoLEX

39

English Word

General Info Word Order Affix Usage Word Usage
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q&IHAT (mukhyamantri)
Jd9y™ (pantapradhan)

gfgal (pahili)

gfget (pahile)

gfgediarl (pahilyanda)
B (first)

IduH (sarvapratham)

g4 (navanvin)
afd= (navin)

194dT (navanavaa)
T (navi)

< (new)

a7 (navya)

JATd (neuyork)

Marathi Words
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AutoLEX: Selection of Grammar Aspects

39

Example usages of HTsil (bhaaiji)

Roman transliteration

/

[SCONI NOUR mO4{NoUN") [VERB]

AUXT)  [AUXT]

1| T (tasech) FTEl(kaahi) **HriaT(bhaajyancha)™* X(dar) @ei(dekhil) BHY(kami) FRUgTd(karanyaat) ATel(aalaa) 3E(aahe)

nMmod)»——
2 8 D/_ NOUR 2 3 8 B

— English translations

2 S|m|IarIy the prlces of other ***vegetables*** have also come down
«comp:obj
VERB "NOUN' | [SCONJ)  [NOUN") \- AUX’

3 ﬁR_«r(chlrun) W(thevlelya) ***mGEIT(bhajya)*** ﬁﬂT(klnwa) tIﬁ(fale) m(khaau) H?Fr(nakaa)

obj
aag8 »\NOUN'I 8 B J

—— T P ——

4 do not eat raw ***vegetables*** or unpeeled fruit

General Info Agreement Word Order
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AutoLEX: Extracting Language Descriptions
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AutoLEX: Extracting Language Descriptions

kn-en
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AutoLEX: Extracting Language Descriptions

kn-en

mr-en
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AutoLEX: Extracting Language Descriptions

>

Kn parser

kn-en

>

mr parser

mr-en
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>

Kn-en kn parser

>

mr parser

mr-en
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AutoLEX: Extracting Language Descriptions
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kn-en

A A
?
mr parser

mr-en
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AutoLEX: Extracting Language Descriptions

_— e~
o a
=’
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INTERNATIONAL INSTITUTE OF
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AutoLEX: Extracting Language Descriptions

-
A 4
A
convert to
SUD
A
<
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AutoLEX: Extracting Language Descriptions

L
A
<
train model for - convert to
POS tags, lemmatization, SUD '
morphological analysis
A
<
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AutoLEX: Extracting Language Descriptions

A
< I
. train model for
- . dependency parse
train model for o convert to 5
POS tags, lemmatization, SUD ' )
morphological analysis
A
<
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AutoLEX: Extracting Language Descriptions

N

) kn |
train model for

dependency parse

train model for convert to :
POS tags, lemmatization,’ SUD e
morphological analysis

.
.....
‘e R
......
.
...........
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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AutoLEX: Extracting Language Descriptions

>

Kn parser

kn-en

>

mr parser

mr-en
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AutoLEX: Extracting Language Descriptions

h BEEA
== -]

Kn-en kn parser

mr parser

mr-en
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AutoLEX: Extracting Language Descriptions

N [N
=
Kn-en kn parse}

Word Order
EE mr parser Affix Usage

mr-en
Word Usage
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AutoLEX: Extracting Language Descriptions

h BEEA
== -]

= O
mr parser

42

Kn-en kn parser

mr-en

Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning
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General Info

Agreement

Word Order

Affix Usage

Word Usage

Linguistic Question

Formulate the linguistic question
Into a classification task

'

Extract Features and
Construct Training Data

'

Learn an Interpretable Model

'

Extract and Visualize Rules

- g
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AutoLEX: Quality Study

General Info
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Word Order

Affix Usage

Word Usage
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AutoLEX: Quality Study

e What are the common suffixes for Kannada nouns
and when is each used?

Affix Usage e e
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AutoLEX: Quality Study

g What are the common suffixes for Kannada nouns
and when is each used?

Affix Usage

Accuracy
S0 @) (00)
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N
o
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AutoLEX: Quality Study

e What are the common suffixes for Kannada nouns
and when is each used?

Affix Usage [Pl

B AutoLEX " Baseline

oo
o

NOUN: 9%/18 valid

o
o

VERB: 7/13 valid

Accuracy
AN
)

N
o

NOUN VERB

Expert Evaluation _
Automated Evaluation Carnegie
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AutoLEX: Quality Study

e What are the common suffixes for Kannada nouns
and when is each used?

Affix Usage [t

NOUN: 9%/18 valid

VERB: 7/13 valid

Expert Evaluation

43

N
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AutoLEX: Quality Study

e What are the common suffixes for Kannada nouns
and when is each used?

Affix Usage [P = e

0REPW TP —> [NE+A+ BRVE +  (YU+) GUI + ATS + VS + D
‘she’s doing it for herself’ ‘mAD’ i’ ‘koL’ / utTa’  id ‘AL €

/ sandhi / \

reflexive gender/number oresent

tense
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AutoLEX: Teacher Perception Study
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AutoLEX: Teacher Perception Study

e Evaluate the relevance, utility, and presentation of the materials
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AutoLEX: Teacher Perception Study

e Evaluate the relevance, utility, and presentation of the materials

e Recruited 12 Kannada teachers and 5 Marathi teachers
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AutoLEX: Teacher Perception Study

e Evaluate the relevance, utility, and presentation of the materials

e Recruited 12 Kannada teachers and 5 Marathi teachers

LN

Introduce AutoLEX
to teachers
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e Evaluate the relevance, utility, and presentation of the materials

e Recruited 12 Kannada teachers and 5 Marathi teachers

(W Q

Introduce AutoLEX 1-2 weeks for
to teachers exploration of materials
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AutoLEX: Teacher Perception Study

e Evaluate the relevance, utility, and presentation of the materials

e Recruited 12 Kannada teachers and 5 Marathi teachers

\W Q

Introduce AutoLEX 1-2 weeks for
to teachers exploration of materials

Fill the questionnaire

44

N
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Carnegie
Mellon
University

45 Teacher Perception of Automatically Extracted Grammar Concepts for L2 Language Learning
Chaudhary, Sampath, Sheshadri, Anastasopoulos, Neubig. In Submission. n




AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?
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AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?

B Kannada " Marathi
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AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?

B Kannada " Marathi
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AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?

B Kannada " Marathi

70

Underlying corpora based
on formal and traditional usage
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AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?

B Kannada " Marathi

70

School’s primary focus
on beginner-levels
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AutoLEX: Teacher Perception Study

e How relevant are the extracted materials to the teaching needs?

B Kannada " Marathi

70

School’s primary focus
on beginner-levels

D
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AutoLEX: Teacher Perception Study

e For what purposes would the teachers use the extracted materials for their teaching needs?
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e For what purposes would the teachers use the extracted materials for their teaching needs?
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AutoLEX: Teacher Testimonials
| used this tool to teach an American adult

The illustrative examples, and the grouped who takes private lessons, found this tool
synonyms. [t does need some work on accuracy  |helpful in addressing her grammar questions.
In some places, but this is a great start!

given that these word pairs have been extracted from natural text, its interesting to see
that there are certain word senses which are so frequently used in the real world which
currently we haven't covered in our lesson but are we are now thinking of adding them.

If this tool could be used to target the older kids it would be very helpful. However, the past
present and future tenses of the verbs are interesting and this tool managed to impress me
with the vast database, Unfortunately, the words used are very technical, and make excellent
tool to improve writing sKills.

Providing teachers the abllity to input a curated set of data (stories
written in good and correct language) to prepare relevant examples
from may be helpful. Working more collaboratively will help us a lot
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Other Applications

Automatic Multilingual Grammar Checker

Errors

number, case & gender agreement
number & person agreement

root
. comp:aux
case assignment

case assignment

L \ subj mod comp:obj
anguage — -
Descriptions v i v it |
PRON AUX ADJ NOUN VERB
Ich werden  langen Blcher lesen

I-NOM.1SG  will-1PL  long-DAT.PL Book-ACC.PL read-PTCP

Evaluating the Morphosyntactic Well-formedness of Generated Texts
Pratapa, Anastasopoulos, Rljhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov. EMNLP 2020
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Other Applications

Evaluating Context-Usage in MT models
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Other Applications

Evaluating Context-Usage in MT models

Errors

number, case & gender agreement
number & person agreement

case assignment
root
, comp:aux
case assignment

subj H \‘ mod | ‘comp:obj
v | v I |

PRON AUX ADJ NOUN VERB

Ich werden  langen Blcher lesen

I-NOM.1SG  will-1PL  long-DAT.PL Book-ACC.PL read-PTCP

Evaluating the Morphosyntactic Well-formedness of Generated Texts

Language

. muro
Descriptions
Inside
When is Wall a Pared and when a Muro? Extracting Rules Governing Lexical Selection C arnegig
Chaudhary,Yin, Anastasopoulos, Neubiz. EMNLP 2021 Mellon
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Other Applications

Evaluating Context-Usage in MT models

number, case & gender agreement
number & person agreement

case assignment
root
' comp:aux
case assignment

subj II \‘ mod | ‘comp:obj
+ | + ¥ |

PRON AUX ADJ NOUN VERB

Ich werden langen Blcher lesen

Errors

Human

Look after her a lot. Okay. Any questions? Have we
got her report? Yes, it’s in the infirmary already
Dorlotez-la. D’accord. Vous avez des questions ? On
dispose de son rapport. Oui, il est a I’infirmerie.

En

Language -

Context-aware baseline

Descriptions

Look after her a lot. Okay. Any questions? Have we
got her report? Yes, i’s in the infirmary already.

Dorlotez-la. D’accord. Vous avez des questions ? On

En

Fr

dispose de son rapport 2 Ouli, elle est déja a ’infirmerie.

Model w/ attention regularization

Look after her a lot. Okay. Any questions? Have we
got her F6pPOIt? Yes it’s in the infirmary already.
Dorlotez-la. D’accord. Vous avez des questions ? On
dispose de son rapport ? Oui, il est déja a I’hopital

En

IEMNLP 2020

Do Context-Aware Translation Models Pay the Right Attention?
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Other Applications

Evaluating Context-Usage in MT models

number, case & gender agreement
number & person agreement

case assignment
root
' comp:aux
case assignment

subj “ \‘ mod | ‘comp:obj
+ | + ¥ |

PRON AUX ADJ NOUN VERB

Ich werden langen Blcher lesen

I-NOM.1SG  will-1PL  long-DAT.PL Book-ACC.PL read-PTCP

Evaluating the Morphosyntactic Well-formedness of Generated Texts

Pratapa, Anastasopoulos, Rljhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov. EMNLP 2020

Errors

Human

E Look after her a lot. Okay. Any questions? Have we
La N g U ag e . n got her report? Yes, it’s in the infirmary already

=gl Dorlotez-la. D’accord. Vous avez des questions ? On
DeSCH ptl ons Fr dispose de son rapport. Oui, il est a I’infirmerie.

Context-aware baseline

Look after her a lot. Okay. Any questions? Have we
got her report? Yes, if’s in the infirmary already.

Dorlotez-la. D’accord. Vous avez des questions ? On

En

Fr

dispose de son rapport [ Oui, elle est déja a ’infirmerie.

Model w/ attention regularization

Look after her a lot. Okay. Any questions? Have we
got her F8POLE? Yes it’s in the infirmary already.
Dorlotez-la. D’accord. Vous avez des questions ? On
dispose de son rapport ? Oui, il est déja a 1’hopital

En

Fr
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Contributions

o AutoLEX: framework to extract and visualize language descriptions

Linguistic Question

‘

Formulate the linguistic question
into a classification task

'

Extract Features and
Construct Training Data

|

Learn an Interpretable Model

|

Extract and Visualize Rules

49

AutoLEX: An Automatic Framework for Linguistic Exploration

AutoLEX 1s a tool for exploring language structure and provides an automated framework for extracting a first-pass grammatical specification from raw

concise, human-and machine-readable format.
Along with the language structure, we also provide rules to help with vocabulary learning, which we also extract automatically.

We apply our framework to all languages of the Syntactic Universal Dependencies project .

Here are the languages (and treebanks) we currently support.

Search for language (e.g. English)

ISO

en

el

es

mr

Language

English

Greek

Spanish

Marathi

Treebank

EWT

GDT

GSD

SAM-EN

Linguistic Analysis

General Information
Agreement

CaseMarking

General Information

CaseMarking
Learn Vocab

General Information
Agreement

CaseMarking
Learn Vocab

General Information
Learn Vocab
WordOrder
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Contributions

o AutoLEX: framework to extract and visualize language descriptions

s

http://www.autolex.co/interface/ ﬁ Ae
X
(=134
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o AutoLEX: framework to extract and visualize language descriptions
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Contributions

o AutoLEX: framework to extract and visualize language descriptions

T
:

S

e Real-World Utility: established collaborations with teacher communities

http://www.autolex.co/interface/

e Under-Resourced NLP: effectively utilize existing data and collect new data
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AutoLEX: Automatic
Language Explorer

‘raw rice’ ‘cooked rice’

https://www.autolex.co/
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(Low-resource) Language AutoLEX: Automatic
Analysis Language Explorer

Applications

Language
| | Education and
‘raw rice’  ‘cooked rice’ Documentation

Anna apple

https://www.autolex.co/

What’s Next?
 We demonstrated utility on 4 languages, about 7,000 more to go
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(Low-resource) Language AutoLEX: Automatic
Analysis Language Explorer

Applications

Language
| | Education and
‘raw rice’  ‘cooked rice’ Documentation

Anna apple

https://www.autolex.co/

What’s Next?

 We demonstrated utility on 4 languages, about 7,000 more to go
 Low-resource language analysis still doesn’t work well enough
» Better rule extraction methods
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(Low-resource) Language AutoLEX: Automatic
Analysis Language Explorer

Object Verb
subj _—

-
i~
'.1~
IK .
N 3
.y
»
v /T4 y ’
|
t. < . 'S
L

Applications

Language
Anna . apple HTd Education and
[tandul/ /bhaat/ :
‘raw rice’ ‘cooked rice’ Documentation

https://www.autolex.co/

What’s Next?

 We demonstrated utility on 4 languages, about 7,000 more to go
 Low-resource language analysis still doesn’t work well enough
» Better rule extraction methods

* Close link w/ data provenance (conversational text >> legal text)
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