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1. Introduction
1.1. Overview

Nearly all matter around us is built of up (u) and down (d) quarks. However, as soon as adequate
excitation energy becomes available in hadronic interactions, it becomes apparent that further quark
flavours exist and are easily accessible. The lightest of the heavy flavours of matter was called ‘strange’
as it appeared so to its discoverers, and today this name is associated with the strange s-antiquark.
s-quarks are identical in their properties (charge g = — %, baryon number b = +1, spin 1, colour 3) to
the d-quarks but different in mass.

In the laboratory experiments excitation of strange matter is understood in terms of matter—
antimatter formation as it is the s—s quark pair which is created in reaction processes by strong or
electromagnetic interactions. The formation mechanism of strange quarks is highly correlated to the
reaction mechanism governing the hadronic collisions — most of this review will deal with our current
understanding of the strangeness generation in nuclear collisions and how occurrence of various strange
and multiply strange hadrons can tell us the story about the formation of the new phase of matter, the
quark-gluon plasma [RH80, Ra81, Ra82, RM82, Ra83, Ra84]. Alternate approaches to diagnose quark
gluon plasma, e.g. by dilepton spectra [DG81, Ch82, SC85, HK85] are also of considerable interest, but
it has not been established beyond reasonable doubt that in this case the usual backgrounds will permit
measurement.

We will not discuss further other interactions and properties of strange quarks such as the Cabibbo
mixing of the down and strange quarks with respect to the weak interactions. Note, however, that this
would become relevant if the difference in mass of d and s quarks would be generated, e.g. by the
properties of the vacuum state of strong interactions. Should this speculation be true, it is quite
imaginable that in nuclear collisions various fundamental properties of strange quarks could be altered.
This remark is a particular case of the observation that the physical properties of matter and even the
appearance of laws of physics may undergo a drastic change within the environment of a quark-gluon
plasma. This we take as primary motivation for a detailed and exhaustive study of the properties of the
ground state of strong interactions and its melted form, the quark-gluon plasma. We will describe how
certain strange particle abundances created in nuclear collisions can be used as a tool to study the
properties of this, still hypothetical form of matter.

Our view of the relativistic nuclear collision reaction [DR82] is in agreement with the recently
observed large nuclear stopping power [BG84] which implies that a domain in space arises in a centre of
momentum frame of two nuclei in which an important part of the longitudinal energy is transferred to
transverse degrees of freedom, as also recently confirmed experimentally [KS85]. Such regions of space
we call ‘fireball’. Our reaction picture and the mentioned experimental results contradict earlier
theoretical proposals [AKM80] based on p-p collision phenomenology and assuming essential nuclear
transparency. More recent theoretical studies [CK84, DGS85] find high p—A stopping power and
therefore suggest that nuclear collisions at energies under consideration will be truly inelastic.

The physical variables characterising the fireball domain are: energy (density), baryon number
(density), entropy (density), and volume rather than the usual individual degrees of freedom of
particles. The methods required in the theoretical study of these quantities involve straightforward
generalisations of the usual statistical thermodynamic theory. However, the fireballs are rather isolated
and not in temperature or particle ‘baths’. Further, the size of the fireball, and in particular, its baryon
number may be relatively small. Hence, one may justly question the validity of the statistical approach.
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The concept of ‘temperature’ is almost certainly useful in this context, due to the large number of
particles contained in a hadronic fireball. It is less obvious whether particle conservation laws may be
considered in the framework of the grand canonical ensemble through the introduction of various
associated chemical potentials u,. Exact ‘counting’ of particle members in the ‘canonical’ ensemble in
comparison with the statistical average in the ‘grand canonical’ approach leads to correction factors of
the order 1/N, where N is the relevant number of particles [HR84]. Here, N may be the baryon number
b, strangeness § =s — s =0 or even be a synonym for required colour conservation. Correction factors
for exact strangeness and colour conservation have been studied [RD82, EGR83, EGR84, DGERSS]
and it has been found that for fireball volumes corresponding to a size of 2 fm in radius or more, these
corrections are not significant. We will be content hence with the grand canonical approach and use the
baryochemical potential w, next to temperature T, as the physically observable statistical variables
throughout this work.

We further note that all particle quantum numbers that are invariant under the strong interaction are
conserved on the timescale of interest to us (107**s=r=10""'s). Such quantum numbers are, aside
from baryon number b, electric charge Q, and all flavour quantum numbers, in particular, strangeness
S. The third component of isospin is hence also conserved due to the Gell-Mann—Nishijima relation,
but the conservation of isospin may be violated to some extent due to electromagnetic interactions (we
note that the isospin-violating reactions, e.g. the decay of 3°— Ay have a characteristic time constant of
e.g. 107%s).

A prerequisite in our work is rather precise knowledge of certain empirical properties of strange
quarks in a large quark bag. We will discuss at length in the next section how the study of the spectrum
of strange particles helps in understanding the mass of confined strange quarks [AR84, AR85]. While
the physical origin of the strange quark mass m_ remains a puzzle, its precise value is of considerable
importance to us because 2m_ is the threshold for the formation of a strange quark pair. This threshold
is near to the hadronic ‘temperature’ 7~ 160 MeV observed in the slopes of the particle spectra
[Ha65, HR68] and which is a measure of the mean energy available per particle in hadronic reactions.
Consequently, the detailed balance of the energy available in a reaction to form the strange quark pair
and the reaction mechanism must be carefully considered in order to quantify properly the resulting
strange particle abundances.

The first and foremost issue at hand concerning the nucleus—nucleus collision relates to the internal
structure of the formed fireball:

1. Does it consist of individual hadrons with short range correlations between the constituent
quarks? Is the nuclear collision reaction therefore governed by interactions between individual hadronic
resonances?

2. Or, does it consist of the quark-gluon plasma phase where short range colour correlations are
broken and in which quarks and in particular, gluons are the active constituents?

Although in our work the latter option will always be tacitly assumed, it is one of the main points we
will make here that the distinction of the quark-gluon plasma from the hadronic gas is facilitated by the
excitation of numerous gluons, a situation which can only occur in the plasma phase. But since gluons
carry the (confined) charge of strong interactions, colour, their detection in an experiment can only be
indirect. We show in section 3 that gluons are very efficient in generating strange quark—antiquark pairs
in quark-gluon plasma and hence transitory presence of gluons may be inferred from the appearance of
anomalously high strange particle abundance which will practically saturate the available strange quark
phase space.

In order to properly appreciate these remarks, one has first to recognize that the basic subprocess for
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strange quark production, namely the pair production process gg—ss, is, in principle, the same for
both phases of hadronic matter described above. In the case of well-separated individual hadrons with
the nonperturbative (‘true’) QCD vacuum in between, the above-mentioned reaction can only take
place during the actual collision process of two individual hadrons, which means that strange quark
production experiences severe constraints in space and time. Furthermore, all initial and final state
hadrons are colour singlets and the effective number of the available degrees of freedom is greatly
reduced in comparison to the quark-gluon phase.

In the plasma phase there is not only more rapid strangeness production — we will show that the
substantially higher strange quark abundance per unit of volume leads to abundant formation of
multiply strange antibaryons when the plasma state fragments and recombines to form individual
hadrons. In the baryon-rich regime of quark-gluon plasma the s-quarks are more abundant than u or d
quarks with the consequence that formation of antibaryons with high strangeness content is facilitated
during the conversion to the hadronic gas of the plasma phase (see section 4). We develop in this
volume the quark-gluon fragmentation-recombination model for plasma dissociation and the numerous
fragmentation processes provide additional antiquarks required in the formation of strange anti-
baryons.

One of the important results discussed here (section 5) is the fact that during the expected nuclear
collision reaction time of ca 107** s the strangeness produced in individual hadronic collisions in the
thermalised phase will not fill the available phase space — however, we also show that strange particles
are rather efficiently distributed among various individual hadronic states, e.g. s-quarks will be found
either in antikaons K(sq) or hyperons Y(sqq) in dependence on the value of the chemical potential u,
(baryon density), but the absolute strangeness abundance may be substantially less than the phase space
limit unless quark-gluon plasma state is formed. This phenomenon, which is well-known from
nucleon-nucleon collisions has recently been shown to persist in reactions among light nuclei, such as d
and o [Ak85]. In these reactions the usual K/ ratio of about 11 percent is observed, even at large
transverse momenta indicating that no change in reaction mechanism has occurred. Relative chemical
equilibrium is more easily established in the hadronic gas phase than the absolute chemical equilibrium
saturation of phase of strange particles, which depends strongly on the governing reaction mechanisms.
One can use the relative chemical equilibrium relations between kaons and hyperons to measure the
baryochemical potential - we will discuss these and related issues in section 6. However, even the
relative chemical equilibrium will not always be established especially in case that the dense hadronic
state contains numerous, normally rare, antibaryons which signal the occurrence of quark-gluon
plasma.

The final aspect of our work relates to the transition from the dense state of matter to a relatively
thin gas of particles which will ultimately, without further interactions, reach the observer. In section 7
we calculate the abundances of strange particles arising upon the formation of quark-gluon plasma
under two extreme assumptions on the dynamics on the expansion-hadronization process: (a) all
entropy of the plasma is spent in expansion; (b) it is converted almost exclusively into new particles
through fragmentation processes of quarks and gluons. We favour the latter case as being more
representative of the hadronic dynamics, since a large particle abundance then results — in case (a) the
entropy is used to increase the mean energy per particle in the final state through the process of
collective expansion. Numerous fragmentations of gluons in the case (b) provide a ready supply of q to
complete the formation of antihyperons further enhancing their extraordinarily high abundance.

We turn to describe several underlying assumptions about strong interactions and nuclear collisions,
which we will use when required in this work.
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1.2. Bagged QCD

We will tacitly assume bagged QCD as the underlying picture of the interactions in study. This
presupposes that the ‘true’ vacuum state is structured such that any coloured particle cannot freely
propagate beyond a distance of about 1 fm. This state can be converted into the ‘perturbative vacuum’
at the expense of an energy density B. This notion has been introduced originally in the MIT bag
model, but initially in a different context [Ch74, Jo75]. The value of B is estimated phenomenologically
from a fit to the hadronic spectrum [deG75, AR84, AR85] or from sum rule considerations [Sh81] (for a
recent review see [RRY85]) which give the range

B =[(140-210) MeV]" = (50-250) MeV/fm" .

The central assumption of the quark-bag approach is that inside a hadron where quarks are found, the
true vacuum structure is displaced or destroyed and coloured particles propagate easily. One can turn
this point around: quarks can only propagate in domains of space in which the true vacuum structure is
absent. This statement constitutes, if taken to the extreme, a resolution of the quark confinement
problem. The remaining difficult and unsolved problem is to understand the degree of incompatibility
of ‘free’ quarks with the true vacuum structure. Examples of similar behaviour in ordinary physics are
easily found: e.g., a light wave is reflected from a mirror surface (not perfectly!); magnetic field lines
are expelled from superconductors; etc. It has been argued [Le81] that the true vacuum state of
quantum chromodynamics (QCD) is a perfect dielectric.

It is interesting to note that the bag constant B has a further influence: a negative pressure P = — B as
seen from the perturbative vacuum, acts on the surface between the true and the perturbative vacuum.
Hence, in the absence of other forces an empty, excited space domain containing the perturbative
vacuum would quickly vanish. In this picture of hadronic structure and quark confinement, all
colourless assemblies of quarks, antiquarks and gluons can form quasi-stationary states, a ‘quark bag’.
In perturbative vacuum the laws of perturbative quantum chromodynamics apply and we find there
relatively weakly interacting perturbative quanta of QCD.

As this type of understanding of strongly interacting particles is quite commonly accepted today, we
will not repeat all well-known arguments that lead to this approach. Nor will we consider the
refinements not of essential importance to the main line of our work. These are mainly brought about
by the difficulties encountered in the incorporation of pions in this schematic description. However, we
note that nuclear collisions, in which internally excited large quark-gluon bags (‘quark-gluon plasma’)
are formed, test the above conceptual understanding from a quite different angle as for the first time
large regions of space devoid of structured vacuum will be created. This process of vacuum melting is,
in our view, the primary objective of the high energetic nucleus—nucleus collision experiments.
However, it is fitting to note at this point that neither absence of a phase transition in the
thermodynamic sense between the hadronic vacua, or even the possible existence of deconfined quarks
around us will greatly influence our considerations. All we presuppose is that the melted state contains
quark-gluon like excitations with established QCD properties.

We will invoke the above qualitative understanding of the hadronic structure when in the next
section (section 2) we turn to study, in the context of relativistic bag models, the strange quark mass m_.
This is done by exploring in a systematic fashion the compatability of the bagged QCD picture and the
spectrum of strongly interacting particles. We determine that the value of m_we should employ is in the
order of 160-180 MeV.
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Another relevant parameter in our work is the strong coupling constant « . It controls, among
others, the coupling of the strange quarks to the light flavours u, d and the gluons. The value of « is
changing with momentum transfer and it is different in timelike and spacelike regions. In production of
strange quark pairs, we are exploring the timelike domain of momenta in which the strong coupling has
been found to be weaker than in spacelike regions. We will therefore consider a value in the range
a, =0.4-0.8 as being the appropriate one, in view of the relatively small momenta involved (less than
1GeV/c on the average). Recall that o, ~0.14-0.20 is found in e’e¢” — hadrons experiments at
Vs> 10 GeV [DR8S5]. The smallness of «, justifies the use of ideal gas expression to gain a first insight
into the properties of the quark-gluon plasma, as is also supported by results of numerical calculations
in the context of lattice SU(3) gauge theory. Further, as pointed out by Carruthers [Ca83] the collective
phonon oscillations in plasma just about compensate for the suppression of low energy perturbative
modes of gluons, providing an explanation for this ‘precocious’ validity of the perturbative ideal gas
expressions.

1.3. Ideal gas of quarks and gluons

As the quark-gluon plasma is a state composed of highly relativistic particles, where particle-
antiparticle pairs can be created and destroyed at liberty, particle numbers as such, are not conserved,
only the difference in the number of particles and antiparticles. However, as four-momentum
conservation still holds, a co-moving volume element at equilibrium can be described by a four-velocity
u" and a local temperature T, so that particle densities in phase space depend only on the conventional
Boltzmann factor: exp(B, p"), where the four-vector B, is given by [To68]

1
B#=—7:uﬂ . (11)

In the rest frame of the co-moving volume element one has, as usual, 8, =(1/T,0).

Let us now discuss, in the rest frame of the plasma, the various constituent particle species of the
quark-gluon plasma. For gluons there is no conservation law restricting their number, so their density,
in ideal gas approximation, is given by the phase-space integral over the Bose distribution function for
massless particles ({(3)=1.20206...)

d’ - T’
po= | G 1) =g, ), (12)

T

Here g, =8 X2 (colour X spin) is the degeneracy factor of gluon states. We have
p, =16 (T7°) 4(3), (13)

and we note that a corrections to eq. (1.3) and further relations of similar character are known
explicitly, see e.g. [Ch78, EGR80, RD83, RD85] expressions below. The energy density associated with
gluons is ({(4)= w¥90=1.08232..)

d’ - 3 8
& =8, f a ;’) Pl -1 =g, = T =5 7'T". (1.4)
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For quarks, we have net conservation of each flavour separately, i.e. of the number of quarks minus the
number of antiquarks. This is accounted for by introducing a chemical potential s, Where f=

u,d,s, ... denotes each individual flavour. If the quark mass is m;, the net number of quarks of flavour
fis, according to the Fermi statistical weight

d’ - _
y=0-p=8 | oy (OB P =) 17! = exp(BOV P ] 4 )+ 1)
(L5)
where we have made use of the fact that the chemical potentials of quarks and antiquarks are of equal
magnitude and opposite sign.

Equation (1.5), in general, cannot be evaluated in closed form. For the light quarks, f=u,d, we
may, however, put m, =0, and then we find, with 8 =2,°3.= 6 for spin and colour:

y=uT +(1r ), (f=u,d) (1.6)

(for details see [RD85, MU85]). When the quark-gluon plasma state arises from symmetric nuclear
matter, i.e. Z= j A, the number of up- and down-quarks must be equal, so that

o = Mg = Mo = Thy (1.7a)
and the baryon density p, is
P =3(v, 1) = %Vf(/“"b/3) ) (1.7b)

where p, is the baryon chemical potential.
Strange quarks are created in pairs only, and hence we have

y=n—n;=0, (1.8)
which implies that u =0, c.f. eq. (1.5). Expanding the Fermi function in eq. (1.5), we then have in
view of m /T = 1:

mS
K2 n —T— s

(1.9)

5

1

and again g . =2_-3_=6. In the so-called Boltzmann approximation we only retain the n =1 term:

ns=n§zi2 Tm’ K2<%>. (1.10)
™

We will now compare this to the light antiquark density (g stands for either u or d)
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[P !
=) @y Cexp(plIT+ T+ 1)

n (1.11)

The integral (1.11) can be expanded in a manner analogous to eq. (1.9), and one obtains the following
ratio of strange to nonstrange antiquarks:

nd(ng+ng)=4(mJT) K,(m/T)exp(u,/3T) (1.12)

which is depicted in fig. 1.1. There is a strong suppression of light antiquarks in the limit of large u,,
that is in the baryon-rich quark gas.
The energy density carried by light quarks is found explicitly, assuming again negligible rest mass:

d3 -1 -1
sq=su+ea+ed+ea=12f@f7lpl[(exp(mpi—/suq>+1> +(exp(Blpl + ) + 7]

777'2 4 22 3 4
=— : — W, - 1.13
10 T" +3u,T +27r2 Ky (1.13)
For an ultrarelativistic gas of particles, even in the presence of perturbative interactions, the pressure of
gluons and light quarks can generally be calculated according to the law

P=3¢ (1.14)

d et

while the entropy density is obtained by evaluating

s=dP/T|, . (1.15)

14 L1

(+)

Fig. 1.1. Abundance of strange (or antistrange) quarks relative to the light quark abundance as function of /T for several choices of m /T = 0.8,
1, 1.2,
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We shall need just below the relation (1.14) in order to estimate the phase transition back to hadronic
gas, while entropy plays an important role in estimating the particle number abundances [GR85]. A
rather complete explicit list of all relations (1.14, 1.15, etc.) including O(e,) corrections is easily found
in literature to which the reader is referred to further study (see e.g. [RD85, MU8S, CGS86)).
Historically, the first discussion of quark matter known to us is that of Carruthers [Ca73].

1.4. Phase boundary of quark-gluon plasma

It is convenient, though rather unrealistic, to visualize the hot excited nuclear matter formed in
relativistic nuclear collisions as if in contact with a thermodynamical bath of temperature T and
baryochemical potential w, . :

We recall that, given this assumption, the extensive variables, viz., energy, volume, baryon number
of the fireball, etc., can be expressed by intensive quantities: The temperature T is a measure of energy
per degree of freedom; the baryon chemical potential u, controls the mean baryon density. The
statistical quantities such as entropy (a measure for the number of available states), pressure, heat
capacity, etc., also will be functions of T and u,, and describe the state of nuclear matter. Any
theoretical description of the two quite different phases, viz., the hadronic gas and the quark-gluon
plasma, must allow for the formation of numerous hadronic resonances on the one side, which then at
sufficiently high energy density, dissolve into the state consisting of their deconfined constituents:
quarks and gluons.

It is important for the later modelling of the quark-gluon plasma state dissociation into the hadronic
gas to keep in mind, as an illustration of what is happening, the p—V diagram shown in fig. 1.2. Here
we distinguish three domains. The hadronic gas region is approximately a Van der Waals gas where the
pressure rises with reduction of the volume. When the internal excitation rises, the individual hadrons
begin to cluster. This reduces the increase in the pressure, since a smaller number of particles exercises
a smaller pressure. In a complete description of the different phases we have to allow for a coexistence
of hadrons with the plasma state in the sense that the internal degrees of freedom of each cluster, i.e.
quarks and gluons, contribute to the total pressure even before the dissolution of individual hadrons.
This, indeed, becomes necessary when the clustering overtakes the compressive effects and the
hadronic gas pressure falls to zero as V reaches the proper volume of hadronic matter. At this point the
pressure rises again very quickly, since in the absence of individual hadrons we now compress only the
hadronic constituents. It is interesting to follow the path taken by an isolated quark-guon plasma
fireball in the baryon density—temperature p,—T plane. Several cases are depicted in fig. 1.3. In the Big

oA
P P b T
1 a Plasma
L]
-] .
t w .
L]
) Gas .
s .
1r.& .
1 Big Bang .
—— —— — —— —— — g 4—?— -
<V> ; 100 200 T[MeV]
Fig. 1.2. p-V diagram for the gas-plasma first order transition, with Fig. 1.3. Paths taken in the p,—T plane by different physical events.

the dots indicating a model-dependent, unstable domain between
overheated and undercooled phases.
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Bang expansion of the early universe, the cooling shown by the dashed line occurs in a universe in
which most of the energy is in the form of radiation. Hence, the baryon density p, is quite small
compared to the entropy density. In stellar collapse leading to cold neutron stars, we follow the
dash-dotted line parallel to the p,-axis. The compression is accompanied by little heating.

In contrast, in nuclear collisions, probably the central area covering most of the p,—T plane can be
explored by varying the parameters of the colliding nuclei, such as energy, atomic numbers 4, A,, im-
pact parameter. We show an example by the full line, and we show only the path corresponding to the
cooling of the plasma, i.e., the time evolution after the termination of the nuclear collision, assuming a
plasma formation. At the phase boundary described qualitatively by the heavy dots in fig. 1.3, the
baryon density v must be discontinuous, as suggested tacitly by the first order phase transition shown in
fig. 1.2. This, and other theoretical reasons make the use of the baryochemical potential u, instead of
p,, more advantageous since u,, like 7, is continuous at a phase transition (assuming the presence of a
thermodynamical bath). In general, p, and u, may, at any given T, be related to each other, if enough is
known about the structure of a physical system. But even more importantly, u, like T, is a measurable
thermodynamic quantity and we will get more used to it in the remainder of this paper. At this time it is
first necessary to get a semiquantitative idea which values of T and g, are limiting the existence of the
quark-gluon plasma. In fig. 1.4 several boundaries between the phases are shown. The hadronic gas
region encompasses the point w, = T'=0, while quark-gluon plasma is found for 7> T_(u,). A first
estimate concerning the boundary between the phases in the u—T diagram may be obtained considering
the ideal gas equations of state of quarks and gluons contained by the vacuum pressure B and the
pressure of the hot (massless) pion gas at a given temperature, i.e.

_ 3

AD 90 T4' (116)

37 1
Poce =35 772T4+;L(21T2+2—7r2 p,—B, Py

The choice B''* =150 MeV (near the MIT bag value) leads to the curve marked I in fig. 1.4, while
B''* =250 leads to the curve marked II. Curve III is the statistical bootstrap critical boundary with a
chosen critical point T, = T, = 190 MeV at w, = 0 [HR80].

[MeV]

A
200:_\»
E‘_ﬁ

=
—

— .

@ae

Fig. 1.4. Semiquantitative phase boundaries between quark-gluon plasma and hadronic gas phases. The curve marked IV is used in the domain
0< u, <600MeV in this paper. See text after eq. (1.16) for explanation of details.
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Table 1.1
Selected critical values of (u,,, T,,) and the corresponding /T ratio.
For 7,=250MeV and V~¢ as well as ~¢ we also show ¢, the
lifetime of the pure quark-gluon plasma, assuming that the initial

cr i 3
N T t( ) 3)

t

(MeV) (MeV) /T (fmic) (fm/c)
0 160 0 17 7.0
200 156 1.3 18 7.2
400 148 2.7 2 7.6
600 130 46 32 8.7

The boundary curve marked IV (full line) will be used in our calculations. It is selected rather
arbitrarily by fixing B'"* =200 MeV, T (u, = 0) = 160 MeV and g (T = 0) = 960 MeV and interpolating
according to eq. (1.16) quadratically in between. Note, however, that the coefficients of the quadratic
form, LHS of eq. (1.16) were not taken as given by the free quark-gluon gas, but are determined by the
above choice of parameters. Explicitly the boundary selected by us satisfies the equation:

(TITe) + (TITe) (Bl Ber) (Pger! B VAT L/ BY Y + (i /mge) =1 (1.17)

The motivation to choose T =160 MeV resides in the remarkable fact that transverse momentum
spectra in hadronic reactions are governed by a universal slope parameter of 160 MeV [Ha65, HR68].
t., =960 MeV was chosen quite arbitrarily in order for u_ (7 =0) to be near curve I (MIT bag) and
curve III (bootstrap model) at moderate temperatures. However unrealistic this latter choice may be, it
will be of no influence in the following considerations where only u, <600MeV is used. Selecting a
number of values of u, along the critical curve in fig. 1.4 we find the corresponding values of critical

temperature and u/T as shown in table 1.1.
1.5. Evolution for quark-gluon plasma

1.5.1. Baryon-rich plasma

We must make a further assumption in order to describe the physical phenomena and the time
evolution of the quark-gluon plasma in nuclear collisions. Our first reaction picture may be realized in
two ways. Either it implies stopped nuclear matter leading to a baryon-rich environment for the plasma
with relatively large matter radius R, [DR82] or it may be realized in the fragmentation region at
ultra-high energies beyond the stopping regime [CDHS83]. In the first case assume that the volume
occupied by the plasma grows rapidly with time as more nuclear matter enters the reaction zone, while
the temperature is assumed to be nearly constant. After a characteristic fireball formation time ¢, the
inflow of matter ceases, and due to continuing expansion the temperature T begins to decrease faster
such that VT>(~entropy) is a constant in time for ¢ > ,. In the second case ¢, corresponds to the proper
collision time of the penetrating nuclei, measured in the rest frame of the nucleus.

We have therefore the following model assumptions:

V=V, (t/t)", 1>t (1.18a)
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T,(t/t,)"" 1>t
T={ o(t/t0) 0 (1.18b)

T,, t<t,.
n is a parameter, to be taken below as either one or three, to describe longitudinal and spherical

expansion, respectively, and the plasma time constant is assumed to be linearly dependent on the
plasma radius R,

t,=1.5R, (1.18¢)

as suggested by some hydrodynamical calculations [Ch82]. Equation (1.18b) implies further that the
time ¢, required for the initial plasma temperature T, to drop to the critical temperature T, is

t.=1.5R(T,/T.)". (1.19)

The magnitude of R, considered by us is in the domain of 2-4 fm; 7, the initial plasma temperature, will
be in the interval T, < T, <250 MeV where, as per assumption, T.(u =0) = 160 MeV. We note that for
R,=2fm (ie. 1, =3fm/c=10"% s) and T, =200 MeV, eq. (1. 19) with n =1 leads to t. =6 fm/c =
2 x 1075, a canomcal’ time used quite often further below. In the other extreme, with T =250 MeV
and R, =4 fm, one finds 3 times longer baryon lifetime, ¢, = 18 fm/c. However, for n =3 we find in this
case 8.6fm/ c. In fig. 1.5 we show schematically the time evolution of V and T. Of course, this simple
parameterization presented here of the plasma evolution is quite inadequate for a more detailed study.
However, its simplicity provides for a first insight into the role that dynamics of nucler collisions and
plasma formation and evolution is going to play in the study of properties of this new form of matter by
observation of strange antibaryons.
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Fig. 1.5. Schematic representation of time evolution of the reaction volume and temperature. Dotted is the hadronic phase. For t <1, pure
quark-gluon plasma is present. ¢, is the plasma formation time.
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A further refinement of the time evaluation of the plasma state is necessary whenever we need to
consider the light quark content, which is controlled by the baryochemical potential. The simple
assumption

uy () [ T(t) = const. (1.20)

appears to be the best choice in our context. This leads to

0 -nl/3
_ mo(t/t,) ’ 1>1,
(1) —{ 0 (<t (1.21)

b

The actual value of u,/T established in a particular collision of two nuclei depends on the yet not
well-known stopping power of nuclear matter as well as on the parameters of the collision: kinetic
energy, size of projectile and target, impact parameter. In the last columns of table 1.1 we give the
expected lifetime of the pure plasma state that is the time ¢_ until the critical values pu_, T, are reached,
assuming R, =3fm, t,=1.5R,.

As a consequence of the assumption (1.20) the entropy per baryon in the plasma remains constant.
However, the baryon number increases for ¢ <, due to growth of the volume of the plasma state. For
t>t, the baryon number remains constant and so does the total entropy of the plasma state. The
thermal energy per baryon is constant for < t, and it is decreasing for ¢ > ¢,. The consequences of this
dynamical model for strange particle evolution and formation will be described in some detail in section
7.

1.5.2. Baryon-symmetric ( gluonic) plasma

At ultra-high collision energies, when the nuclei may not be able to stop each other, a quark-gluon
plasma with vanishing baryon number density is expected to develop in the central rapidity region
[AKMS80]. The space-time development of this gluonic matter is described by the appropriately
modified hydrodynamical model of Landau for hadronic collisions at very high energy
[Bj83, Ba83, KRR83]. The matter expands mainly longitudinally, but there is also some flow in the
transverse directions.

In the local restframe, the variation of the energy density & with proper time is related to the
divergence of the local four-velocity u”:

d
3 (n e)=—(1+v})d,u" (1.22)

where v_is the velocity of sound in the quark-gluon plasma (1/V3 = v, for an ultra-relativistic gas). In
the framework of the inside-outside cascade model it is assumed that the partons are produced at
proper time 7, ~ 1 fm/c at rapidity y = arctanh(v, ), where v is the longitudinal velocity in the laboratory
frame. The four-velocity is then (see fig. 1.6)

u”~ (v, yvy,0,0) = (¢/7, x/7,0, 0) (1.23)
so that d,u" = 7~ '. The energy density therefore evolves according to the law

&(r) = 50(70/1')1”% = 490(70/7')4/3 ; (1.24)
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X

x=-ct

X

Fig. 1.6. Definition of the coordinates for the evolution of the quark-gluon plasma in the central rapidity region. The dashed line represents the
curved line of a parton produced at rapidity Y.

As the energy density of a baryon number-symmetric plasma is strictly proportional to T* (see eqs.
(1.4) and (1.13)) this implies that the temperature varies like in (1.18b) with n =1:

T=Tyr/7)"", 7127, (1.25)

as it is appropriate for longitudinal expansion.

Having outlined the framework for a detailed study of strange hadrons emerging from the
quark-gluon plasma we can now turn to the development of the subject matter by first considering what
the spectrum of strange hadrons is telling us about the intrinsic properties of strange quarks.

2. Strange quark mass and hadronic spectrum

The parameter controlling decisively the considerations of this paper is the strange quark mass.
Recently it has been shown that the choice of a running value for the strange quark mass parameter

m, = m, In(RAR) , (2.1)

allows for an accurate description of the spectrum of strange hadrons in the framework of the MIT-bag
model. A introduced in eq. (2.1) is a new parameter to be added to the set of bag model parameters
and R is the confinement radius for quarks. Relation (2.1) is an empirical consequence of a systematic
study of possible fits to hadronic spectra. Although eq. (2.1) is very suggestive of the continuum QCD
running quark mass formula [NW81, Po76, GP76], one should not necessarily take this as evidence for
the validity of QCD, especially as the same study revealed that it is perfectly sufficient to use a constant
value of the QCD coupling constant a,. Also note that perturbative QCD predicts a power 4/9 for the
logarithm in eq. (2.1) [NW81, GL82].

2.1. Phenomenological mass formula

We now describe how the relation (2.1) is extracted from the empirical knowledge about the
hadronic spectrum [AR84, AR85]. Consider the MIT bag Hamiltonian [deG75, Jo75]:
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Here n, counts the number of quarks with flavour i € {u, d, s}. Isospin breaking effects are not included
in eq. (2.2). The coefficients ¢,

c; = (| 2 (Fo), (Fo), h) . (2.3)

with F standing for the generators of colour SU(3) and o denoting the spin matrices C; are the
expectation values of the colour hyperfine interaction. There are thus 7 parameters: B, z, €, &, hy,,
h, and h, of which the last 4 can be functions of m R. We recall that the quark energies (in units of
1/R), are usually determined from boundary conditions imposed at the confinement radius R. This
normally fixes the ratios h  /h /h,, as well as R-dependence of A and h . By allowing all these
matrix elements and energy eigenvalues to assume slightly different values than expected in a model
framework, one can account for small, but significant higher order effects, while avoiding the
introduction of ad hoc assumptions as to the quark dynamics in the bag and at the surface, as they are
introduced, e.g., in chiral bag models.

The nonstrange quarks are assumed to be approximately massless while the strange quarks have a
nonnegligible mass. The parameters describing the properties of the strange quarks will depend in a
significant manner on m_R, a dimensionless quantity. It is more straightforward to avoid any explicit
mentioning of m_ and write a parametric representation:

e(R)=¢,+ "R+ ePR* +--- (2.4a)
h(MR)=h_(0)+ hng NP (2.4b)
h (MR)=h_(0)+hPR+--- (2.4c)

where ¢V, ¢®), hél), h'" may be viewed as further initially independent and dimensioned parameters

to be fixed by comparison with the spectrum of strange hadrons. Fitting all the parameters by
considering the hadronic spectrum, the R-dependence of ¢, the strange quark energy, is determined.
However, as is apparent from eq. (2.4a), one cannot, without a further assumption or physical
consideration, identify a numerical value for the mass or kinetic energy of the strange quarks — initially
only the strange quark energy, £ (R)/R, will be extracted.

2.2. Fitting procedures

Explicit fitting procedures show that it is sufficient to consider only the second order terms in R in
eq. (2.4a) and first order terms in egs. (2.4b) and ( 2.4c). At this point it is worthwhile to realise that
each such hypothesis leading to a reduction of the number of parameters can be easily verified
numerically by adding or omitting parameters. Failure of improvement of a fit of the hadronic spectrum
with an additional parameter implies that it is not necessary to consider such a refinement. In that way it
is found that ¢’ =0 and further that the hyperfine interaction is arising from two-body forces since the
relationship #{} =2h flls) is confirmed in actual numerical fits.
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Table 2.1
Upper portion and lower portion: stable and unstable had-
rons. First column: Experimental isospin average masses used
as inputs in least square fits. Fit A: Empirical formula for
strange quark energy. Fit B: Running strange quark mass

Particle Exp. mass Fit A Fit B

N 939 940 938.8
® 783 782 783.1
K 496 496 495.9
¢ 1020 1021 1020.1
3 1193 1193 1193.5
A 1116 1115 1115.6
= 1318 1318 1318.3
O 1672 1672 1671.8
A 1232 1240 1234

K* 895 907 908.8
3 1385 1394 1391.4
E 1533 1537 1537.1

(A) E,=¢/R+ 7R,
(B) m, =234 MeV In(R - 760 MeV), B''* = 145.5 MeV.

With the six remaining parameters [i.e. B, z,, ¢, e?, Ry hf]? (hl) = 2h$) and ¢V = 0)] a fit of the
eight stable hadron masses leads to a typical spectrum given under Fit A in table 2.1. The masses can be
fitted on the average to within 0.7 MeV of the assumed values, the masses of the wide states are
predicted quite closely to their actual physical values, yet consistently a little too high (see [AR84] for a
qualitative discussion of this behaviour).

However correlations found between the parameters in Fit A imply that there were too many
parameters. This is certainly the case since B, £ and hf]i) are three dimensioned parameters while the
physics of the problem requires at most two independent dimensioned quantities, namely those
associated with the hadronic vacuum and the strange quark mass. These correlations are eliminated by
fixing or dropping of certain parameters: hflls) is almost completely determined by the 3-A splitting. The
fit gives hflls) = —29.3+2.4MeV compared to 3(M, — My) = —29.2 MeV. Further, the hadronic spec-
trum is found to be sensitive only to the combinations Bmeq, B'’z, and Bmhqq and . Therefore
one can choose one of the four parameters B, z,, ¢, hqq, without affecting the fit. The choice
B'* =171 MeV [AR84] leads to &, =1.688, z,=—1.559 and h,, = 0.320 all values being reduced in
comparison with the MIT bag fit fdeG75]. Note that in the MIT bag model the value ¢, =2.043 is
determined from the boundary condition on the unperturbed fermion spinors. Selecting this value, i.e.,
fixing £, =2.043 results in B'*=147MeV, z,=1.886, h,, =0.387: all values are close but slightly
different from the original MIT fit. The quantity ¢ ®(47B)™""> =0.203 GeV*" is determined by the N-A
splitting. Once B is chosen at a preferred value, £'*) can be extracted and the energy in each hadron is
determined. The important message here is that the isospin averaged hadronic spectrum in the u, d, s
sector cannot fix uniquely a value of ¢, or B independent of a theoretical bias even though only few
parameters are fitted to a large number of hadronic states.

2.3. Strange quark energy and mass

Once ¢, or B is selected, the energy of the strange quark E, as function of R is fixed. Although & (R)
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varies with choice of B (viz. ¢,) the energy of strange quarks in various hadrons is virtually independent
of this arbitrariness, as the radius R of hadrons changes accordingly. A number of fits to different
functional forms &, is shown in fig. 2.1, all made assuming B''* =0.170 GeV [ARS5]. The point to
notice here is that the strange quark energy does not depend on the method of parameterization,
underpinning the physical relevance of the result. The assumed forms are:

e/R={e, +e"R"+eR"}/R. (2.5)

The different curves in fig. 2.1 were determined by assuming values (n,m)€(0,1,2,3,4) and
computing the least square fit to the hadronic spectrum. All different fits terminate with a very good x°,
except for the linear fit (1, 0) — dot dashed in fig. 2.1, which lacks the necessary ability to turn upwards
at large R.

The energy of strange quarks, as a function of R, is determined by the study of the hadronic
spectrum, once B''* is selected. In fig. 2.2 we show the energy of strange quarks in various hadrons for
various fits with different B'’* — recall that we can have any value of B''* as long as B ”3eq is kept
constant. There is practically no variation of the strange quark energies with a different choice of B''*,
The strange quark energies in hadrons all are in the range 554-594 MeV with the exception of kaons
where it is 715 MeV due to the very small confinement radius.

The large deviation of E (R) from kinematic behaviour found in [AR8S5] suggests that a physical
parameterization of the mass m, is required, such as given in eq. (2.1). Then

— — 2 2
E(R)=&/R=\[e,m(R)/R] +(m,(R)) (2.6)
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and m (R) varies according to eq. (2.1) while ¢, is made R dependent according to the boundary value
problem posed by the MIT bag model. Assuming B''* = 145.5MeV the light quark momentum was
found at ¢,(0) = 2.049 = 0.013, very near to the Dirac equation bag eigenvalue. The resulting hadronic
masses are given in Fit B, table 2.1. All narrow hadronic masses are fitted within 0.5 MeV. The other
parameters found [ARS8S] are h , =0.388 +0.006, z, = —1.85 £ 0.025, m, =234 £ 14 MeV, A, =760 +
57MeV. There is a slight correlation between &, and z, and an important one between m, and Ay as
should be expected — only two of the three dimensioned parameters B'’*, m, and A, can have physical
meaning. The effective strange quark mass varies between 173 MeV in kaons and 321 MeV in £* and its
R dependence is clearly significant. (See table 2.2.)

Several comments must be made with reference to the above results:

(a) The assumed form of the running mass, eq. (2.1), is different from the (In)*’° behaviour implied
by QCD. It is the need for the mass to go up with increasing R (decreasing momentum) which matters
but not the precise functional behaviour.

(b) In our future discussion the result that the strange quark mass is ~170 MeV in a kaon plays an
important role. The energy density in a kaon (last column of table 2.2) is 0.75 GeV/fm’ while in
nonstrange hadrons it is 4B = 0.24 GeV/fm® for B'* = 145.5 MeV. We thus can associate the mass of
the strange quark at the 170 MeV level with energy density which we expect at the phase transition to the
plasma phase. The energy density of 0.3-0.5 GeV/fm” is found for strange hadrons in which the strange
quark mass comes to 260-310 MeV. Note that, in general, strange hadrons are ‘denser’ as there is less
Fermi pressure to balance the vacuum pressure, since the massive quark is more inert than a massless
one.

(c) The running strange quark mass seems to be an essential element in the understanding of the
hadronic spectrum in the framework of the bag model mass formula (2.2). Its smallness at high energy
density assures that strangeness will be easily made in quark-gluon plasma (see section 3).

Table 2.2
Masses, radii, strange quark energies, strange quark mass and energy density hadrons as fitted.
B'"*=170MeV is assumed in these fits

Fitted Rat £=MIV at
mass B"*=1455MeV  E, m(R) B'*=145.5MeV

Particle (MeV) (fm) (MeV) (MeV) (GeV/fm’)

Strange hadrons

K 496 0.543 715 173 0.75

¢ 1020 0.787 594 260 0.50

p) 1194 0.920 566 296 0.36

A 1116 0.920 566 296 0.34

= 1318 0.856 577 279 0.50

Q 1672 0.910 568 294 0.53

K* 909 0.857 577 280 0.35

3* 1391 1.022 554 321 0.31

A 1537 0.964 560 307 0.41

Nonstrange hadrons

N 939 0.987 0.24

o 783 0.929 0.24

A 1234 1.081 0.24
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We are thus prompted to use m, = 160-180 MeV in rough accord with the studies of current strange
quark mass via various other means (see [GL82, RRY85] for a general review). The value m, ~
280 MeV occasionally referred to in literature arises in the context of the MIT bag model in which the
significant variation of m_ with the momentum (energy density) has been neglected. Further note that
almost always one finds E, = 560 MeV + 10 MeV (kaons are sole significant exception). This is due to
the flatness of E (R) for values of R obtained for strange hadrons at given B''*, see e.g., fig. 2.1 and
table 2.2. This explains why additive quark models have been highly successful in the understanding of
the particle properties. However, E, =560 MeV is the constituent energy (not mass) of the strange
quark in hadrons.

For the study of strange quark-pair production in the following section we shall combine the above
mass parameter, m ~ 170 MeV, with the value of the running coupling constant taken at the relevant
(timelike) four-momentum Q° =4m’. Numerically this gives

47

4ml) = ~0.6
a(4m.) = 41 - IN,) In(4m/A%)

(2.7)

for N, =3 flavour and A ~ 100 MeV/ ¢ being suggested by fits to scaling violation in deep-inelastic lepton
hadron scattering [SW82].

3. Heavy quark production in quark-gluon plasma

Consider a relativistic nuclear collision in which a transitional state of quark-gluon plasma occurs.
The production of strangeness carrying hadrons proceeds through three steps: (i) locally deconfined
strange quarks and antiquarks are created in the quark-gluon phase; (ii) these quarks are incorporated
as hadronic constituents during the disintegration of the quark-gluon plasma; and (iii) strange hadrons
continue to react, are produced and destroyed in the final hadronic gas phase by (confined) strangeness
creation, annihilation or exchange reactions. In this section we study the elementary processes of
strange, or more generally heavy, quark pair-production and annihilation in the quark-gluon plasma,
and we investigate in depth the approach to chemical equilibrium of the strange quark abundance in the
plasma phase. With our apologies, the symbol ‘s’ is used in this section to denote ‘strong’ in e, V5 (the
kinematic variable), ‘strangeness’ and as a unit of time, aside from further use to denote entropy
density. However, it is in our opinion always possible to identify the proper meaning in the given
context in which the symbol ‘s’ is used.

3.1. Quark pair production

In lowest order in perturbative QCD, (ss)-quark pairs can be created in collisions of two gluons (fig.
3.1a—c) and by annihilation of light quark—antiquark pairs (fig. 3.1d). The latter process was studied by
Biro and Zimanyi [BZ82, BZ83] who found rather long relaxation times for approach to the chemical
equilibrium. They therefore questioned the previously proposed [RH80, Ra81] use of (equilibrated)
strangeness as a diagnostic tool for quark-gluon plasma. However, calculations of Biro and Zimanyi
ignored the role of gluons which were considered by Rafelski and Miiller [RM82, KMR86]. They showed
that the gluonic production rate (cf. fig. 3.1a—c) is dominating strangeness production and leading to
equilibration times comparable to the expected plasma lifetime. Thus flow of strangeness in relativistic
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Fig. 3.1. Lowest order QCD diagrams for ss production: (a)-(c) gg—>s5; (d) gq— 5.

nuclear collisions was established as a promising method of detecting the plasma state. Because of the
importance of strangeness production in this diagnostic approach to quark-gluon plasma we will
rederive these results here in all detail.

The invariant matrix elements for quark-pair production have been calculated in lowest order in the
QCD coupling constant «, by Georgi et al. [Ge78], Combridge [Co79] and by Matsui, Svetitsky and
McLerran [Ma85]. The squared invariant matrix elements, summed over initial and final colour, spin
and flavour states are for the individual diagrams shown in fig. 3.1:

2 (Mz_t)(Mz_u)

S M = (gogyma) 25—, (3.1)
S = (gqg,ma 3y PO IMOE 20, (.15
S = (gt ma oy LI IMOC L) (.19
S = ) 2§(M2—t)2+(11:22—u)2+2M2s’ (3.1d)
while the interference terms between the processes (a—c) are
Sl = (g, may L M), (3.1¢)
St b = (g, may 0TI @1
5yl = (gog,7a,)} LI (3.1¢)

108(M* —w)(M* — 1)
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Here M is the strange quark mass [we write M instead of m_ to render the generality of the result
obvious], and s, ¢, u are the Mandelstam variables

s=(k1+k2)2, t:(kl_‘h)z, u=(k1_‘12)2- (3.2)
The momenta k; and g, are defined in fig. 3.1. The degeneracy factors for gluons and quarks are:

8c=28.=16, 8,=23.76, (3.3)
and N, =2 is the number of light quark flavours contributing to the reaction (3 1d).

Insertlng these numbers and dividing by the number of initial states, i.e. g, for processes (3.1a—c)
and Nfgq for process (3.1d), we obtain the following averaged matrix elements for strange quark
production by light quarks and gluons, respectively:

2 2
2 Mgl = %‘1 w’ “—(SZQ—) [(M? = )" + (M” — w)’ + 2Ms] (3.42)

w7 2 _ 2 2 B § Mz—u Mz—t
El‘/%gg—w?' =7ma (0 )[ 3 (M —t)(M u)+ . +M2_u>

16

__M< M+t  Mtu

M= (M=)
M*(t - u)’ 2 M*(s —4M?) ]
M=t —u) 3 (M*— )M —u)

)—g(ZMZ—t—u)

(3.4b)

The strong coupling constant a,(Q°) here must be taken at an invariant momentum Q° which is most
appropriately chosen as Q° = s for the reactions under consideration [Co79]. Note that the choice of a
common Q7 in the various diagrams contributing to the process gg— ss is essential for the conservation
of gauge invariance at the level of a power series expansion in «,. As this choice for Q’is independent
of the squared momentum transfer ¢, the averaged cross sections may be easily determined by
integrating over the allowed range of ¢:

1 i —
o= —f—ch%mﬁ'z 3.5
7 167”2, (3.5)

with the bounds

=M~ 1515 W(s), (3.6)
where
W(s):=(1-4M%/s)""? . (3.7)

Thus we find:
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8 2
s = e (1422 ) e (8
_ 2ma; {[ 4M’ M“] o [7 31 MZ] }
Gogoss = 5 1+ o tanh T W(s) — | g+ == [ W)y (3.8b)

Given the averaged cross sections we can now calculate the rate of events per unit time summed over all
final and initial states. Neglecting at present final state interactions of the reaction due to the presence
of strange quarks produced earlier (we return to the question of the influence of Pauli blocking in
subsection 3.4) the strangeness production rate is:

ﬂj:fds"f(gk)l PPIC l,x)f(z 2 olka: ) f ds (s = (k +£2))3() v (39)

4m?

The sum over the initial states includes the discrete quantum numbers i, j (colour, spin, etc.) over which
the matrix elements (eq. (3.1)) were averaged. v,, = (k, - k,)/|k,| |k,| is the relative velocity of the
initial particles, which are taken as massless. In order to facilitate the calculations, a dummy integration
over s has been introduced.

Next, we have to specify the phase-space densities p,(k, x) for light quarks and gluons in the initial
state. In the circumstance of a nuclear collision these will initially be given by the Lorentz boosted
quark and gluon structure functions of the colliding nuclei. During the collision these will be modified
due to parton—parton collisions and become, under circumstances favourable to the formation of
quark-gluon plasma, the thermal distribution functions, boosted to the appropriate rapidity along the
beam direction. As was argued on the basis of perturbative QCD [vHP75, CKR77], the gg— gg
scattering process has a large cross section due to the large number of colour degrees of freedom
resulting in a short mean free path for gluons. Furthermore, the anticipated lifetime of the fireball
created in an ultrarelativistic nuclear collision is of order 6 fm =2 x 10™>* s, accompanied by an energy
density above 1GeV/fm’. Under these conditions it is likely that each perturbative quantum (light
quark, gluon) will rescatter many times during the lifetime of the plasma. One should recall here as well
that randomization of the particle momenta leading to a Maxwellian distribution needs under such
circumstances only few collisions. Hence, we approximate the momentum distribution functions by the
statistical Bose, or respectively, Fermi distribution functions which are (cf. section 1.3)

fk)=(exp(B- k) —1)"" (3.102)
f(k)=(exp(B -k — u/T)+1)"" (3.10b)
fatk)=(exp(B-k+pu/T)+1)" (3.10c)

where 8-k = B,k" and (B, B #)~2 = T is the temperature in the local rest frame. In the rest frame of
the plasma we have 51mply B -k =|k|/T, as light quarks and gluons are considered to be massless.
The equilibrium distributions (3.10) can only be taken seriously for |k| not very much larger than T;
to populate the high energy tail of the distributions many parton-parton collisions are required, for
which there may not be enough time during the lifetime of the plasma. This remark is of particular



190 P. Koch et al., Strangeness in relativistic heavy ion collisions

relevance concerning the production of quarks of heavier flavour, such as charmed quarks from the
thermalized plasma state. For m_ ~ 1.5 GeV we have m_ /T ~7-10 and, therefore, the representation of
the parton distribution functions by the expressions (3.10) is inappropriate there. We also note that,
while in each individual nuclear collision the momentum distribution may vary, in the ensemble of
many different collisions the statistical distributions may be a good approximation of the circumstances.
We further note that by considering only the equilibrated phase-space distributions (3.10) in which
particles have relatively small randomised momentum, we implicitly neglect pre-equilibrium production
of strange quark pairs from direct collisions of quarks and gluons before colliding nuclei form the
plasma state, i.e. the direct production of strange hadrons through direct nucleon—nucleon collisions in
the early stage of the reaction. However, as strange quark-pair production is not kinematically
suppressed in the quark-gluon plasma phase, contrary to the nuclear phase as we shall show below, we
do not anticipate that the pre-equilibrium production mechanism contributes significantly to the
strangeness population. However, one may expect it to dominate the production of heavy flavours, e.g.
charmed quarks (see section 3.5).

In view of these qualifying remarks, we now proceed using in eq. (3.9) for the phase space densities
p,(k, x) the statistical momentum distributions f,(k), f,(k), (k) of gluons, quarks and antiquarks which
can still have a parametric space-time dependence, i.e. through T(x) or g (x). The invariant strangeness
formation rate per unit time and volume for the elementary processes shown in fig. 3.1 is then:

d’k,
Tt J sisdte ko[ oty | @iy
{%gé fg(kl) fg(kZ) &gg—mg(s) t N, gi fq(kl) fq(kz) &qqasg(s)} . (3.11)

The factor 1/2 in front of the phase space density of gluons accounts for the fact that the reaction is
proportional to the number of gluon pairs in each volume element, and the double integration over k,
and k, counts each gluon pair twice. This factor is missing in a number of previous computations
[RM82, BZ83, CP84, MM84] and is introduced in [Ma85, KMR86]. As we have implicitly assumed that in
the rest frame of the plasma the distribution functions f only depend on the absolute value of the
momentum, |k| = k,= k, we can evaluate the angular integrals in eq. (3.11):

x %

=i4f 5WUdk fdk 0(4k k, — s) £,(k,) fu(k, )]

0 0

o

+1797— s ds 5qq~ss[fdk1jcdkz 9(4k1k2—5)fq(k1)fq(k2)], (3.12)

am?

where the step function requires that k k, = s/4 = M", and the functions f(K), f,(k), f 4(k) are specified
in eq. (3.10). In the glue part of the rate A, eq. (3.12), the k,, k, integrals can be carried out
analytically by expanding the Bose function, eq. (3.10), in a power series in exp(—k/T):
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4 32 = 12, ((nms)"”
Ag= — T | dss (qu_,sg(s) Z (nm)” 7K, T
ki n,m=1
4am? ’
=672 agMT3C_2M/T<1+% [T]/;+) (3.13)
T

To obtain the quark contribution the integrals must be evaluated numerically except in particular limits
in which the Fermi distributions can be suitably approximated. We do not discuss this term further here,
as the quark contribution is relatively unimportant, but we present the numerical results below.

Once strange quark-antiquark pairs have been created, the ss-annihilation reaction will deplete the
strange quark population. Under the condition of statistical independence of the creation and
annihilation process, this loss term is proportional to the square of the density p, of strange and
antistrange quarks. With p being the saturation density at large times, the following differential
equation then approximately describes the evolution of p, as a function of time:

dp/dt = A[1— (p,(t)/p7)’] . (3.14a)

We note that eq. (3.14a) may also include a term linear in p,(f). For example, when the plasma density
is sufficiently high, the produced strange quarks have difficulty in getting away quickly from each other.
With a scattering length of the order of } fm, in extreme cases, one has to allow for diffusion rather
than ready free motion. In the limiting case of very dense medium we find the created ss pair still in a
given correlation volume, and hence the annihilation term is linear in p, in such instance

dg/de~ A{1 - [5,()/p7]} - (3.14b)

The solutions of (3.14) and (3.15) are quite similar in their appearance (monotonically rising, saturating
functions) and are, respectively,

p.(1) = pZ tanh(t/27)—= pZ(1-2e""), (3.15a)
p()=p[1-e""] (3.15b)

with the relaxation time constants 7 and 7 controlling the time scale of approach to the asymptotic
equilibrium density:

T=p 24, (3.162)
F=pllA, (3.16b)

respectively. Note that it takes twice as long to reach equilibrium if there is close s-s correlation. A
factor 2 in eqs. (3.15a) and (3.16a) is missing in [RM82], but that omission just compensates for the
other missing factor 1/2 in front of the gluonic contribution in eq. (3.11). The results for the approach
to chemical equilibrium of strange quarks due to the process gg—ss as presented in [RM82] are
therefore correct, whereas the relaxation time given for the less important process qq—ss
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[BZ82, RM82] was too large by a factor of two. Thus the net result, after rectifying all omissions in
earlier work is that the true equilibration time is by about ten percent shorter than given in [RM82]. A
contrary claim made in [Ma83] is incorrect as pointed out in [KMR86]. More importantly, the precise
value of the equilibration time constant is controlled more significantly by the details of QCD
interactions, the value of strange quark mass and other properties of the medium into which strange
quarks are produced (see also the following subsection).

3.2. Results for static quark-gluon plasma

We now discuss the numerical results for the rates, time constants and the expected strangeness
abundance [KMRS86]. In fig. 3.2a we compare the rates for strangeness production by the processes
depicted in fig. 3.1 for the parameter values o, = 0.6, m, = 150 MeV. We see that the gluon contribution
dominates the strangeness creation rate A. The rate for qq— ss alone (shown separately — dashed lines)
contributes less than 20 percent to the total rate. Using the equilibrium density of strange quarks in the
plasma, (cf. section 1.3) we can therefore approximate the relaxation time 7 by that determined by the
gluonic production mechanism alone. The analytical result, setting M = m,_ of section 2, with 7 as
defined in eq. (3.16a):

16l (m/T)exp(m/T)
TR T (14 BTim 4 )

(3.17)

is falling rapidly with increasing temperature. In fig. 3.2b we show the characteristic relaxation times
toward chemical equilibrium, 7, defined in eq. (3.16a). Again it is obvious that gluonic strangeness
production is the dominant process since 7, is substantially smaller than 7, (dashed lines). If we compare
the time constant 7 with the estimated lifetime of the plasma state (horizontal line) we find that the
strangeness abundance will be close to saturation for temperatures of 200 MeV and above, i.e., for an
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Fig. 3.2. (a) Rates A, (b) time constants 7 as function of temperature T. Full lines: qq— s§ and gg— ss; dashed lines qq— ss. The curves are for
a,=0.6 and m_ =150 MeV. (Note that in (a) the curve “gg” is smaller by factor 2, in (b) the curve “qq” is lower by a factor 2, as compared with the
results of [RM82].)
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energy density above 1 GeV/fm’. We note that 7 is quite sensitive to the choice of the strange quark
mass parameter m_and the coupling constant .. As we have seen in section 2 the appropriate choice of
m, as well as that of «, depends on the energy density of the plasma state.

The dependence of strangeness production on the mass of the strange quark has been studied in
detail by Munehisa and Munehisa [MM84]. We show their results in figs. 3.3, corrected for the factor
1/2 in the gluonic production rate. At fixed 7 =200 MeV and «, = 0.6 the strangeness equilibration time
increases rapidly with m_ (fig. 3.3a), and the total density of produced strange quarks after a fixed
lifetime ¢, =20 fm/c of the plasma falls steeply (fig. 3.3b). This illustrates that enhanced strangeness
production is also a promising signal for the chiral phase transition [Sh81a, Pi82] in high-temperature
QCD if one adopts the view that quarks are endowed with a high dynamical mass which melts down to
smaller values. Figure 3.3b shows that a change of 200 MeV in the effective mass m_ of the strange
quark would result in almost an order of magnitude change of the strangeness abundance.

At this point we revisit again the process of creation of charmed quarks in quark-gluon plasma,
which is quite different due to the fact that m /T ~7-10. Due to the large value of m /T the
density-quarks at equilibrium is very low, so that conservation of charm must be accounted for exactly
and not on average, precluding the use of the grand canonical ensemble. The equilibrium density of
charmed quarks is therefore [RD80] (assuming V < 1000 fm):

p~gV(m.Ti2m) exp(-2m I T), (3.18)
where g, = 6 as in eq. (3.3) and V is the quark-gluon plasma volume. Assuming for the moment that
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Fig. 3.3. Dependence of strange quark production on strange quark mass for 7=200MeV and o, = 0.6. (a) Equilibration time for the process
gg—>ss; (b) density of strange quarks after ¢ =20fm/c.
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high energy gluons are available for such a far-off thermal equilibrium reaction, we have, according to
egs. (3.13) and (3.16a):

7 = pr12AY) = 2Tm VI 14mal = V-860 fm . (3.19)

Here we have used a, =0.2 for the strong coupling constant at the charmed quark mass scale. Seen
together with eq. (3.18) this result implies a very low charmed quark abundance at the break-up time of
the quark-gluon plasma expected to live not much longer than 6 fm/c. Thus, both the absence of hard
gluons mentioned already and smallness of the charm phase space contribute to a rather smail
abundance of charmed quarks [Ra82]. Nonetheless, detailed studies of charm production, in particular
plasma gluon fusion to charmonium [CP84, CV84] have been done and the transparency of plasma to
charm has been considered [Re84]. We will discuss this further in section 3.5.

So it turns out that it is just the small window — quark mass equal to (3-1) X temperature — which
makes the strangeness formation time similar to the expected lifespan of quark-gluon plasma and allows
us to observe the presence of this new form of matter by the observation of consequences of large
strange quark density and abundance created by gluons during the short lifetime of the plasma state.
The evolution of the density of strange quarks, eq. (3.15a), relative to the baryon number content of
the plasma state, is shown in fig. 3.4 for various temperatures. The saturation of the abundance is
visible for T =200MeV. The strangeness abundance shows a pronounced threshold behaviour at
T =160 MeV.

In order to appreciate the anomalously large strange particle abundances emerging from quark-gluon
plasma, we will consider the formation of strangeness in the case where no quark-gluon plasma has
been formed and hadronic matter consists of individual hadrons in detail in section 5. In particular, the
approach to chemical equilibrium abundances in the hadronic gas is of importance and it will turn out
that the absence of the equilibrium abundances in the hadronic gas helps distinguish between the two
different states of hadronic matter at the level of singly strange hadrons. Quark-gluon plasma acts as a
source of strangeness, facilitating rapid saturation of the (hadronic gas) phase space. Absence of gluonic
degrees of freedom assures that far too little strangeness is produced in individual hadronic (gas)
collisions.
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Fig. 3.4. Time evolution of the relative strange quark to baryon number abundance in the plasma for various temperatures T (m, = 150 MeV,
a, =0.6).
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3.3. Influence of volume expansion

When the volume occupied by the quark-gluon plasma changes in time (expands), we have to
supplement eq. (3.14a) with the volume dilution term (see section 7 for further extensive discussion)

dps _ 1 dV w2
D= —p 5 T AN (p)P0)) (3.20)

where now A and p. are time dependent quantities in consequence of temperature being a time
dependent function. Both A, ~ A and p_ are not dependent on the chemical potential of light quarks.
As described in section 1, we assume the simple functional relations, eq. (1.18) to parameterize the
time dependence of 7 and V. In fig. 3.5a the resulting evolution of strange particle density, calculated
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Fig. 3.5. (a) Evolution of strangeness density for two typical evaluation scenarios of the plasma. See text for explanations. (b) Total strangeness
evolution in plasma (p,(¢) multiplied with V(z)).



196 P. Koch et al., Strangeness in relativistic heavy ion collisions

assuming m_ = 170 MeV, o, = 0.6 is shown [KMR86]. Case I corresponds to a rather hot blob of plasma of
size 3fm and initial 7 =250 MeV, while case II corresponds to the initial plasma temperature being
more modest, T,= 180 MeV, while the radius being 4 fm. ¥V~ has been assumed here. Since the
product T- R is nearly the same, the energy content is almost equal in both examples. They hence
represent two different conceivable scenarios of a collision of heavy nuclei. The arrow marked 90%
shows the time at which the phase space saturation reaches that level. The fall of the strangeness
density is a consequence of the volume expansion, rather than strangeness annihilation. As shown in
fig. 3.5b, the total strangeness is quite rapidly built up in the collision, and we can expect 80-120
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Fig. 3.6. Relative abundance of strangeness: (a) p/p,, (b) p/p.
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strange quark pairs to be produced. There is virtually no net strangeness annihilation sS— gg as the
plasma expands. This is because in the expansion process the temperature and strangeness density both
drop and the combined effect is sufficient to rapidly decouple strangeness from the hadronic re-
equilibration reactions. Points (a), (b), (c) and (d) indicate when, along the assumed critical curve (see
fig. 1.3), the critical temperature is reached at which the chemical potential assumes the values 0, 200,
400, 600 MeV, respectively (see table 1.1), corresponding to T, = 160, 156, 148, 130 MeV, respectively.
The phase transition to the hadronic gas occurs at these points, depending on baryon content of the
plasma. As we see from fig. 3.5a, the transition density is expected in the narrow interval 0.15/fm’ <
p, <0.3/fm’. This value indicates that clustering of two strange quarks in one hadronic volume will be
frequent, and further that the total abundance of strangeness is a measure of the plasma volume at the
phase transition [KMR86].

Under the assumption of ideal gas relations between the baryochemical potential u, and the
q=u+d and q light flavour densities, we compute the time evolution of relative strangeness abundance
evaluation p() /p,(¢) and p(¢) /p,(¢) for case I, shown in fig. 3.6. Curves marked (a)-(d) correspond to
values of u,/T as fixed in table 1.1 and discussed above. Naturally, with increasing u, the relative
strangeness abundance p/p, diminishes, but is substantial even at large w,. As baryon number
increases, q abundance decreases and the opposite trend results in the p./p, abundance. These two
characteristic points have been emphasized previously [RH80, Ra81, Ra82, Ra84, RD83] and are
essential prerequisites in order that the proposed anomalous abundances of strange antibaryons develop
in nuclear collisions. We record, in particular, that at w,/T ~2.7 (curve (c)), we expect equal numbers
of s and u + d quarks, while for each 2.5 nonstrange quarks we find one s or s quark in the plasma.

One may argue that the selected scenario in respect of volume or temperature of the plasma has
been overly simplified and optimistic with regard to the strangeness phase space saturation in plasma.
As the main developments of our work depend nearly exclusively on the ability of the plasma state to
reach the equilibrium strangeness density we now will show that this is quite generally the case. The
evolution of the plasma depends on two initial quantities: R, and T; R, controls the characteristic time
of the plasma, see eq. (1.1c), but the lifetime is prolonged by having high initial temperature T,
Further, high temperature greatly facilitates the formation of strangeness, cf. eq. (3.17). All these
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Fig. 3.7. Degree of strangeness abundance equilibration as a function of initial temperature T,. The radius of the plasma is a parameter: R, =2, 3,
4fm.
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influences can be systematically investigated by considering the degree of strangeness equilibration
reached in the plasma as a function of T, with R, being a parameter. In fig. 3.7 we see that to within
factor 2 we always achieve saturation of strangeness phase space, of course more easily for the
long-lived large plasma or a hot initial environment. Here ¢_ is the time at which the plasma state cools
to the phase transition temperature and commences to coexist with the hadronic gas phase (see section
1 and table 1.1).

3.4. Influence of Pauli blocking of final states

Matsui, Svetitsky and McLerran [Ma85] have recently studied the influence of final state Pauli
blocking on the rate constants for the strangeness production processes gg— ss and qq— ss. As more
and more strange quarks and antiquarks are produced they occupy, in part, the available phase space
and may impede production through the influence of the Pauli exclusion principle. In order to account
for this effect, it is necessary to make additional assumptions beyond those introduced in section 3.1,
because the phase space distribution of already produced strange quarks must be identified. Matsui et
al. assumed that the strange quarks produced are rapidly thermalized, so that their momentum
distribution can be represented by the form

fk)y=fk)=(A" e + 1) (3.21)

Here A, =exp(u,/T) is the fugacity of strange quarks which describes the amount of saturation of the
statistical phase space density. Initially, for p, =0, we have A, =0 (u, = —»); chemical equilibrium is
characterized by A, =1 (u, = 0). Since strange quarks are always produced in pairs, p, and p; are equal,
which implies A, = A;. As the chemical equilibrium requires A, = A, *, the equilibrium abundance must
satisfy A, = A, = "1 as stated. While assumption of eq. (3.21) seems, at ﬁrst sight, perfectly reasonable, it
follows upon far-reaching assumptions, e.g. that the space correlations between the quark and the
antiquark of a newly produced strange quark pair are rapidly destroyed.

Once f,(k) and f (k) are specified (cf. eq. (3.21)), it is easy to express the production rate A ,;, and
the annihilation rate A of strange quarks in terms of the invariant matrix elements (3.1) and the

phase space densities, taking Pauli blocking and effects of Bose statistics into account:

A —f dk f dp, f Qm) 8(p, +p,— k, — k
win™ ) Gay k] ) @ay 2k ) ey 2pl) ) 2|pz M Ap ki k)

X[%fg(kl)fg(kZ) E |, + M+ '/%c|2 +fq(kl) fi(ky) |‘/”d|2:l (1= f (P~ filp,)],
(3.22)

d*k d*k d’p d’p,
A= | o[ Lo [_dp [ (2)' 8(p, + ps — K, — k
o) @ay2li] ) @my 2] ) @y 2lp ) @my 2l rpmhimh)

<A+ £ A+ ) S, +t, + 40

HA £ (1~ £(p) S M| k) £k (3.23)
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The factor 1/2 in front of the glue contributions again account for the double-counting of gluon pairs.
In egs. (3.22) and (3.23) the law of detailed balance is incorporated, i.e. the squared invariant matrix
elements, summed over degeneracy of initial and final states, are equal for the forward and reverse
reaction. Further, since

o= j d3p1 f dpz
4k, - k, (277)32|P1 (2m ) 2|P2

1
@2m)* 5(P1+P2_k1"k2)|/“|2= 2
167s t
(3.24)
we can establish the relation with our previous eq. (3.11), provided that the statistical factors (1 - f.),

(1—£;) are replaced by one [KMR86]. This amounts to the neglect of Pauli blocking in the final state.
Observing the elementary properties of the thermal distributions, viz.

L+ £,(k) = exp(B-K) (k) (3.252)
L= f,(k) =exp(B- k= /) £,(k), (3.25b)
1= fok) = exp(B -k = u/T) (k) (3.25¢)
L= £ =1~ (k) = A exp(B - k) £(K) (3.25)

it is possible to rewrite the effective reaction rate as

Aeff( As) = Again(As) - Aloss(/\s)

(3.26)
= (1 - Az) Again(As) = (As_2 - 1) A]oss(As) .
Upon approach to chemical equilibrium, i.e. A;— 1, the overall reaction rate A, obviously tends to
zero as

Aeff()\s)'A__Tl) (1 - /\s) 2A As = 1) . (327)

ga'm(

In order to determine the relaxation time near the equilibrium distribution which may be expected to be
influenced by Pauli blocking, one now has to study the dependence of the strange quark density p, on
the fugacity A, near A, =1:

K a dk ok
_ &k, -
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The evolution equation

dp/dt= A (A,) (3.29)
then takes the asymptotic form

p dA/dr=(1-2A)24! (A,—1) (3.30)

gain
with A, = A ., (A, =1). This saturation equation has the same asymptotic solution as eq. (3.14a),
with the equilibration time constant

T'=p; 124, (3.31)

The relaxation time (3.31) has been evaluated numerically by Matsui et al. [Ma85]. In addition to the
effects of Fermi and Bose statistics for light quarks and gluons, which are already contained in eq.
(3.16a), it aso contains the influence of Pauli blocking. This effect will be of relevance only for high
equilibrium density of strange quarks, i.e. at temperatures 7T considerably higher than the strange quark
mass mg, as shown in fig. 3.8. The solid line represents the strangeness equilibration time as defined in
eq. (3.31), while the dashed line reproduces the previous result (3.16a), which neglects the Pauli
blocking in the strange quark phase space [KMR86]. The small difference is seen to grow gradually with
temperature, not exceeding 20 percent even up to T = 400 MeV, which corresponds to an energy density
of about 20 GeV/fm’
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Fig. 3.8. Influence of Pauli blocking on the strangeness equilibration rate. Solid line: with Pauli blocking; dashed line: without Pauli blocking
[Ma85]; dotted line: Boltzmann statistics.
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The dotted curve shows the result obtained if all phase space distribution functions in eq. (3.22) are
replaced by the classical (Boltzmann) distribution. This substitution leads to a somewhat lower rate of
strangeness production, mainly through partial suppression of gluonic degrees of freedom in absence of
Bose statistics. It is obvious here that the classical momentum distributions are sufficient for a
quantitative estimate of the strangeness equilibration time in the quark-gluon plasma, given the much
larger uncertainties pertaining to the precise values of the relevant parameters m_ and .

3.5. Pre-equilibrium production of J /i particles

We now briefly return to discuss the production of charmed quark-antiquark pairs. While charmed
quarks are probably not a very useful signature of the quark-gluon plasma, because the energies
available in the thermally equilibrated phase space distributions are far too low, charmed quarks may
be readily produced in the pre-equilibrium phase of the collision, and may therefore be an important
background source of high-energy leptons. In fact, in hadronic collisions at high energy the J/i is the
main source of lepton pairs with invariant mass above 3 GeV and not the Drell-Yan process [CP84].
This is so because of the 15% branching ratio for the decay of J/{ into e "¢~ and p." ™.

The diagrams of fig. 3.1 are not appropriate for description of charmonium production because the
quark pair in the final state normally does not carry the appropriate quantum numbers (colour singlet,
spin triplet). Cleymans and Philippe [CP84] have, therefore, considered the higher order diagrams of
fig. 3.9, in which the quantum number balance is achieved by emission of a (soft) gluon in addition to
the J/i. Recalling the discussion of subsections 3.1 and 3.4, the rate of J/{-production by two gluons is:

d3pj J' dp, 2 )4

Apy= 2j(27r)3-2|k|f (zwﬁlkl @rr2E, | ey ap

X 8(ky + ky = py = P8 oL (k) fyke) 2 [y, 71+ £,(p"))

—1 dBPJ d3kl d3k2 32,2
) GoreE | G| g O p A0 £

X 2 |%gg—>lglz . (3.32)
Here we have neglected Pauli blocking effects for charmed quarks, and in the second step also induced

emission of the final state gluon. We also made use of the masslessness of the gluon in the delta
function. The overall factor 1/2 introduced to avoid double counting of gluon pairs is also missing in
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Fig. 3.9. QCD diagrams for charmonium J/{§ production by gluons.
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[CP84]. The invariant matrix element, summed over final and averaged over initial quantum numbers
is:

—Sp'p) S M) (- M)+ ui(u- M)

_ ron
M, =57"a’M; 3.33
2 I gg—»JgI T as J a2 (S . M?)Z(t" M?)Z(u _ M?)Z ’ ( )

where M, is the mass of the J/i{ resonance. The leptonic decay width of the J/{ is used to express the
quark-antiquark wavefunction at the origin. Of course, the strong coupling constant «, must now be
taken at Q° = M’

The rate (3.22) and the momentum spectrum of J /s particles has been calculated by Cleymans et al.
[CP84, CV84] and by Reusch [Re84] on the basis of two different assumptions for the gluon distribution
f(k): (i) for the thermal distribution (3.10a) in the quark-gluon plasma (‘thermal production’), and (ii)
for the unperturbed distribution of gluons in the incoming nucleons (‘direct production’). The latter
assumption corresponds to a picture of the nucleus—nucleus collision as an ensemble of A - A,
independent nucleon-nucleon collisions, where A, are the atomic numbers of the colliding nuclei. Note
that in this latter case the factor 1/2 in eq. (3.32) must be dropped as the two gluons originate from
different sources, and double-counting cannot occur. In fig. 3.10 the results (full line pre-equilibrium,
dashed line equilibrium production rate) are compared showing that direct production of J/{ particles
can be expected to be dominating over the thermal production in most regions of phase space. This
makes charm production rather unattractive as possible signature for the quark-gluon plasma, but
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Fig. 3.10. Charmonium production rate for J/{ production in nucleus-nucleus collisions, divided by product of atomic numbers. Solid line: direct
production (individual nucleon-nucleon collisions) at c.m. energy 22.5 GeV/nucleon. Dashed lines: thermal production at T =250 MeV. The
transverse momentum was taken as 250 MeV/c (after [CP84)).
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indicates that direct J/¢ production may constitute a serious background for lepton pairs of large
invariant mass when such are used to diagnose quark-gluon plasma.

Final remarks

We thus have learned that only the strange quark abundance nearly saturates in a sufficiently excited
quark-gluon plasma with T =200 MeV, ¢ = 1 GeV/fm’ owing to the high gluon density and m_ < T. This
allows strangeness to be an important observable indicating in turn the abundant presence of gluons in
the reaction. The high particle density of strange quarks in plasma assures that when the quark matter
hadronizes some of the numerous s and s quarks may form strangeness clusters such as &, Q, and
particularly important, their antiparticles, and also exotic strange objects, instead of being bound in
kaons only. Consequently, we will emphasize below in our investigation, our expectations about these
multistrange hadrons.

If the plasma state froze out directly into a low density hadron gas, we would expect the formation of
an extraordinarily high strange quark density, with an anonymously large abundance of strange
antibaryons as compared with antinucleons. In a dynamical collision process, initial high hyperon
abundance will be redistributed by the processes of expansion and mixing (see section 7). More
pronounced effects can be foreseen here for multistrange antihyperons due to high absolute strangeness
abundance. The remainder of this report will be devoted to the development of the necessary tools and
a calculation of the expected particle abundances.

4. Conversion from the quark-gluon phase to the hadronic phase (Hadronization of the quark-gluon
plasma)

4.1. Hadronization scenarios

Very little is known about the process of hadron formation from a cooling quark-gluon plasma. It is
not even clear whether hadronization in the context of a nuclear collision proceeds in bulk, by
formation of bubbles of hadronic matter coexisting with the quark-gluon phase or by evaporation of
hadrons from the surface. The latter process, in particular meson emission from the surface of the
plasma, has been considered by several authors [DR83, BGM83, Sch84, MES5]. Detailed calculations
have indicated that it probably is a slower process than has been initially estimated. A crude estimate of
the plasma lifetime subject to pion radiation can be obtained [Mi85] by dividing the total energy
contained in the plasma volume by the energy flux per unit time carried away by a pion blackbody
radiation (m_=0)

cEae _ (730)g0e T TR’L 280
dE /dt  (7%120)g,T*27RL N,

cr R~25R (4.1)

where ¢, =37, g =3 and we have assumed a cylindrical geometry with length L and diameter R. For a
transverse extension R~3fm, which may be reasonable for collisions of heavy nuclei, we find
t,~75fm/c.

Other authors have assumed slow hadronization in bulk, where a mixed phase of quark-gluon plasma
and hadronic matter exists for an extended period of time [KM85, FKR85]. Kapusta and Mekjian,
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taking only longitudinal expansion of the fireball into account, find that the mixed phase exists for a
period

th ~ (gQG/g'rr)tc ~ 12tc (42)

where ¢, is the time it takes for the quark-gluon plasma to cool to the critical temperature for
hadronization. For an initial temperature T, ~ 300 MeV they find ¢, ~ 75 fm/c. Hence we conclude that
surface radiation and bulk transition to a mixed phase are competing processes with roughly equal
timescales. In section 7 we examine the consequences of a simple dynamical picture and find similar
magnitudes for ¢,.

Another possibility is an expansion driven supercooling of the quark-gluon plasma possibly followed
by sudden and explosive transition to a superheated hadronic phase. In recent calculations [KM85] such
supercooling occurs for a rather long period of time (5-50 fm/c¢ depending on the initial temperature).
We note that this is a very much longer time than the characteristic timescale for equilibration processes
in the quark-gluon plasma (7, =0.5fm/c). Since in plasma quarks and antiquarks assemble easily into
hadronlike clusters [CCR84] due to their interaction, it is our opinion that hadronization itself will then
not require a subsequent complete long-range reordering of the phase structure. In our view, this
scenario is therefore unlikely to coexist with particle emission processes and other faster disintegration
paths of the plasma.

4.2. Fragmentation of quarks and gluons

In the following we shall explore the consequences of a schematic fragmentation-recombination
model for hadronization that is an extended and revised version of the combinatoric break-up model of
Biro and Zimanyi [BZ83]. The model may be expected to provide a reasonable description of the
hadronization process when it occurs in bulk without extended supercooling and subsequent reheating.

The break-up model in its initial form was based on the combinatoric distribution of quarks and
antiquarks into mesons and baryons, taking into account all possible configurational degeneracies. The
main reason why this model cannot provide an accurate description of the hadronization process is that
the number of existing particles is reduced by about a factor of four if only recombination is assumed:
each quark-antiquark pair reduces to a single meson, and the hadronization of gluons — which are
almost as abundant as quarks and antiquarks combined - has been neglected. Although the reduction in
the number of particles is a well-known phenomenon in chemical recombination processes, it contradicts
basic laws of statistical physics when applied to a gas of relativistic particles. For a gas of massless
fermions or bosons at zero chemical potential the entropy density is strictly proportional to the number
density of particles, in particular

(S/”)bosons = 4{(4) /£(3) -~ 36 (433)
(5/1) termions = 4 X 7(4)16{(3) ~4.2. (4.3b)

In the presence of a finite chemical potential p the ratio is reduced for fermions, because the
degenerate particles do not carry entropy. However, even for large u =27 the ratio is still approxi-
mately 2.5.

If quarks and antiquarks would simply recombine into mesons, mainly pions, there would be only
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half as many pions afterwards as there were quarks and antiquarks before: N, = %(Nq + N,;) (assuming
p =0, for simplicity here). According to (4.3a) each pion carries 3.6 units of entropy (neglecting the
pion mass: actual entropy per pion is near 4 for m/T = 1), while each quark and antiquark carries 4.2
units of entropy. The entropy ratio between the hadronic (pion) gas and the qurk-gluon gas would
therefore be

N n
using the primordial gluon and quark densities
n,=16(T"/7*){(3) (4.52)
ng+n=123T72a°){(3) (r=0), (4.5b)
ie.
ng=$§(n,+ny). (4.6)

But contrary to eq. (4.4) we know that the total entropy should increase during the phase transition in
view of the second law of thermodynamics. In order to appreciate what went wrong, we recall that the
usual chemical reactions involve nonrelativistic particles, whose entropy per particle increases with
temperature and also possibly on account of internal excitations. The entropy can, therefore, be made
to increase while the number of particles decreases due to recombination. Such an effect is not possible
for relativistic particles. The only practical way in which the factor 4 can be compensated is by allowing
quarks and gluons to fragment into more quark—antiquark pairs before recombining into mesons. An
alternate way would be to blow up the volume occupied by hadronic matter by a large factor, while T
and u remain unchanged, but this would very likely be a highly endothermic process, impossible in the
absence of a heat bath.

The large amount of entropy residing in the quark-gluon plasma can only be disposed of by
generating a sufficiently large number of pions — this has been discussed at length in [GR85] and an
estimate of K*/n" ~0.3-0.4, i.e. 3 times hadronic reaction average and similar to the measured ratios
in hadronic jets [KRa85] has been obtained. A tacit assumption is made here to the effect that all
entropy resides in particle excitations in the plasma as well as in the hadronic phase. Therefore the
possibility that the vacuum state itself may carry nonzero entropy or, more importantly, that there is a
difference in entropy content between the perturbative and the true QCD vacuum is being disregarded.
That this may occur is known e.g. from the electromagnetic Casimir effect where, under suitable
conditions, the vacuum entropy may be a function of the boundary conditions (see e.g. [PMG85]).
There is no indication at present that the modification of the vacuum has an important influence on the
entropy balance, but it would be very interesting to see a more thorough study of this question.

There exists a simple mechanism permitting explicit implementation of the fragmentation process:
recall that a quark—antiquark pair will only in one case out of nine be found in a colour singlet state that
can form a single meson. In the other eight cases the quark-antiquark pair, forming a colour octet
state, must first radiate a gluon in order to be able to recombine into a meson. Similarly, gluons will not,
in general, simply disappear into the vacuum during the hadronization process in view of their colour
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octet nature, but will fragment into a quark—antiquark pair. We shall explore the consequences of this
concept by considering the competition between the three processes (a) qq— m, (b) qq— G, (c)
G- qq, shown diagrammatically in fig. 4.1. We shall denote the reaction rates for the three processes

by A, B, C, respectively.
Then the following rate equations hold:

N,.=(A+B)NN,
N,=CN,~(A+B)NN,

N,=CN,-(A+B)N,N,

N,=—CN,+ BN,N,.

(4.7a)
(4.7b)
(4.7¢)

(4.7d)

Taking the difference between (4.7b) and (4.7¢) we immediately recover the baryon number conser-

vation

Nq - Nq =(
that is

Nq =N+ b/3

where b is the baryon number in plasma.
Adding (4.7c) and (4.7d) we obtain the relation

N;+N,=-ANN,
which may be used to eliminate N from the right hand side of eq. (4.7a) to give

N,=~-(1+ B/IA)N +N,)
that is
N,=—(1+ BIA)(N,+ N,— N (0) - N(0)).

q .,
a::j‘"-we (b)
Gw-“'<: (c)

Fig. 4.1. Quark and gluon fragmentation reactions in hadronising quark-gluon plasma.

(4.8a)

(4.8b)

(4.8¢)

(4.92)

(4.9b)
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When the hadronization process is completed at ¢ = 1, , all antiquarks and gluons have been converted
into mesons (here only pions) neglecting the rare formation of an antibaryon. We find, therefore,

N, (t,) = (1 + B/A)(N4(0) + N,(0)) . (4.10)

However, requiring the condition s, =5, in order to respect the second law of thermodynamics we
expect (cf. eq. (4.4))

No(thd) Z IN(0) + Ny(0)  (p=0). (4.11)

Making use of egs. (4.5) and (4.6) in order to relate N, (0) and N,(0), we obtain from eqs. (4.10) and
(4.11) the condition

BIA=2~1 (u=0). (4.12)

We have thus shown that, in order to conserve entropy during the hadronization process, every gluon
and about one third of the quarks must fragment before coalescing into mesons. Note that if the rates A
and B were solely determined by colour weight factors we would have B =8A. However, due to
dynamical and kinematical reasons (diagram 4.1b involves an additional factor @, and is phase-space
suppressed) the rate B can be expected to be considerably smaller than 8 A. For B/A=12/25 at u =0
the entropy remains conserved in our model of the hadronization process; for higher ratios, the entropy
increases during the phase transition. For future reference we also calculate the total number of
fragmenting (participating) gluons N, in the process represented by the diagrams of fig. 4.1. This
number is defined as the difference between the final pion and the expected pion number if all
primordial antiquarks recombined to form pions:

N,=N,— N,(0)=N,(0) + % (N,(0) + N,(0)) = (1 + % %)Ng(()) . (4.13)

Clearly, Ng > N,(0) and in view of eq. (4.12) the number of participating gluons is at least about twice
as large as the number of primordial gluons when u = 0.

At finite baryochemical potential the necessity for quark fragmentation is reduced, since baryon
formation accounts for a significant fraction of the total entropy of the hadronic gas. On account of
their large mass M, the specific entropy of a baryon exceeds the value (4.3b). In the framework of the
nonrelativistic approximation one finds

(S/n)baryon z4 + (Mb - Iu'b)/ T (414)

where w, =3p, is the baryochemical potential. Although expression (4.14) assumes largest values for
small u,, the net contribution of baryons to the total entropy grows with the baryon density which
grows rapidly with u,, as exp[—(M, — u,)/ T]. Numerical studies show explicitly that the need for
quark fragmentation in order to conserve entropy in the process of phase transition (or transformation)
quickly decreases as u, grows. Thus at high net baryon density p > p, it is sufficient in our model
calculations to allow only for fragmentation of those gluons which are initially present in the plasma
phase, i.e. to put N, = N,.
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4.3. Combinatoric break-up model

Having accounted for entropy conservation and possible entropy generation in the hadronization
process, we have determined which portions of the quarks and antiquarks contained in the mesons and
baryons after the quark-gluon plasma break-up are remnants of the previously existing (constituent)
particles and which are newly produced by fragmentation. When we now study the flavour composition
of the hadrons created in the break-up, we must first determine the flavour content both of the
constituent quarks and antiquarks and of those produced by fragmenting gluons.

The flavour composition of the quark-gluon plasma at equilibrium and the approach to it has been
discussed in detail in the previous sections. We shall assume that the flavour content of the quark
constituents of the plasma are just those obtained from integration of the rate equation up to the time
of break-up. When the break-up occurs gradually via an intermediate mixed phase, then a different
flavour distribution will have to be used at each instant of time according to the evolution equations.
However, we will not consider possible re-dissolution of hadrons into the quark-gluon phase through
the boundary between the two phases. We thus view the break-up process as proceeding in a single
direction: quarks coalesce to form hadrons but not vice versa.

In order to determine the flavour content of the quark—antiquark pairs produced by fragmentation,
further theoretical or experimental information is required. Fortunately, flavour dependence of quark
jet fragmentation has been extensively studied both experimentally and theoretically. Although it is not
entirely clear whether the concepts developed for jet fragmentation are valid in the environment of the
hadronizing quark-gluon plasma, we shall adopt these concepts as a first guideline. In particular, it has
been shown in the context of the flux-tube model [CNN79, GM83] that the relative probability of glue
fragmentation into a quark pair of mass m, is controlled by the parameter

f; = N exp(—m}/x) (4.152)

where k ~1GeV/fm is the QCD string constant. These values have been used in stochastic quark jet
fragmentation models [FF78, AGIS83] and were shown to provide a successful description of the
experimental data. For light quarks we can take m,=m, =0, so that the normalization constant
becomes

N~'=2+exp(—-mi/k) (4.15b)

leading to f, = f, ~0.425, f, ~0.15 for m ~ 170 MeV. We shall not consider fragmentation into heavier
quark flavours.

The number of quark-antiquark pairs of each flavour is now obtained by multiplying the effective
number of fragmenting gluons N,, given by eq. (4.14), with the probability f; for producing the
considered flavour.

The flavour composition of all the quarks and antiquarks that finally become constituents of the
hadrons produced in the break-up of the plasma is now fully determined. At a given time there are for
each flavour, the primary quarks N, or antiquarks N, created by the quarko-chemical reactions, and
there are those generated by glue fragmentation. When we combine these, we obtain the following
expressions from the numbers of quarks and antiquarks of each flavour that effectively contribute to
hadronization:

N,=N,+fN,, N;=N +fnN | (4.16a)
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N.=N.=N,+fN (4.16b)
where
N,=N,+N,, fi=fitis

N, will be taken at the (chemical) equilibrium value, but N, must be determined by integration of the
strangeness rate equations discussed in section 3, should it be different from equilibrium value in a
particular case considered.

After the development of the gluon fragmentation we can now apply the combinatoric break-up
model to determine the flavour composition of the hadrons at the beginning of the evolution of the final
hadronic phase. In the framework of this combinatoric model, the available quarks are distributed
among the final state hadrons by using two constant probabilities: one for meson production and one
for baryon production. The abundance of mesons is assumed to be related to quark abundances as
follows:

N,=aNN,, (4.17a)
N¢=aNN;, Ng=oNN_, (4.17b)
N,=aNN;, (4.17¢)

where a is a recombination constant characterising the formation of mesons. The abundance of baryons
is similarly given by

1 - 1 -
NN=§BN3, Ny =3 BN}, (4.18a)
L shen L gn2n 4.18b
NY=EﬁNqNS’ NY:E-':BN"]N§’ ( )
_ 1 e 1o
NE—'Z’!‘ﬁNqNS, NE—EBN(;NE’ (418C)
_1 s |
N, = 3 BN®, Ng= 3 BN., (4.18d)

and B is the recombination constant characterising the formation of baryons. The various quarks are
distributed among the hadrons subject to the conservation laws for each flavour:

N,=N,+ N +3Ny +2N, + N5, (4.19a)
N;=N,+Ng+3Ng+2N¢+ N, (4.19b)
N,=Ng+N,+ Ny +2Nz +3N,,, (4.19¢)

N;=Ng+N,+Ng+2N:+3N,. (4.19d)
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When eqgs. (4.17) and (4.18) are inserted into these conservation laws, the four equations reduce to two
identical sets of two equations each for the coefficients a and B:

aQ +3p0° =1, (4.20a)
aQ+1p0%=1, (4.20b)

with the abbreviations

Q=N,+N,, Q=N ,+N,. (4.21)
Equation (4.20) leads to:
Q+0 40+ 9)
= = _ > — 4.22
"0 00+0" 3Q+0y+(Q-0) (4229
2 8
= — = = — . 4.22b
TP 00+0 30+ 0y + (00 (229
In view of strangeness conservation we have N, = N, and therefore
Q+Q=N,+N, +2N, (4.23a)
Q-0=N,-N,. (4.23b)

As the pion differs from the other mesons due to its double role as member of the meson multiplet and
as Goldstone boson of chiral symmetry breaking, it might be tempting to replace the expression
N_=aN/N; in eq. (4.17) by an analogous formula with an independent parameter a,:

N,=aNN,.

It turns out, however, that the balance equations (4.19) require a_ = a, otherwise they are inconsistent.

4.4. Hadrons from quark-gluon plasma

We shall now explore the predictions of the recombination-fragmentation model for the chemical
composition of hadronic matter immediately after the hadronization process, if we assume chemical (and
thermal) equilibrium in the quark-gluon phase.

The primordial q, q and s=s abundances are generally assumed to be given by their respective
equilibrium values (we kept the first 5 terms in the series expansion below):

37 (m\' < (=)' (nm,
Ps=Ps=7<?> 2 Kz(T) (4.24a)
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py= LS Z (;2:“1 exp(— nu,/3T) (4.24b)
_ T’ My } 2{ Mo

”q"”q‘?{(ﬁ) o (3T>} (4.240)

Py = Psl(py =Py pg T 1] (4.24d)

which are to be multiplied by the volume to give N, N, N, = N;. To find the active quark numbers
N,, N, N, = N; according to eqgs. (4.16) we also need the density of gluons, i.e.

p, = 16(T°1m%) ¢(3). (4.25)

For the purpose of the numerical study of the importance of fragmentation, it is convenient to write,
instead of eq. (4.16)

N,=N,+f,N,+f(N,+N;), (4.26a)
same equation for light antiquarks and

N,=N;=N,+fN,. (4.26b)
Light quark fragmentation to strange quarks has been neglected here. In this way we can explicitly
explore the consequences of the fragmentation of both gluons and quarks which is not anymore possible

in eq. (4.16). f, has the same meaning as previously, while f; is a quark fragmentation probability
parameter. We denote in fig. 4.2 the curves as:

Curve f fa Comments (fig. 4.2)

(@ 0 0 No fragmentation

(b) 0.85 0 Only gluon fragmentation

(© 0.85/2 172 Reduced gluon fragmentation
and some quark fragmentation

(d) 0 1 Only quark fragmentation

(e) 0.85 1 Fragmentation of quarks and

gluons, quarks fragment stronger
than gluons

f,=0.15 in all instances, i.e. there is a small glue fragmentation
into strange quarks.

In fig. 4.2 the ratio of quark-gluon plasma to hadronic gas of ‘meson per baryon’ is shown along the
critical curve separating the phases, see section 1.4, In the quark-gluon plasma hadronization we have

p (@) =ad g (4.27a)
ps T =(q-q)/3 (4.27b)

while in the hadronic gas
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Fig. 4.2. Mesons per baryon along the assumed critical curve, both (T_,, g,,) are given. Ratio of quark-gluon plasma recombination to hadronic gas
abundances is shown. Curve (a) excludes fragmentation, while (b)—(e) include different degrees of fragmentation (see table in text for fragmentation

parameters).

p"QQ)=p, +p,+ pyt P, + Pt Py (4.282)
puC =py+p,+py + ps + p, — antibaryons . (4.28b)

We see in fig. 4.2 that without fragmentation, considering only recombination, the ‘meson per baryon’
function along the assumed critical curve is smaller in quark-gluon plasma than in hadronic gas phase.
The introduction of fragmentation permits that there are more mesons per baryons in plasma than in
the corresponding hadronic gas phase. It is hard to decide which of the fragmentation curves (b) - (e)
best reflect on the actual physical behaviour of hadronising plasma. With fragmentation permitted, we
find that particle multiplicity from quark-gluon plasma can easily be three times higher than if no
plasma were formed, in agreement with qualitative estimates based on entropy arguments. But the real
strength of our approach is only apparent once strange quarks are involved.

We first consider the degree of clustering of s—s quarks in hadronising plasma along the critical curve,
cf. fig. 4.3. Here we use

p(ss) = ass (4.29a)
p(a5) + p(@s) = a(5q + 45) (4.29b)
and hence (5= §):

p(ss)

_§
p(as) +p@) G+4 (4.290)
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Fig. 4.3. ss clustering: Full lines quark-gluon plasma recombination [MEV]
results. (a) without fragmentation. (b)~(d) including fragmentation Fig. 4.4. Antihyperon abundance along the assumed critical curve, full
(see table in text for choice of parameters). Dashed-dotted are lines recombination from qurk-gluon plasma, (b)-(d) including frag-
hadronic gas equilibrium results. mentation. Dashed-dotted are hadronic gas equilibrium results.

The dashed-dotted line in fig. 4.3 is the hadronic gas result using:

P = py t pse (4.302)
it Psq=Px tPrt Pt Pge (4.30b)

We note that the curve marked (d) is very close to the hadronic gas result. It corresponds to permitted
fragmentation of quarks and gluons. As before (a) has only recombination and it then leads to
prediction of substantial s§ clustering, which is diluted by the fragmentation process. Specifically, the
notation is in figs. 4.3 and 4.4 below:

Curve f fa Comments (figs. 4.3 and 4.4)

(@) 0 0 Only recombination

(b) 0.85 0 Fragmentation of gluons

(¢ 0.85 0.5 Fragmentation of quarks & gluons
(d) 0.85 1 Fragmentation of quarks & gluons,

quarks fragment stronger than gluons

Thus we find quite abundant formation of ss(d, S*) in any scenario of nuclear reaction, with 5-20% of
all strangeness found in these hadronic states. In this regard we agree with earlier suggestions (see Shor
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[Sh85] and references therein) that abundantly produced ¢-mesons are indicative for the plasma state
formation. However, as the presented calculations show, the total ¢ abundance will not exceed the
hadronic gas equilibrium value significantly. Since a ¢-meson is nearly a virtual K-K cluster, we expect
that rapid strangeness exchange reactions on baryons will rapidly re-establish hadronic gas equilibrium
expectations. In that observation we differ significantly from conjectures presented recently [Sh85] that
¢-mesons will escape easily from the fireball due to their small ‘size’. We must allow for resonant
strangeness exchange reactions on baryons, leading to rapid equilibration of the ¢-meson population.

In fig. 4.4 we show the abundance of antihyperons per baryon resulting from the hadronisation,
along the critical curve. We use

oo = £ % (4.31)

and p3°" as in eq. (4.27b). Dashed-dotted is the hadronic gas result. As the fragmentation provides
additional antiquarks we are seeing that fragmentation curves (b), (c), (d), lead to very substantial
abundance of antihyperons nearly two orders of magnitude above the already substantial (normally
unattainable) equilibrium abundance expected in hadronic gas (dashed-dotted curve). We will discuss
the method of computing hadronic gas equilibrium abundance, in detail, further below in section 6 and

), \QGP
(3

T(MeV) T[MeV)
510 18 157 154 148 10 130 460 158 157 154 148 140 130

T 0 100 200 300 400 SO0 600 U g 100 200 300 400 500 600
p, [Mev] o [Mev]

Fig. 4.5. Baryon abundance from quark-gluon recombination without fragmentation along critical curve. Quark-gluon plasma and equilibrium
hadronic gas are shown separately.
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note here, however, that we should not expect that equilibrium abundance is reached at all without the
existence of a plasma source of antihyperons (see section 5).

It is very important to appreciate the result that for each baryon we expect one tenth or more
antihyperons. Even though this number may be depleted by annihilation reactions (see section 7), it is
less depleted than the number of antinucleons and hence the cornerstone of the proposal is established
that Y/N ratio is a characteristic observable of the quark-gluon plasma [Ra81-84].

These considerations make clear that antibaryon production from the quark-gluon plasma cannot be
reliably predicted without proper treatment of entropy conservation through gluon fragmentation. The
suggestion by Greiner and coworkers [HSG84, He85] that antinucleon and even antinuclei formation
could be a signature of the quark-gluon plasma is based on a description which totally neglects this
effect. (We shall return to this point in section 7.3 when we discuss results of a full-scale calculation of
quark-gluon plasma expansion, cooling and hadronization.)

Mainly as a matter of record we show in figs. 4.5 and 4.6 baryon and resp. antibaryon abundance in
the recombination model without fragmentation along the critical line and compare it with the
equilibrium hadronic gas. As we shall study in detail below, antibaryons in hadronic gas must be
expected to always be far below the equilibrium abundance except if quark-gluon plasma is formed.
Notable is the enhancement of {1 abundance even without fragmentation. As seen in fig. 4.4,

TIMev] T[MeV]
1ds,lb[] 158 157 154 148 140 120 1[js1f'>0 158 57 154 148 140 130
—é—ﬁﬂﬁﬁﬂﬁfﬁ—tﬁﬁ—‘jﬂﬂ—ﬁﬂo D 0020530636500 600
 IMev) o [MeV]

Fig. 4.6. Antibaryon abundance from quark-gluon recombination without fragmentation along critical curve. Quark-gluon plasma and equilibrium
hadronic gas are shown separately.
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fragmentation will enhance antibaryon abundance as more antiquarks become disposable to form
antibaryons. Thus we can conclude this section with the observation that a substantial enhancement is
expected for antibaryon abundances arising from the plasma state, even when compared to the
equilibrium abundance of the hadronic gas. It is predicted that from a baryon-rich plasma antihyperons
will be initially produced quite abundantly, at the level of 0.1 per baryon (cf. fig. 4.4). We return to
discuss the evolution of these abundances in expanding fireballs in section 7.

Kampfer et al. [Ka85] have modified the recombination model to account for the available phase
space of the produced hadrons, which depends on the mass m;, of the hadronic state. They find that the
entropy of the hadron gas is maximised, given a fixed number of hadronic constituents, when the
particle numbers obtained from the recombination model (without fragmentation) are multiplied by
Boltzmann factors

fi=exp(=m,/T). (4.32)

The introduction of these weights amounts to the assumption that thermal and chemical equilibrium is
reached instantaneously in the hadron phase, as far as it is allowed by the limitations from the
availability of constituent quarks and antiquarks.

When the factors f; are included, the expected composition of the hadronic gas phase becomes much
closer to that at chemical equilibrium, which will be discussed in section 6 (see fig. 6.2). Figure 4.7
shows the results obtained by Kampfer et al., not accounting for fragmentation processes. We shall test
the validity of the assumption underlying the factors (4.32) in section 7.2. There we treat the temporal
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Fig. 4.7. Unnormalized hadron yields versus quark chemical potential (u = ,/3) at freeze-out, for two different temperatures. The model
assumes the validity of weight factors f, = exp(—m,/T), but no fragmentation (from [Ka85]).
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evolution of the composition of the hadronic gas phase when it is still in equilibrium with the
quark-gluon plasma. We shall find then that relative equilibrium is reached only when the coexistence
period is very long, certainly longer than 20 fm/c. In practical cases, therefore, the introduction of
weight factors like (4.32) must be regarded with considerable doubt.

5. Strange hadrons in hadronic gas — Evolution and formation
5.1. Relevant reactions

We now study the dynamics of both strangeness production and redistribution in the hadronic gas
phase and proceed to compute the timescales involved in strangeness production and exchange
reactions, with particular emphasis put on the case of multiple strangeness carrying antibaryons [KR85].
A scenario will be assumed in which there is no quark-gluon plasma formed. However, the set of
evolution equations we develop for the strange particle evolution, in the spirit of chemical reaction
(kinetic) equations [Me82] is valid under all assumed reaction scenarios as only the initial conditions
need to be modified from case to case. The purpose of this section is to estimate the strange particle
abundances expected if no quark-gluon plasma has been found.

At the stage of the nuclear reaction when a thermally equilibrated fireball has been established, the
standard reaction for strangeness production

N+N->N+Y+K

where Y=A or X, play almost no role, because: (1) its threshold at ~670 MeV energy in the
centre-of-mass frame is higher than in reactions between a pion and a baryon, or between two pions,
(2) the pions are the most abundant particles except perhaps at very high values of u,, (3) the phase
space of two-particle final states is more favourable than that of three-body final states. In consequence,
the following strangeness producing reactions were considered by Koch and Rafelski [KR85]:

m+N->K+Y 7+N->K+Y w+7x->K+K

7+Y->E+K m+Y->K+E (5.1)

m+E—-Q+K m+E—-K+Q.
The common reaction feature of all processes listed under (5.1) is the qq— ss reaction, see fig. 5.1,
where three quarks are spectators, and a qq pair is annihilated and an ss pair is formed. The
experimental value of the OZI-rule forbidden cross section for the reaction m+N—>Y+K (N=
nucleon), is only about 0.1 mb in the energy region of interest. Hence, the strangeness phase space
saturation in HG should be a relatively slow process since the ss forming collision time of a pion with a
nucleon, at p ~3p, = §/fm’ is

7~ (avp)” ' ~ (1072 fm*-3 X 10” fm/s- 4 /fm*) "' ~ 107 .

It is also clear that direct pair production of multiple strangeness carrying (anti-)baryons is strongly
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Fig. 5.1. (a) Typical quark flow diagram for strangeness production reaction: annihilation of a qq pair and production of a s§ pair. Several quark
spectator lines are also indicated. (b) Typical quark flow diagram for strangeness exchange reaction: exchange of the s-quark from the initial
K-meson to the final baryon. Several quark spectator lines are also indicated.

suppressed in nuclear collisions. But these particles may be produced by the following strange quark
exchange reactions:

K+N->Y+m K+N>Y+w
K+Y>E+n K+Y->E+m (5.2)
K+E-Q+7m K+E-Q+m.

All these reactions are ‘exothermic’ as the reaction products are less massive than the particles in the
initial state. Experimentally, one finds for the strangeness exchange reaction K+N—Y + 7 a cross
section roughly ten times larger than the production cross section eq. (5.1). This means that strangeness
is much faster redistributed among the strange particle family than produced. The underlying type of
subprocess for all reactions in eq. (5.2) is depicted in fig. 5.2 where the strange quark from a kaon is
exchanged to the baryon and forms a hyperon Y.

Fast redistribution of strange s-quarks among different hadrons is required for the relative chemical
equilibrium of s-quarks to be reached during the lifetime of the fireball. It is worth mentioning that the
exchange processes often proceed via resonant intermediate states such as K+ N—Y . —Y + w. This
effect is included in the dynamical approach described here in that the resonance cross sections for the
exchange reactions are being used. What is neglected is the possibility of the intermediate resonant
state reacting before decay. This effect along with other effects such as, e.g. a possible increase in
effective hadronic size leading to an increase of the exchange reaction cross sections, is not taken into
account.

As emphasised in eq. (5.2) the generation of strange antibaryons proceeds via antinucleons which,
however, have a very low abundance density in the hadronic phase. This is a consequence of the small
production cross sections for antinucleons in combination with the strength of NN annihilations into
multiple pion final states. Consider e.g. the annihilation reaction: the energies below 1GeV the
p + p— 5w cross section is approximately 100 times larger than the strangeness production cross section
via pions. Thus even though the (unsaturated) phase space density of antinucleons is quite low, it is
essential to consider the following set of annihilation reactions in our calculations in order to account
for the competition of the strangeness exchange, reaction (5.2), with annihilation reactions:
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N+ N—> ~57,
Y+N—>K+~4nr, Y+N->K+~4n,

~ ~ _ (5.3)
+N—-2K+ ~3w, E+N->2K+ ~37,

I

QO+N->3K+~2n, Q+N->3K+~2rw.

So far, in this context, all the annihilation strength has been concentrated in the five-body final state
because this channel is favoured by phase space arguments. Adding a mean thermal energy to the rest
masses of all particles in the final channel, we find to a good approximation the energy of the incoming
baryon-antibaryon channel. It is well known that phase space can effectively suppress low energy
many-body final channels and favours ‘thermal’ production modes [Ha65]. Also annihilation between
two strange baryons has been neglected, because in this case both participants have a suppressed phase
space density. It is known from experimental study of pp annihilation that the multiple pion final state is
often produced via intermediate resonance states, such as ppw, o, etc. The open issue here is again
whether these intermediate resonances could possibly participate in further reactions before they
decay.

As only a selected number of all accessible hadronic states have been included in the above
considerations, one may wonder if the inclusion of the higher-lying hadrons does not essentially alter
the picture. While the number densities of particles in statistical equilibrium get exponentially smaller
with their mass increasing, the number of states also increases exponentially. However, in a short-lived
system such as formed in high energy nuclear collisions tails of mass distributions ‘will hardly be
populated (except perhaps in the case of quark-gluon plasma) and only a limited number of hadronic
resonances will be excited. Including the kinetic equations, all low-lying hadronic states, and using
resonant cross sections seems therefore an entirely appropriate approach. As we have seen, the time
constant for strange hadron production is about 10™'s and hence it is fully consistent to ignore all (even
infinitely many) states of high mass which will not have the slightest chance of being excited in collisions
of individual hadrons during 10™** s duration of the high energy nuclear collision, except in the case of
a transitory formation of quark-gluon plasma which we do not consider in this section.

5.2. Rate equations for the production of strange particles

We now proceed to develop the evolution equations for the densities of particles included in the time
evolution calculations. Note that only the time evolution of the densities and total particle numbers will
be considered and the evolution of momentum distributions has not been investigated.

The reason behind this neglect of a treatment of the momentum space evolution is, of course, the
belief that the rates for approach to a thermal phase space distribution are at least an order of
magnitude larger than those governing chemical equilibration. This is certainly correct for strangeness
production, as the results discussed below indicate. (For reactions among nonstrange hadrons such a
division into chemical and thermal equilibrium may not be possible, since excited hadronic states, e.g.
the p or the A, play a double role as chemical species and as resonances in the interaction S-matrix.)

The momentum integrated time evolution equations take the general form (see appendix A for
explicit form)
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320 = 30 Tn0f -2 (2,0 00 [0, 0) (54
a N B kﬁ

where the index i, k denotes the constituent particles w, N, Y, E etc., and their antiparticles, we do
not distinguish different isospin states, and 8 sums over all reactions producing and resp. depleting the
population of the constituent i. Index k, denotes the particles (typically two) which participate in the
production reaction e, while k, counts the reaction components (excluding i) in the depleting reaction.

The quantity (g, v) is the (thermal) averaged cross section for an initial channel to lead to a specific
final channel including particle i. For two-body initial states, denoting by a, b the two particles, we
have:

[&p er, 1) 1P o,
(ThVa) = (5.5a)
[ap, @, 12 1P

where o7, is the cross section for the a + b— n-bodies, v, the relative velocity of the incoming particles
and f,(P,), f,(P,) for their momentum distributions, which are explicitly renormalized above such that

f d’P, f(P)=1. (5.5b)

For almost all particles in the hadronic gas it is sufficient to use the Boltzmann momentum distribution
function, but for pions further improvement is required.

The value of (ov) at a given temperature depends strongly on the threshold energy required to
make the transition from the initial to the final state. In particular, o is zero unless the energy of the
incoming channel in the centre-of-mass system is greater than the sum of the rest masses of the particles
in the final channel. This is made explicit if we write ¢ in terms of 7T-matrix elements [KB73]:

o= ' [TTaP, o~ mi) 0()) 6*( P, + P, ~ 2 B ) (11710} (5.60)
where
F=2{[s— (m, + m))][s — (m, — m,)*]}'*2m)™"* (5.6b)

and, as usual, s''? is here the total energy in the c.m. system (and not strangeness or entropy).
Instead of calculating the transition probabilities

|M|? = [{H] T|i)]* .

from a suitable reaction model — which is not explicitly feasible at present — measured cross sections
o,,(s) are used in a functional parameterisation of the data in terms of the centre-of-mass energy V3.
With some algebra and in the Boltzmann approximation for the distribution functions it is then possible
to write (ov), eq. (5.5) in the form
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5 | VS otE) [s— (m, 4 mylls — m, — my )] K, (BV9)
(TopUu) = 3 - 7 2 -
m;, my, K,(Bm,) K,(Bm,)

(5.7)

where /s, is the threshold denoting the lowest energy necessary to allow for the reaction in the
centre-of-mass system of the two colliding particles under consideration. One should note that the
average (5.7) is weighted with the factor K,(B8v/5,) which for many reactions is a small number.

Equation (5.7) is derived as follows: for the denominator of (5.5a) one simply finds, using standard
expressions for Boltzmann momentum distributions:

f(P)=exp(—BV P} + m}) (5.82)
[@p sy =amm 87 Ky(Bm) (5.8b)

with B=T"' being the inverse temperature. The nominator of eq. (5.5a) is now recast into the

covariant form:
d’p, d’p,
2E, 2E, f.

(P) £i(P,) 0(6) v, 2E, 2E,
= [ ap, B, P (P 8P - M) 8B - mD) o) AP, (59)

where we have rewritten the expressions to be manifestly covariant

&P,
35 = | eP A -m),
' (5.10)
Uy 2B, 2E, = iy (5) = {[s = (m, + m,)’] [s = (m, — m,"]}'"*.

The covariantly written Boltzmann distributions f,(P,) = exp(—8 - P,) (in c.m. form B, = (1/T,0)) are
additive in the momenta

1P ()= | d'Pe 5%~ P, ~ P,

and P is the total momentum of the incoming particles. Using [ ds 8(P*> —s)=1 we can thus write:
[ &P, @, 1P P 0(6) v, = [ ds a(5) 220 [ a'P e 8~ ). (5.11)
So

The last integral is now nothing more than the relativistic invariant momentum phase space for two
particles and equals
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[ap,atp, 8P - P, = P,y 8,(P2 — m2) (P = mi) = (w12)s ' ML) (5.12)
Recall further:

fd‘*Pe‘”’ (P’ —s)= —2—[;—7\/51(1(;3\/@)_ (5.13)

Inserting eqs. (5.12) and (5.13) in (5.11) and using eq. (5.8) leads, when inserted into eq. (5.5)
straightforwardly to expression (5.7).

Turning back now to the explicit evaluation of the thermal averages {( ov) we note that experimental
information is available for the following reactions

(@) T+t N—=K+Y  ‘strangeness production’
(only charged pions)

(b) K+ N—>Y+m  ‘strangeness exchange’
(only charged kaons)

(c) ptp—5w ‘annihilation’ .

More details about the reaction channels used and cross section parameterization are given in appendix
B. Fortunately, there is for each class of above-mentioned reactions at least one experimental cross
section which can be used to calculate the corresponding thermal averages.

In the case of particular reactions for which no experimental information is available, one can
proceed by assuming that the 7-matrix elements contained in the expressions for the cross sections are
only weakly dependent on the transferred momentum in the considered energy range. This assumption
seems to be valid for low centre-of-mass energies in hadron—hadron reactions [KB73].

We proceed to exploit these assumptions. Taking the nearly constant matrix element out of the
integral in eq. (5.6) we find for the numerator of eq. (5.6a):

I =|M(@a+b— n)| f [1d'P, 8,(P} — m}) 5(P -2 Pi>

:=|M(a + b— n)|> IMSn(P*, m,) (5.14)

which permits us to write for the integral in the numerator of eq. (5.5)
M| f ds IMS2(in) IMSn(out) f d‘Pe PP 8(P*—5).
0

The last integral above being given in eq. (5.13), we obtain:
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|M(a+ b )|’ f; dv3 s IMS2(in) IMSn(out) K, (BV's)
(277)3”—34 mi K,(Bm,) mlz) K,(Bm,) B’

<0.:bvah> = (515)

with |M|*> =|(f|T|i)|* and IMS2(in), IMSn(out) being the two- and n-particle invariant phase space
volumes of the in- and out-going particles as defined by eq. (5.14). In the two-particle case

IMS2 = (w/2)s " {[s — (m, + m,)*][s — (m, — m,)"]}'"*. (5.16a)

In the relativistic limit, all masses can be neglected and

- p n-1 1 2

The relativistic approximation eq. (5.16b) introduces in our studies a tolerable error (~20%) in the
framework of accuracy desired here.

Since the same constant matrix element for each underlying subprocess is used, only the phase space
dependence of the different reactions remains. Thus, for example, the strangeness production cross
section in its thermal average, experimentally given (oX¥v_), may be used to compute

<0'wYUwY> = <‘7nNUnN>P1 5 <UﬁYUﬁY)/<UﬂNUﬂN> (5.17a)

where P, now, per assumption of constant | M|?, only depends on T through its dependence on particle phase
space. Similarly,

<0' zU -) <UwvaN>P2’ P2:<U§(E)v'“ >/<0'nNUnN> (5.17b)

<0.1'r‘rr ‘rr-rr) = <0-1TNv‘n'N>P3 ; (an ‘rr‘rr>/<a-'rva‘rrN> (5'17C)

where all P, depend only on the phase space.

In an analogous manner one obtains the mean thermal cross sections falling under the categories
strangeness exchange’ and ‘annihilation’. The various exchange cross sections are normalized by
(a NUkn) and all annihilation cross sections by ((rpp pp> which we can evaluate from an experiment
as described above, and using the parameterization of cross sections given in appendix B.

The matrix element |M|* for reactions where particles and antiparticles are interchanged are the
same, and the mean thermal cross section of the reverse reactions are given by those of the forward
reactions times the constant which weights the equilibrium densities of the incoming articles by the
outgoing ones. The equilibrium densities of various hadronic gas constituents are discussed in the
following section 6.

We conclude that in this framework there are three typical reaction cross sections, viz. ‘strangeness
production’, ‘strangeness exchange’ and ‘baryon annihilation’. In fig. 5.2 we present the thermally
averaged strangeness formation and exchange cross sections obtained within the above outlined
framework. We note that strangeness exchange reactions leading to muitiple strange clusters are
substantial, 1-3mb at all temperatures. Strangeness formation reactions are dominated by the
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Fig. 5.3. Comparison of the predicted thermally averaged cross sec-
Fig. 5.2. Thermally averaged strangeness formation and exchange tions for the reaction ww— KK, based on the universal matrix ele-
cross sections {ov) /c, based on the assumption of universal invariant ment assumption (solid line) and on the assumption of constant cross
matrix elements. section above threshold (dashed line).

mw— KK reaction, which at 7 =200MeV reaches the strength 0.2 mb. This behaviour confirms the
previously stated assertion that relative chemical equilibrium involving baryons is much easier to
achieve than the absolute saturation of the strange particle phase space.

We note that the cross section of the reaction ww— KK, which is an important channel for
strangeness production in the thermally equilibrated hadronic gas, cannot be measured directly. It can,
however, be derived from the reactions pp— ppww, ppKK with the help of dispersion relations.
Protopopescu et al. [Pr73] have found in this way that the cross section o(ww— KK) is approximately
constant above threshold with a value of o, =3 = 1 mb. In order to check the approximate validity of
our assumption we have compared in fig. 5.3 the results obtained for the thermally averaged cross
section on the basis of the two different model assumptions: the solid line shows the prediction of the
universal matrix element model (cf. fig. 5.2), while the dashed line shows the expected averaged cross
section found by assuming constant cross section threshold. That the two results agree within the
experimental bounds is reassuring.

The calculated average cross sections enter the nonlinear master equations, cf. appendix A, that
describe the evolution of the chemical composition of the hot hadronic matter phase. Before these
equations can be solved, it is necessary to specify the initial values of all the densities at a given time ¢,.
If one is interested in deciding whether multistrange particle abundances tell us whether a quark-gluon
plasma phase has been temporarily produced in a nuclear collision, one must compare scenarios in
which particle abundances are calculated as if the reaction were to proceed either entirely through
hadronic matter or with the intermediate presence of a deconfined quark-gluon phase. In the first case,
one may set the densities of strange particles at ¢, all equal to zero, neglecting direct strangeness
production in the first moments of the collision before thermal equilibrium is reached. In the other case,
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strangeness is first produced in the quark-gluon plasma and then - in its break up — the strange quarks
and antiquarks are built into hadrons. The hadronic reaction then starts with the strangeness abundance
that has been built up in the quark-gluon plasma, and possibly modified in the phase transition back to
hadronic matter. Predictions, therefore, require a specific model of the hadronization process, which we
described in the previous section 4.

5.3. Approach to equilibrium of strangeness abundance in hot hadronic matter

We shall now discuss the solution of the rate equations for the abundances of strange particles in a
thermally, and isospin- but not strangeness, equilibrated hadronic gas. Let the production of strange-
ness commence at a time 7, = 1 X 10~** sec, since after that time the pion- and nucleon densities should
have reached approximately their equilibrium values [Me82]. For the antinucleon density we use the
chemical equilibrium value, being aware of the fact that the assumption of baryochemical equilibrium
for antinucleons is overestimating the possible abundance. This leads to an overestimate of the
abundance of strange antibaryons generated by hadronic interactions in the absence of quark-gluon
plasma. A reduced initial abundance of antinucleons would cause a still longer equilibration time of
strange antibaryons.

The time evolution of the hadronic gas system described above is fixed once the temperature T and
baryon chemical potential u, are prescribed. For simplicity, we assume for the purpose of computing
the characteristic times of equilibration and time evolution of particle abundances that T and u, are
constant over space-time.

Let us begin the discussion with the study of the time evolution of the total strangeness abundance p,
which is calculated according to the quark content:

P =Pt Pg- T Py +2ps +3p, (5.18)

where, as before, p, =p, + p;. Due to exact strangeness conservation, p, is equal to the total
antistrangeness density p.. Similar equations define light quark density or baryon number density.

The results of the calculation are shown in fig. 5.4 for T=160 MeV and two values of the baryon
chemical potential, u, =0 and u, =450 MeV. When looking at both curves, we see that after a typical
break-up time of the hadronic fireball of about 5 x 10’ s, the strangeness abundance predicted for the
hadronic phase is still about a factor of three smaller than its equilibrium value. Individual particles with
higher strangeness content such as {2 (see below) will be still more distant from equilibrium distribution.
One should be aware that complex circumstances of nuclear collisions in which no plasma was formed
may further reduce strangeness abundance and that we have made rather optimistic assumptions about
the equilibration time for the nonstrange antibaryons.

We next turn to the discussion of the multistrange baryons and antibaryons. We find that the density
of anti-omegas as well as omegas is in HG a factor of about 10° lower than their equilibrium values for a
break-up time between 10> and 10_22_5 (see fig. 5.5). This is true for baryon-less as well as for
baryon-rich hadronic gas. Anticascades (E) are suppressed by a factor of about 10° with respect to their
equilibrium values. We emphasize again that in more realistic calculations with expansion and cooling
of the hadronic fireball taken into account, and with a lower initial density of antinucleons than the
equilibrium values taken here, one would end up with an even lower density of strange antibaryons
after a given time . Hence results presented in fig. 5.5 must be strictly considered as upper limits for
plasma-less nuclear collisions.
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For this reason, strange antibaryons appear as the most promising signal for the temporary existence
of a deconfined quark-gluon phase during the course of the collision. As we have already seen in section
4, the quark fragmentation-recombination model of quark gluon plasma leads to a quite substantial
abundance of these rare hadronic states.

6. Strangeness abundance in hadronic gas in chemical equilibrium

We now consider abundances of strange particles in the chemically equilibrated hadronic gas phase.
Although we have just shown that in the hadronic gas phase such a state is probably not attainable, this
exercise is not entirely academic as various pre-equilibrium reactions on quark-gluon plasma seeds may
produce the required strange particle abundance should precritical conditions for the formation of
quark-gluon plasma be achieved. The HG is a very complicated state of hadronic matter due to its
strong particle interactions with the presence of numerous hadronic resonances. But it turns out that
just the postulate of the resonance-dominance of hadron-hadron interactions [Ha65] allows a vast
simplification of the theoretical treatment. When regarding the hadronic gas phase as a mixture of
various noninteracting hadronic resonance gases, all information about the interaction is hidden in the
mass spectrum r(m’, b) which describes the number of hadrons of baryon number b in a mass interval
dm’”.

In the grand canonical description one then finds that the nonstrange hadrons influence the strange
ones by providing a background value of the chemical potentials, and in particular the baryon number
chemical potential u,. This is best seen considering that the total partition function is additive as long as
the various gas fractions interact only via particle resonances. We then have

ln Z — ln Znonstrange + ln Zstrange . (61)

In order to understand strange particle abundances, it is sufficient to consider In Z*"*" at given .
However, the relationship between u, and the baryon density p, is controlled almost completely by the
nonstrange particles and hence can not be determined by the considerations presented here. However
M, like T, is a thermodynamical variable accessible to direct measurement (see subsection 6.3) while p,
is difficult to measure directly.

6.1. Grand canonical treatment

Relatively low density of strange particles permits us to consider the grand canonical partition
function in the Boltzmann approximation:

In Z°(V, T; A) =2 Z, [T (A (6.2)
Y
where the one-particle Boltzmann partition functions

Z(V, T)=g(VT’12n*) (m;/T)* K,(m,/T) (6.3)
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of the particle species j with the corresponding degeneracy factor g and mass m appear. The fugacities A,
as introduced in eq. (6.2) control the quantum number content of the particle species j. We have: A
which controls the strange quark content, A, which controls the baryon number content and occasional-
ly we also consider a A, associated with the electric charge. The power n;; is the number of charges ‘i’ in
the hadron ‘. The upper index (/) indicates that we are looking at the fugacity associated with the
given hadron j.

It is useful to record the explicit form of eq. (6.2) when only single strange hadrons are considered
and isospin breaking effects are ignored:

In Z* 7NV, Tt Ay, ) = Z(AJA + AJA) + Zy(A AL+ 412 %) (6.4)
where
AL= Ay (6.5)

according to the fact that three light quarks make up a baryon and
Z,=(VT127")2W(x,) + 3W(xy)) . (6.6)

Here it is convenient to write x, = M,/T and use the function

W(x)=x Ky ()—>2. (6.7
Similarly
Z=(VT27°) 2W(x) . (6.8)

Using the partition function (6.2), we can calculate the mean strangeness by evaluating

9

S=(n,—ng)=A, .

InZ(V, T, A, ...) (6.9)
which is the difference between strange and antistrange components. This expression must be equal to
zero since strangeness is a conserved quantum number with respect to the strong interactions. This
introduces an important constraint, e.g. it fixes A, in terms of A, (and A, when considered). Let us
ignore, in the first instance the multistrange particles. Then inserting eq. (6.4) in eq. (6.9) we find

Z, + /\bIZY]”Z
= =| 50— 6.10
Y= AJA, [Z.(HbZY (6.10)
We record a strong dependence of y on the baryon number. Recall that

A, =exp(u/T), (6.11)

and hence the term with A, ' will tend to zero as u, gets larger and the term with A, will dominate the
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expression for y. As a consequence the particles with fugacity A, (i.e. gs, qgs) are slightly suppressed.
Conversely, the abundance of particles which contain the strange antiquark (gs, qqs) will be favoured
by the factor y ' due to the presence of finite nuclear matter density. Further we note that g5 (K", K,)
kaons are the dominant carriers of s-quarks, while qqs hyperon states are main carriers of s-quarks at
finite baryon density. We further note that in eq. (6.10) A,#1, which is the case in quark-gluon
plasma - it is for this reason that when quark-gluon plasma dissociates a nonequilibrium density of
strange antibaryons emerges. Strange antibaryons are normally suppressed in equilibrated hadronic gas
according to eq. (6.10).

In order to obtain the mean equilibrium abundance of different strange particles, we introduce for
each species its own dummy fugacity (which we subsequently will set equal to unity). Recall that the
different strange particles need to reach relative chemical equilibrium for the calculation of ratio of
abundances to be valid. Remember, however, that strange antibaryons will not follow this assumption
while strange mesons and baryons, in general, approach the relative chemical equilibrium expediently.

We further observe that even assuming absolute chemical equilibrium in the gas phase we found in
section 4, in comparison, five times more strange hadrons from fragmentation-recombination of the
plasma in comparable thermodynamic conditions. The baryon density in the hadronic phase is,
however, lower if a first order phase transition is encountered. Due to this effect, the total equilibrium
strangeness abundance would be nearly equal in both phases, as emphasized correctly by Redlich
[Re85]. However, we note that the approach to equilibrium will be even further delayed in the thinner
gas phase assumed by Redlich than it is otherwise, resulting in effectively still smaller expected
strangeness abundance in the hadronic gas phase. No matter how one looks at it, all strangeness is
always produced in QGP phase simply because the density of gluons is so extraordinarily enhanced
there, due to their colour degeneracy factor 8 and their masslessness.

In fig. 6.1(a,b,c) we have shown three examples, namely, the ratios of antihyperons to hyperons. The
explicit expressions for these ratios turn out to be very simple:

(ni)/{ny) =AA7 =22y (6.12a)
(ng)/{nz)=aA =2,y (6.12b)
(na)/{ng) =A =a"y". (6.120)

Note in passing that the actual value of A, is slightly different from A, as defined in eq. (6.10) when
multiply strange hadrons are also counted in the strangeness conservation relation eq. (6.9). We
observe in fig. 6.1c that the enhancement of antistrangeness due to the factor y ~° is visible in the ratio
Q/Q which approaches unity for large temperatures over the whole M,-region. Such a behaviour of the
equilibrium abundances is not reflecting on the abundances developing in actual nuclear collision, since
hadronic gas reactions cannot excite equilibrium density in ) as discussed at length in section 5. The
abundance of Q can be significant only if quark-gluon plasma has been formed.

In fig. 6.1a the expected suppression of A at finite baryochemical potential because of the strangeness
chemistry is recorded. This ratio exhibits both a strong temperature and u, dependence. The
remarkably small upper limit abundance of A, i.e. 107* A of the A-abundance in hadronic gas phase,
under conditions likely to be reached in an experiment at the end of the hadronization phase
(T ~120-180 MeV, u, ~(4-6)T) is characteristic of the nature of the hot hadronic matter phase. In
section 4 we have obtained much higher estimates A /A ratio initially fed by the quark-gluon plasma into
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Fig. 6.1. Strange baryon/antibaryon particle ratios in hadronic gas equilibrium abundance ratio of A/A in dependence on baryochemical potential
i, at fixed temperature T: (a) A/A; (b) E/E; (c) /Q.

the hadronic phase. The actual final abundance of antihyperons expected from a transient quark-gluon
plasma phase must be computed in an off-equilibrium approach by taking the initial values obtained in
section 4 and using the methods of section 5, coupled with a dynamical model, to evolve the densities
until essentially all particle—particle interactions disappear. Here presented equilibrium ratios are to be
taken as upper limits in the instance that no quark-gluon plasma has been formed.
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Fig. 6.2. Particle densities in equilibrated hadronic gas at 7= 160 MeV, as a function of baryochemical potential g,.

Figure 6.2 describes in a most complete way the strange particle contents of the hadronic gas at
T=160MeV as a function of the baryochemical potential: The meson (left) and baryon—antibaryon
densities (right hand side) are presented. We include (dashed) nonstrange mesons and also N and A
baryons. The total energy density of the particles shown is displayed in parallel to the u, axis at the
bottom, while the baryon density is displayed horizontally on the top. We also show the energy per
baryon (left) and the fraction of the energy in the baryons (right).

First we note that T/u, =1, i.e. T/p, = 3,/ T =3, our favourite value in the foregoing discussion
corresponds to an energy density E; =1GeV/fm’, energy per baryon o,/b= E,/(B—B)=1.9GeV
and baryon density p, — 5p,, the latter being completely dominated by py and p,. At this value of u, we
clearly see suppression of strange antibaryons against strange baryons. Recall this equilibrium result is
not confirmed by our nonequilibrium and phase transition calculations. More details about the relation
between energies and particle densities at 7= 160 MeV as a function of u, is given in fig. 6.3. It cannot
be emphasized often enough that all quantities assume values accessible to nuclear collisions of
50 GeV/nucl(Lab) when p,, ~450-600 MeV.
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gas. Only particles shown in fig. 6.2 contribute to quantities displayed here.

6.2. State of chemical equilibration in hadron—nucleus reactions

We have, by now, largely settled the theoretical framework for analysing strange particle abundances
in both possible phases of hadronic matter. We have shown that consideration of the dynamical
approach of the abundance to the maximum available phase space density is an essential cornerstone of
the study of both phases of hadronic matter. Our intention now is to show that hadron-nucleus
collisions at high centre-of-mass energies show a degree of chemical equilibration among strange
particles which cannot be achieved in a phase in which the process of chemical equilibration is based on
reactions between individual hadrons only. While the intermediate state formed may not have the
character of a plasma, it most certainly involves the subnuclear degrees of freedom.

Let us first consider certain p—p and p—nucleus experiments where the data were analysed in the
framework of a chemical equilibrium hadronic gas model [GKR84]. Since we want to describe different
particle multiplicities, including the rapidity distribution of the baryon number, it is necessary to find for
the baryochemical potential y,, controlling the baryon number, a dynamical distribution interpolating
between the central and projectile rapidity regions. The linear relationship

x| my = (6.13)

has been proposed by [GKR84] with x being the usual Feynman variable, viz. the fraction of the
maximal momentum possible a particle carries when detected. m, =940 MeV is the nucleon mass.
The physics underlying this approach is the hypothesis that the valence quarks of one nucleon
penetrate the target rather freely without much interaction, while much of the energy and momentum
in the gluon field remains in the central reaction region. This region, therefore, should exhibit smaller
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net baryon and charge number whereas in the maximum rapidity region we would expect to see the
quantum numbers of the incoming particles, that is the baryon number is found mainly in the projectile
(and target) fragmentation regions. A dynamical relation between x and u, fulfilling these requirements
is given by eq. (6.13) — for x = 1 (projectile/target region) we have u, — m and for x =0 (central
region) we have u, =0. Note that eq. (6.13) is not applying to nucleus—nucleus collisions at energies
considered here, in which we expect that quark currents are stopped in the central region as well (see
section 1).

The approach outlined in section 6.1 is applied incorporating, aside from baryon number (b) and
strangeness (S) the conservation of the electric charge (Q). Charge conservation is necessary in the
light of experimental data when needing to distinguish up- and down-quarks: the proton, used as a
projectile, has twice as high u-quark than d-quark abundance.

For the singly strange particles we have:

(nge)/{ng-) = AgA. A, (6.14a)
<n,‘\+"50>/(",\+”20>=)\;4)‘;2 (6.14b)
(ng=)/{ng=)=A"A°A5" . (6.14c)

A by itself is, by virtue of strangeness conservation, a function of A, and A, (compare eq. (6.10)). The
measured 7'/m~ ratio may be first used in order to fix A, which describes the up—down quark
asymmetry. We have:

mim =2 (6.15)
Indeed, the experimental data for (pp reactions) can be satisfactorily represented by the functional form

Ag=7'/m =exp(2x):  pp reactions, (6.16)

in the region 0.2 <x =0.7.
The assumption (6.13) implies, in turn

AL =exp(2u,/ T) = exp(2xm,/ T) (6.17)
[ = exp(10x) ; T=175MeV:  pp reactions
=exp(12.5x) ; T=150MeV:  pN reactions

where, as indicated, a range of the temperature parameter T was taken above and below the value of
160 MeV. A similar change between pp and pN reactions in A, is required and we will also use:

AL =exp(2.2x):  pN reactions . (6.18)

In fig. 6.4 we compare the so calculated and the measured strange particle ratios [(a) K*/K™ in p-p
collisions;: (b) K*/K™ in p-N collisions; (c) A/A in p-N collisions and (d) pm*/pw”~ in p-N collisions].
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Fig. 6.4. Particle abundance ratios as function of x in pp and pN collisions. Drawn lines are our calculated results with 7" =175 MeV and
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Note in (d) that the double ratio (p/p)/(mw /="), which is equal to A,” and therefore provides an
independent consistency check for the assumed important relation (6.13), gives a satisfactory agreement
with data (fig. 6.4d). Taking any other power of x in eq. (6.13) would destroy the visible exponential
behaviour of this double ratio as a function of x.

Consider now the measured multistrange antiparticle to particle ratios [GKR84]. The comparison
with data of Bourqin et al. [Bo79, Bo80] is shown in fig. 6.5 where the predictions are indicated by full
circles. As a function of strangeness (S =1, 2, 3), the data are relatively well described by relative
abundances obtained in the framework of the hadronic gas model.

At first sight it is a surprising fact that the absolute experimental mean multiplicities of antistrange
hyperons are compatible with the abundances we obtain from hadronic gas in chemical equilibrium at a
temperature of 150 MeV and a volume of about 1fm’, when further assuming that these particles are
mainly produced in the central region of rapidity where u, =0. From our ‘approach to equilibrium’
analysis in the previous section, we know that often less than 107 of the strange antibaryonic phase
space abundance is excited by reactions in the hadron gas phase. Further, we note that the ()
abundance seen would require an active gas volume of ~10°fm® in order to be generated in the
hadronic gas phase during the reaction time 10~ s. Thus, we must conclude that the relatively high
abundance of antistrange hyperons observed has not been produced by hadronic gas reactions but that
it must originate from reactions between quarks and gluons in the perturbative vacuum, with the
structure of the intermediate state being similar to a quark-gluon plasma. This argument would not be
consistent, though, if particle spectra did not just happen to have transverse momentum distributions
corresponding to a high degree of thermalization, and in particular, a temperature of about 160 MeV
[Ha65, Ha68]. Further discussion of experimental facts suggesting this viewpoint is given by Koch and
Rafelski [KRa85].

We now consider briefly the available sparse data on strange particle production in nucleus—nucleus
collisions at several GeV/A lab kinetic energy [Ha81, Sch82, Sh82, An84]. These data cannot be
described by hadronic gas phase space saturated particle abundances [ASS81, As81, Ko81, AS81,
ABS84, RK80, Ra81, Zv84, 7584, CL84, BI84, Bi82, MuK83, K083, Ko84]. This implies that at these
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Fig. 6.6. Abundance of charged pions and kaons in pp, aa, pa and dd reactions at the CERN intersecting storage rings involving centre-of-mass
energies Vs =31.5 and 44 GeV per nucleon. The w/K ratio of 11 percent is nearly constant. (From [Ak85].)

relatively low nuclear energies strange particle production is still dominated by reaction processes
between individual hadrons, which therefore lead to particle abundances far below strange phase space
saturation for hadronic gas models. Even at the much higher energies available at the ISR at CERN,
light-ion reactions (dd, aa) have been shown to exhibit no spectacular increase in kaon versus pion
production ([Ak85], see fig. 6.6). This indicates that quark matter has not been formed which would
have enhanced the rate of strangeness abundance formation. Experiments with heavier projectiles have
to show whether this is due to the smallness of the employed nuclei (d, a) or due to a still insufficiently
high bombarding energy. However, even in the reactions mentioned above it is found that abundance
ratios of strange particles obey the laws of the relative chemical equilibrium — that is strangeness
generated is rapidly redistributed among the final state hadrons [KRG83]. A method for statistical
description of relative chemical equilibrium is discussed in the following subsection.

In this subsection we have presented a number of arguments demonstrating the presence of the
action of QCD colour degrees of freedom in various hadron-hadron as well as hadron-nucleus
collisions [KRa85]. In particular, the question of why the reaction products display such a high degree
of thermal and chemical equilibration could be qualitatively and plausibly explained by this hypothesis,
founding a working base for statistical models of hadronic reactions.

6.3. Relative chemical equilibrium

It is possible to modify the grand canonical treatment of section 6.1 slightly to allow for relative
equilibrium rather than for absolute chemical equilibrium only. As long as effects from weak
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interactions can be neglected, i.e. for time scales much shorter than 1075, the total strangeness must
vanish. In the absence of absolute chemical equilibrium, the fugacities A, and A; that control the
hadronic content on strange quarks and antiquarks, respectively, are no longer related through the
condition A, = A_'. Rather, one has to assume

A=, (6.19)
with the new parameter f controlling the deviation from absolute chemical equilibrium, which

corresponds to the value f=1.
The partition function in the Boltzmann approximation is:

In Z° = Z(AA] + A A) + ZZy(AAL + AN 2+ Za(AA + A0A ) + Zo(A) + ZoA ),
(6.20)

where Z; are the one-particle functions, eq. (6.3). The average total number of strange quarks
contained in the hadrons is

g )
<ns> = /"S a—/\s ln 7z’ = Z}(As/\ql + ZYAS/\é + ZZEAqu + 3ZQA:: + Zchs/\g s (6.21a)

whereas the total number of strange antiquarks is given by

a s - -
(ng) =X - Z° = Zy A + ZAA P +2Z NN H3Z0 00+ Z A A (6.21b)

Since we now have two independent parameters, A, and A, we can fix (n_) and (n.) independently. As
discussed above, the condition of vanishing net strangeness has to be imposed

0=(n) = (ng) = Z (AA]" = AA) + Zy(A A7 = A A7) +2Zo (AN, = XA ) +3Z (A2 - 1))

(6.22)

Considering the singly strange hadrons which in most instances dominate the strangeness abundance,
we find the condition

MNZ+NZy) Lt AZ,

=AA ~ - = , 6.23
= A R(Ze+A°Zy) | Zit ZylA, (6.23)
where y = A /A, and A, = )lfl as before, cf. eqs. (6.5) and (6.10).
Ratios of particle numbers are now easily deduced from eqs. (6.21), e.g.
(na)/{ny) = XA IAAL = fy A0 (6.24a)

(ng)/{nz)= XA AN, =Py 'A%, ete (6.24b)
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The relations are obtained from those valid at absolute chemical equilibrium egs. (6.12), by the simple
substitution y > — fy From eq. (6.23), however, it is obvious that fy ~* numerically has the same
value as previously y °, eq. (6.10), which should now be denoted Yeq- Hence the ratios of particles are
the same as found in absolute equilibrium even though this state has not been reached. Thus, the same
‘relative’ chemical equilibrium is fully justified.

We now proceed to fix the value of A, i.e. y. Ignoring again the influence of multistrange hadrons,
we find from eq. (6.21a)

(n) ~y(Zg + M Zy) . (6.25)

Given some arbitrary value of (n_), we can use eq. (6.25) to fix y.
This then allows us to compute the value of f. Inserting eq. (6.25) into (6.23) we find

(n)* (n,)
= T 2y Ze t 1Zy) igufwi (6.26)

where the last equality follows from the consideration of the equilibrium limit f— 1. We further note
that according to eq. (6.23)

Y =f”2yeq (6.27)

where, as mentioned, y,, is as given by eq. (6.10). As we have already shown, the ratios of strange
particle abundances do not change in relative chemical equilibrium but are the same as in absolute
chemical equilibrium. Equation (6.26) further shows that the absolute abundances of strange hadrons
are proportional to the actual total abundance (n ). In detail consider for example the hyperon
abundance:

<”Y> = Z\()‘s)‘2 = ZyYA,

7%2— Zyhy Yy = {n eq>> (ns9y . (6.28)

At this point it is worthwhile to appreciate that this behaviour is borne out by results shown in fig. 4.5.
There is clearly a visible difference by a factor of two between strange baryon abundances in
(equilibrated) hadronic gas (full lines) and the recombination abundances from plasma (dashed lines).
However, our simple approach does not account for the more complex behaviour of strange anti-
baryons, where at high baryon density orders of magnitude differences arise, cf. figs. 4.4 and 4.6.
Recall again that equilibrated hadronic gas is shown for comparison — its effective appearance is a signal
for quark-gluon plasma or precritical phenomena [KRa85].

6.4. Measurement of the baryochemical potential
As we have seen in the previous two subsections, the baryochemical potential is of similar physical

importance as the temperature of the hot hadronic matter — it is hence of great interest to explore all
the possible avenues which would permit its measurement. Perhaps the simplest and most sensitive
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approach proposed by Koch et al. [KRG83] is to study the distribution of s-quarks among mesons and
baryons. The existence of K-N resonances assures that this process is a rapid one and that whatever
s-quark abundance is present will be shared according to the laws of relative chemical equilibrium.
Naturally, as is the case with the measurement of temperature by observation of shapes of particle
spectra, we will nearly always measure a ‘freeze out’ chemical potential, that is, some effective average
over the last stages of the evolution of the hadronic fireball.

A first promising case is the ratio of K to K abundances: both can be observed in the same
expenmental set up. K" (together with K°) is the major carrier of s-quarks, while K~ (together with
K’ ) contains only a fraction of the s-abundance, the balance being with the hyperons. Thus the K™
provides the normalisation for the K~ abundance which depends sensitively on the baryon chemical
balance. In fig. 6.7 this ratio is shown as follows from the simple relationship

ngeIng-=AA7, (6.29)

using A, given by eq. (6.10) and neglecting the effect of electric charge discussed in eq. (6.14). Since K”
will have, in general, fewer interactions than the K™, we expect that an important correction must be
applied in actual circumstances in order to account for effective cooling of K~ due to expansion of the
hadronic gas.

The ratio of abundance of K™ to A seems to be the next logical case to study as both K™ and A will
suffer the expansion cooling.

One should notice, however, that 3’ will decay quite rapidly into A and will consequently
contaminate the measurements — it will be difficult to judge how many A’s really are 3’, the latter one
originating in part also from charge exchange reactions of 3 *. Further A’s arise from decay of multiply
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strange baryons when such decay occur sufficiently rapidly in order for the decay cascade to be hidden
in the reaction vertex. However, we can presume that the A-abundance will dominate these effects
which can be corrected for in an experimental situation. Hence, we show in fig. 6.8 the contours for the
K /A ratio expected according to the simple phase space measure (see subsection 6.1),

ng-Iny = AP0 Wix )/ W(x,) (6.30)

and A as given by eq. (6.10) may be used again here.
The temperature range considered is below 160 MeV, since both K™ and A will strongly interact in
the expansion phase of the hadronic gas and be relatively ‘cold’ at the freeze-out point.

7. Strangeness evolution in an expanding fireball
7.1. Fireball scenario

The hadronic fireball formed in a nucleus—-nucleus collision at high energy is not a static object, but
expands under the influence of its internal pressure subject to its inertia. We now consider the equation
of motion for strangeness carrying particles in such an environment. There are three possible phases
that must be accounted for: (i) a pure quark-gluon plasma phase, (ii) a pure hadronic phase, and (iii) a
mixed phase containing quark-gluon matter and hadronic matter side by side. We shall commence with
the discussion of the strangeness evolution in the mixed (coexistence) phase, since the other two cases
follow immediately in the appropriate limit.

Following Kapusta and Mekjian [KM85] we consider a volume element V, of which a fraction
fo=Vo/V is made up of quark matter, while the remaining fraction f,; = V|,/V consists of hadronic
matter, i.e.:

V=V +Vy, fotfu=1. (7.1)
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The volume V expands in time

dV= (:l—‘t/ de=dV, +dV. (7.2)
There are two mechanisms that lead to a change in volume occupied by the two phases. The volume
may change due to a hydrodynamical expansion at nearly constant entropy. Alternatively the volumes
can change due to mutual exchange of particles, i.e. entropy, between the two phases. This latter
process is associated with the quark-gluon fragmentation process we have discussed in section 4.

We shall assume that in the expansion stage phase conversion proceeds only from the plasma phase
into the hadronic phase but not vice versa, so that the plasma volume monotonically decreases during
the existence of a mixed phase. Simultaneously, the volume of the hadronic phase continuously
increases, due to the accumulation of hadronic particles as well as due to (hydrodynamical) volume
expansion.

Thus the change in volume per time interval dt reads

dV,=dVe —dV?,  dV, =dV +dv?, (7.3)

where the dVj, , denote volume expansion (at fixed entropy) while dV'® stands for the volume change
due to particle exchange (indices ‘e’ stand for expansion and ‘p’ for particle exchange). Before and after
the hadronization process we have de = 0; during the existence of the mixed phase, we put de) =0, as
stated above. We focus our attention now on the time evolution of the mixed phase. We must first
establish a relation between dV, and dV},. This is provided by the assumption that there is no significant
production of entropy, i.e. that the increase in entropy in the hadronic phase dS,; is balanced by the
loss of entropy from the quark-gluon plasma dS, due to particle loss:

dS,=s,dV, = =5, dV,, = —dSy, , 7.4
e~ %e%o H4h H

where s, and sy, are the associated entropy densities. In the non-interacting quark-gluon plasma we
have

5o =% 7T + 2, /3)°T (7.5)

where u, is as usual the baryon chemical potential. The entropy density in the hadronic phase is
approximately

B oo ) al) 2| () Cemcamy 0

where m, is the nucleon mass. As the Boltzmann approximation has been used to derive eq. (7.6), we
must require that (u, —my) <T for its validity.

Let us here, in the first consideration, neglect the influence of a nonvanishing baryon chemical potential u,
and of the baryonic contribution to s,,. Equation (7.4) then describes the increase in hadronic volume
due to gradual conversion of quark-gluon plasma into a pion gas as according to the simple relation:

AVy = —(so/sy) AV, = —% dV,, . (7.7)
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This means that in the end after the conversion of the quark-gluon plasma to pionic gas, the latter must
occupy a volume that is at about ten times larger in order to conserve entropy! This increase in volume
results in a dilution of strange quarks among light quarks, which is somewhat mitigated by the creation
of additional strange quark pairs in the fragmentation process discussed in section 4.2. The dilution
effect was observed by Redlich [Re85] in comparing equilibrium strangeness abundancies in the
quark-gluon and hadronic gas phases. Equating the total baryon number in the two phases (at equal
baryochemical potential u, ) he calculated the ratio of the number of strange particles, which is shown
in fig. 7.1 as a function of w, at T = 160 MeV. At u, = 0 the ratio of volumes is V};:V, =6.5.

As is evident from fig. 7.1, the volume dilution leads to a rather small value of the enhancement of
strangeness in the quark-gluon plasma. The factor 1.5+(.2 would render experimental use of
strangeness as signal for formation of a deconfined state useless, if chemical equilibrium concentration
of strange particles were really reached in nuclear reactions proceeding solely through the hadronic gas
phase. However, as shown in section 5, in the kinetic treatment of the evolution of a hot hadronic gas,
strangeness equilibrium densities are missed by a large factor. As a consequence, the dynamical
enhancement factor for strangeness production in the quark-gluon plasma phase is much larger than
that shown in fig. 7.1. According to the results depicted in fig. 5.4, the additional dynamical
enhancement amounts to a factor 5 or more for a lifetime of the hadronic fireball of 10 fm/c.

We now proceed to explore the consequences of a hadronization scenario in which a large volume
jump occurs. Since the phase transition and volume growth is, in reality, accomplished gradually
through participation of numerous intermediate hadronic states, we will turn further below to consider,
in addition to quark recombination, the quark and gluon fragmentation mechanism introduced in
section 4. The latter effect is required in order to generate the additional hadronic particles that take up
the entropy content of the quark-gluon plasma and fill the larger hadronic volume.

We are mainly interested in the fate of strange quarks. The number of strange quarks in the plasma
phase changes because of two reasons: on the one hand, strangeness producing reactions make it
approach the equilibrium abundance according to the law:

dN? = A [1 - (N/NSIY Vo dt =RV dt, (7.8)

20 T T T T T T

NS T
N

T

T =160 MeV
Mg - 150 MeV
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Fig. 7.1. Ratio of the number of strange particles in quark-gluon plasma and hadronic gas containing the same net baryon number. The ratio is
shown as a function of g, (after [Re85]).
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where A is the rate constant (3.10) and R, includes the effective reduction factor [1—(N/N 7).
Furthermore the number of strange quarks in the plasma phase changes due to their conversion into
hadrons. We shall assume the loss of strangeness, dN?, is proportional to the loss of volume dV®,

i.e.

dN? = (N/V,)dV" = N,d(In V), (7.9)

where we have assumed that dV®? =dV,, in the mixed plasma-hadron phase. The total change in
strangeness content in a time interval d¢ is therefore

dN, =dN2 +dNP =R V,dr+ N, d(In V). (7.10)
Dividing by V, d¢, and with

N, =pV, (7.11)
where p, is the density of strange quarks in the plasma phase, we find:

d 1 d

7.12
TR a N psdt(an) R,. (7.12)

Equation (7.12) emphasises that there is no dilution term in the QGP strangeness density evolution
equation because the density of strange quarks is assumed to change only due to particle reactions, but
not due to hydrodynamical expansion of the volume occupied by the plasma phase. This fact is
contained implicitly in our assumption dV'¢, =0 for the mixed phase.

Next, we consider the change in the number of strange particles, e.g. of antikaons K~ or K°, in the
hadronic phase. It can change either through hadronic reactions

dNR = Ag[1 - (NgINZY ]V dt=Rg V, dt, (7.13)
or due to conversion of strange quarks from plasma into antikaons:
dNg =—pgdN?=—pg N, d(InV,) . (7.14)
Here p; describes the probability for a hadronizing strange quark to end up in an antikaon rather than
other hadron.
In the spirit of eq. (4.17b) we have
~dN%/dN? = pg = aN N/N, (7.15)

understanding implicitly that the effective number of quarks, as determined by eqs. (4.16), should be
used on the right hand side. We thus obtain

dNg =-~a NN, d(InV,), (7.16)

where the constant o must be taken from eq. (4.22a).
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We can, finally, again replace particle numbers by particle densities,
Ne=p Vi 7-17)

and we find, combining egs. (7.13) and (7.14):

dt v,

dpg 1(dN,‘§ dNPK) d B 1,
@ v @ Ta ) P InV)=RemaNgo g g, pKdt(anH) (7.18)

It is now convenient to express dV,, by dV}, with the help of eq. (7.7)

d (8,55 )
@ =Rg +aN pS d (an) pKdt(an) Ry + oqupssQ Pr dt(lnv“)'

(7.19)

The right hand side contains the reaction term, a feeding term reflecting on expressing creation of new
kaons from the quark phase, and the dilution term due to expansion of the hadronic phase. Whereas
loss term and dilution term exactly cancelled in eq. (7.12), this is not so here for the feeding and
dilution terms.

For the sake of completeness, we record the evolution equation for the pure phases, which do not
contain exchange terms. Then one has:

d
S P =R—p 5 (InV) (7.20)

for the pure quark-gluon phase, and

d d
q Px=Re—pi g, (nV) (7.21)

for the pure hadronic phase. The index ‘Q’ or ‘H’ is not needed for the volume then, since either
V=V, or V=V,,, depending on the phase.

We must now specify the initial conditions for the hadron densities in the mixed phase. Concentrat-
ing on antikaons, in the first moment of the mixed phase N = V;; =0, so that the initial value for pg is
not obvious. However, if we go back to egs. (7.13) and (7.16), we find in the limit V;;—0:
dN3/dt=0,

- - - S
dNf=—a N N, d(InV,)=a N, p, i dv,, (7.22)
and therefore initially

pr(t=0)=a N, p syls, - (7.23)

The entropy ratio factor s,,/s, ~1/10 describes the dilution of strange particles in the transition from
quark-gluon plasma to hadronic gas that was discussed following eq. (7.7). When the time-evolution of
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the fireball volume V is given by appropriate hydrodynamical equations, or by other assumptions, e.g.
as discussed in section 1.5, egs. (7.12), (7.19)-(7.21) and (7.23) fully determine the variation of strange
particle densities with time.

7.2. Strange particle abundances: Baryon-rich plasma

We can now proceed to compute the strange particle abundances emerging from nuclear collisions.
For t <1, eq. (7.20) must be used with the reaction mechanisms described in section 3 and given again
in eq. (7.8). Throughout this section we assume that the initial plasma temperature T, =250 MeV, the
plasma radius R, =3 fm, the plasma time ¢, being assumed as 1.5R, =4.5 fm/c. The strong coupling
constant a, = 0.618 taken and m_= 170 MeV is employed in the plasma state. The table 7.1 presents the
implicitly assumed pure plasma lifetimes ¢, and time ¢, at which plasma gas coexistence ceases (see fig.
1.5) resulting from assuming that the fireball volume grows with time as V~ ¢*, n =1 and 3. The degree
of saturation, p/p_, of the strange quark phase space at t=1¢, is also displayed. It is found from
integration of eq. (7.20) up to ¢ =t_with the dilution term

;o <t (7.24)

We notice that the slow expansion, n = 1, leads to very appreciable pure plasma lifetime of 17-32 fm/c
depending somewhat on w,/T and results in completely saturated strangeness phase space. The fast
radial expansion, n =3, is more in agreement with naive expectations for the baryon-rich plasma of
section 1.5.1 - the lifetime of pure plasma state ranges from 7 to 9 fm/c and the strangeness phase space
is about 90% saturated when hadronization begins.

At ¢ =t the plasma state commences to coexist with the hadronic gas. We turn now to our plasma
fragmentatlon -recombination model, see section 4. According to the scenario presented in the previous
subsection, we further have

Va@® =V, (t/t,))" [1 =@ 0)"|r/(r—1) (7.25a)
Table 7.1
Characteristic times and strangeness equilibration of hot hadronic matter in nudlear
collisions

0 10 e Pe)
c < h
(fm/c)  plp, (fmic) (fm/c) p/pT (fm/c)

cr

Ky
(MeV) /T cf. fig. 7.4 cf. fig. 7.3

0 0 17 1 162 7 0.5 14
200 1.3 18 1 165 7 0.68 15
400 2.7 2 1 173 8 0.90 15
600 4.6 32 1 193 9 0.98 16

t,: beginning of coexistence phase.

t,: end of coexistence phase.

p/p7:  degree of strange quark saturation of plasma phase space at r=_,

1) V~t;, (3 V~P
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Vo(t) = Vo(e/t,) [(¢ /1) = 1irri(r — 1) (7.25b)
where r is obtained from eq. (7.7):

r=so/sy. (7.25¢)
Naturally we find, adding eqgs. (7.25a) and (7.25b)

V(1) = V(1) + Vo () =V, (t,)" . (7.26)

The functional forms shown in egs. (7.25) are direct consequences of the requirement (7.26) and the
assumptions made, such as eqs. (7.3) and (7.7). We further note that the end of the mixed phase is at
Vo =0, ie.

t,=r"". . (7.27)

The times ¢, shown in table 7.1 arise from actual r obtained inserting egs. (7.5) and (7.6) into eq.
(7.25¢). The case n =1 does appear to exaggerate the lifetime of the mixed phase and n =3 may be a
better choice for a 3-dimensional expansion, as it implies R~ ¢, T~ 1/t.

Thus for ¢, <t<t, while the volume evolves according to egs. (7.25), the strange quark density
evolves according to the undiluted eq. (7.12), since the entire dilution occurs through expansion of the
hadronic gas part of the reaction volume due to the assumed exact correlation of quark-gluon plasma
volume expansion with conversion into hadronic gas phase. However, we allow for temperature and
chemical potential time dependence and T~ (1/¢)""” particularly influences the reaction constant R, cf.
eq. (7.8) and eq. (3.13). The hadronic gas eq. (7.19) is used to describe the evolution of the various
strange hadrons after the following generalization has been made

d n com S d
S p0=ZR+ (o p0) L n,). (7.28)
n Q

Here p, is the abundance of hadronic gas particles we seek, and p{°™ are the combinatoric densities,
e.g.:

* *
com a com B

P =5 papss PV 5T Pepss (7.29)

etc., compare eqs. (4.17) and (4.18). We have used volume reduced combinatoric factors
a*=Vya, PB*=V.B (7.30)

such that eqs. (4.21), (4.22a) and (4.22b), for the a*, B*, are given in terms of densities and not
absolute abundances. Finally, R"™ is the reaction contribution of channel n to the ith particle
considered as developed in section 5 and explicitly presented in appendix A.

As we have seen in section 4, the fragmentation mechanism in the quark-gluon plasma recombin-
ation model uses the surplus entropy of the plasma to generate additional partons. These additional
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partons contribute to the formation of hadrons, ensuring conservation or increase of entropy over the
phase transition. In section 4 we considered both fragmentation of gluons and of quarks. For vanishing
baryochemical potential x, =0 we found that some fragmentation of quarks is needed for the entropy
balance, but considerably less than gluon fragmentation. When the consideration is extended to finite
values of u,, it is found that quark fragmentation becomes less important, and gluon fragmentation
alone is sufficient to conserve entropy [Ko86]. It is, therefore, not unwarranted to neglect quark
fragmentation in an exploratory calculation of the expected particle abundances for different values of
the baryochemical potential u,, and to take only gluon fragmentation into account.

7.3. Numerical results

Chemical evolution equation for the three expansion steps (quark-gluon plasma, phase transition,
mixed phase) were first solved numerically by Kapusta and Mekjian [KM85]. Their analysis was only
concerned with baryon-free systems, including pions and kaons in the hadronic gas phase. The
interesting case of multistrange baryons, and strange antibaryons was not considered in this calculation.
The conclusion of these authors that under almost all conditions the hadronic gas phase will emerge in
absolute hadrochemical equilibrium must, therefore, be taken with some caution. Since the reaction
mw— KK has a relatively large cross section above threshold, it is not inconceivable that chemical
equilibrium of kaons may be reached even in the absence of quark-gluon plasma formation. This would,
however, require existence of a dense, hot hadronic fireball for a very long span of time or extremely
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Fig. 7.2. K™/@" ratio calculated by [KM85] for a model involving pions and kaons only. M: mixed phase scenario; AS =0 (AS = §) supercooled

plasma scenario without (with) entropy generation. The different curves correspond to different assumptions about parameters determining the
reaction cross section s (solid: ‘most likely’; dashed: ‘optimistic’; dotted: ‘pessimistic’. See [KM83] for details).
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high temperatures (7 > 200 MeV) in the hadronic phase. Whether such conditions are compatible with
the kinetic properties of collision events, must be tested in future experiments.

Kapusta and Mekjian [KM8S5] also considered the case when no mixed phase is formed, and the
phase transition is effected instead after strong supercooling of the plasma phase by a sudden transition
to a superheated hadronic gas phase. As far as the results of kaon production are concerned, there is
almost no difference compared with the mixed phase scenario in the final composition, because
chemical equilibrium in a superheated hadronic phase of 300 MeV temperature would be approached
very quickly. Figure 7.2 shows the results of Kapusta and Mekjian [KMS85] for the expected K /w~
ratio as a function of the initial temperature T, of the fireball. The upper two parts correspond to the
scenario involving a supercooled plasma with (AS = §) or without (AS = 0) entropy production in the
transition, while the lower part represents the mixed phase scenario.

Let us now come to the results of calculations based on the full set of rate equations in the hadronic
phase discussed in section 5, involving baryons and antibaryons in addition to pions and kaons [Ko86].
These calculations are based on the following picture of the evolution of the fireball: initially a
quark-gluon plasma is formed, which expands and cools until it reaches at ¢ = ¢, the phase transition
point towards the hadronic gas phase. Temperature and baryochemical potential are then kept constant
and the plasma is gradually converted into hadronic gas. During this process the volume of the mixed
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Fig. 7.3. Strange particle abundances assuming fast volume expansion (V~ ¢) and recombination with gluon fragmentation: (a) s-quark and (b)
s-quark carrying hadrons at the end of coexistence of quark gluon plasma and hadronic gas phase, as a function of critical values of T and p,.
Dashed: equilibrium abundances in the hadronic gas phase at the same values of T and p,.
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phase grows according to the requirement of entropy conservation as expressed in egs. (7.25). The
calculation is stopped at ¢ = ¢, when the quark-gluon plasma is fully converted into hadrons. In the first
part of the expansion, when only the plasma phase is present, eq. (7.20), for strange quark production
is solved. Later, when plasma and hadronic phase coexist, eq. (7.12) is solved for strange quark density
in the plasma phase (light quarks and gluons are always assumed to be in full equilibrium), while egs.
(7.28) are solved for the evolution of abundances of w, K, N, Y, =, Q1 and antiparticles in the hadronic
phase. In the hadronization process, mesons and baryons are assumed to form according to the
fragmentation-recombination scenario expressed by eqs. (7.29) and presented in detail in section 4.
Gluon fragmentation ensures approximate entropy conservation by providing the additional partons
required to fill the larger hadronic gas volume with mesons and baryons.

First, consider the particle abundances presented in figs. 7.3 and 7.4. Both figures differ in the choice
of the exponent » in eq. (7.24) and correspond to fast (n =3) resp. slow (n =1) volume expansion.
Parts (a) and (b) in each case refer to abundances of hadrons containing s- and s-quarks, respectively.
The abundances are presented as found at ¢ = ¢, , the time when the plasma phase has been completely
converted and the hadronic gas phase is quite thin already. The curves are given as function of the
values of the thermodynamical variables T and u, at the point where the critical curve is crossed.
Throughout the ‘calculation a constant T/u, ratio is assumed. The dashed curves are the equilibrium
hadronic gas results as obtained according to the grand canonical approach, section 6.1.
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gig.;;. Strange particle abundances assuming slow (longitudinal) volume expansion (V ~ ) and recombination with gluon fragmentation, else same as
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As discussed in section 5, the actual abundances of strange hadrons in the collisions in which no
plasma is formed would be significantly smaller, in particular, the strange antibaryons would be far from
their hadronic gas equilibrium values. As we see from the presented results, there is a very significant
overabundance of strange antibaryons found, which - incidentally — does not rely on the mechanism of
quark-gluon fragmentation (but fragmentation increases overall), whether other hadrons come out
above or just at their chemical equilibrium abundance depends to a large extent on the lifetime of the
mixed phase. For short lifetime (fig. 7.3) considerable overabundance of hyperons Y= (A, %) and
cascade particles E is predicted. As could be expected from naive arguments concerning s-s symmetry
in plasma, the abundance of () and () turn out to be quite similar, independent of the value of u,.

For reasons of experimental practicability it is important that the densities of strange antibaryons Y,
E are in the range 107 to 107*/fm” at the time of break up. Given the large fireball volume of several
thousand fm’ at this time, a number of these particles are expected to be produced in each single
reaction event leading to formation of quark-gluon plasma. This fact greatly reduces the danger of
mistaking rare fluctuations in purely hadronic reaction events for plasma formation, and allows for
accumulation of high-statistics data.

By contrast, the proposal of Heinz, Subramanian and Greiner [HSG84, He85] to utilize antinuclei as
signature for quark-gluon plasma is plagued by extremely small abundances of these particles, €.g.
antideuterons are predicted to occur with abundance 10™° to 10™*/fm’, and anti-alpha particles only
with a density of 10™'* to 10 */fm’. Observation of a very large number of quark-gluon plasma events
and great trust in the absence of substantial rare fluctuations away from hadronic equilibrium would be
required to establish the presence of quark-gluon plasma from such a signal. (The particular deficiencies
of the calculation of Heinz et al. [He85], e.g. violation of entropy conservation during the hadronization
process, has been discussed before, see section 4.4.)

In conclusion, our calculations presented above confirm the particular suitability of strange anti-
baryons for diagnosis and study of the quark-gluon plasma state. However, they should not yet be taken
as the ultimate picture on expected particle abundances, as more realistic plasma evolution and
dissociation models have to be developed. In particular, the combination of the hadrochemical rate
equations with a state-of-the-art solution of the relativistic hydrodynamical evolution equations
including a phase transition would be a worthwhile next step.

8. Highlights

The results collected in this report, some of them shown for the first time, substantiate the
expectation that abundances of strange particles, most notably of strange antibaryons, provide a
powerful tool to probe the quark-gluon plasma in nuclear reactions at very high energy. We will not try
here to comprehensively repeat the discussions set forth in the various preceding sections, but instead
concentrate on the results that highlight the unique features of strange particle production.

We begin recalling the results obtained in section 4 where we have shown that in case of equilibrated
strangeness abundances in different phases of hadronic matter, strange hadronic particles are predicted
to emerge from the quark-gluon plasma phase more abundantly than this would be the case in a purely
hadronic gas (figs. 4.3 and 4.4). To a large degree this behaviour is a consequence of numerous
fragmentation processes required in the break-up of the plasma phase in order to obey the 2nd law of
thermodynamics and also due to the fact that (s)/(q) relative abundance is enhanced. It is important
here to emphasise that the specific example of strong enhancement in the strange antihyperon Y
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production was found to persist for all hadronization scenarios (see fig. 4.4). The enhancement of ss[d],
fig. 4.3, appears to be less pronounced. On the other hand, for the more common strangeness carrying
particles, viz. kaons and hyperons, no impressive but nonetheless also an observable surplus as
compared to the hadronic equilibrium abundances is expected. However, for these particles, a failure to
find above-equilibrium abundance cannot be taken as a signal for the absence of a plasma phase. In
other words: Y abundance anomalies (and also = and ) are characteristic for plasma formation
because they will exceed the size of the phase space of individual hadrons, while K, K and Y (as well as
m) anomalies will be there, but are not considered to be characteristic because their abundances will be
near the phase space limit.

Another important point we emphasise here again is that hadronic reaction rates are much too small
to allow for equilibration of strange particle densities during a nuclear reaction unless plasma is formed.
After a reaction time of 10fm/c (about 3 X 10’ 5) the gross density of strange particles would still
remain an order of magnitude off its equilibrium value (see fig. 5.4). This lack of saturation of strange
particle phase space in hadronic gas has first been discussed and is well known for nuclear collisions in
the energy range around 1GeV/u. For strange antibaryons the underpopulation is even more
pronounced, with two to three orders of magnitude missing to equilibrium (fig. 5.5). This means that
even the observation of saturated hadronic equilibrium for these particles would be a mystery, pointing
to the temporary presence of a quark-gluon plasma seed, at least. The predicted antihyperon phase
space overabundance, resulting from the quark-gluon plasma region, can — if actually observed — only
be explained by invoking the deconfined plasma state. These results are confirmed by the dynamical
evolution scenarios developed in section 7: even when all surplus plasma entropy is used for expansion
rather than quark-gluon fragmentation, the overabundance of strange antibaryons persists at least until
the phase transition is completed, cf. figs. 7.3 and 7.4 (fast and slow phase transition scenarios,
respectively).

The usefulness of strange antibaryons as signals for quark-gluon plasma formation is most strikingly
emphasized by a comparison of fig. 5.5 and fig. 7.3. To wit, fig. 7.3 showed the results of a calculation
along the lines of a ‘fast’ expansion scenario, where a quark-gluon plasma was assumed to be formed in
the collision, cooling to the critical temperature at about 8 fm/c after the start of the reaction, and
completing the break-up into hadrons within an additional time interval of 7 fm/c. Altogether, the
high-density stage of the reaction lasts for about 5x 10™*’s, after which time the densities of strange
antibaryons are predicted to exceed substantially the hadronic equilibrium values. In absence of a
quark-gluon plasma state, the abundance of strange baryons and antibaryons would still be far below
saturation after this reaction time, as fig. 5.5 shows, by factors ranging from 20 for antihyperons A, 2 to
more than 100 for triple strange baryons (2, ().

The source of all these results can be traced back to the fact that strange quark-pair production in the
plasma phase proceeds at a sufficiently fast rate to permit statistical equilibrium abundance to be
established in less than 10 fm/c. As discussed in section 3, this is mainly due to the abundant presence
of gluonic excitations, allowing for quark-pair production in gluon-gluon collisions. In a sense,
therefore, abundant strange antibaryon production is indicative of an environment in which two-gluon
processes dominate over single-gluon exchange phenomena.

In conclusion, we have shown on the basis of a dynamical theoretical model of strange particle
production in nuclear collisions that normally rare strange antibaryon S or particles with multiple strange-
ness content (antibaryons A, 3, =, ) provide a very promising experimental signal in the search
of the quark-gluon plasma. In particular, abundant strangeness production is indicative of the presence
of gluon excitations, a characteristic property of the deconfined QCD phase.
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Appendix A: Master equations for strangeness evolution in hadronic gas

The set of differential equations considered here reads:

d -
d P~ <0'§:I{UwN> {Pz[Pan —Ripcpol} + <‘Tf<;vf<N> {Az[pl'(pE — Ripyp.}}

—<0';1;QUNN> Di{popy — Rllp?—(pfr} ) (A1)
d KY nY
dt Pa= <0-‘|TNU’1TN> {Pz[pﬂpé = Ripgpal} + <0'1?.NUKN> {AZ[PKPE —Rspap.l}

—(oxvns) {Dslpapy — Ry pxpal}, (A2)
d KY R
Frich (0 anV o) {Pi(pypr — Ropzpy) = Po(prp=— 1PaPi)}

+{oantn) {A,(prPy — Repzp,) = Ay(pipz — Rspop.))

—<U;1TNUNN> {DZ[PEPN_RloPiPi]}’ (A3)
d KY
3 Pz = (0o {Pipsps — Ropzpi) — Papopz — Ripapi)}

+<UEIJURN> {Al(pxp\? - Rﬁpép-n) - Az(prE - R5p()pﬂ)}

_<UIS\I1IT§‘UNN> {Dz[PEPN'RmPIiPi]}a (A4)
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d, Py = (T oV ) {Pupx = Rspypx = Pi(popy = Ropips))

(TR in) {PrAn = Rppy = Ai(prPy — Rep,ps))

—(oxatns HDilpyps = Roprpal} (A3)
dt Py = (O ) {PoPx ~ Rypypi = Pi(pops — Roprps)}

+H(oavan  {PxPr — Rippy — A(pxpy — Rep,pz)}

_<0'15~11;<JUNN>{D1[PYPN_R9PKPjr]} ) (A6)

d .
dr PN = —<Uf;{vnN>[PﬂPN - R3PKPY] - <0ENUKN>[IDKPN - R7Pnpy]

w 4
‘(U;NUNNHPNPN - RSPfr +D(pypy — Rypxp.)

+D,(pypz— Riopypl) + Dy(pupa— Ripkp)} (A7)

d -
37 P = (V) [P.ps — Riprps] = (0 vrn)Pcps = Ropps]

™ 4
— (o ni) (PP — Rep’ + Di(pspy — Roppt)

+D,(pxpz — Rlopfipi) + D3(pxpg — Rupi’ipi)} ) (A8)

d KY
a1 P& = {Tax U )00 P = Rypipy + Pi(pops — Ropgps)

t Py(p.pz— Riprpa) + Pi(p% — Rypepi)}
Y
~(ornvin ) {Proy = Rop.py + Ai(prpy — Ropopz) + A(prps — Rop,py))

+(oxOn){(D1(pxPy ~ Ropgpt) + Dy(psps — Rigp2p’) + Dy(ppo — Riipip2))
(A9)
d

37 Px = (T oo ) (Paby = Ripipy + Py(p,py = Ry pcps)
+ Pz(PwPE ~Rypepy)t P3(pfr —R,pgpx)}
oY
"(U'KNUKN){pKPN ~R,p.py+ Al(prY - Rﬁp-np?,) + AZ(prE - RspwPE)}

+<0'NNUNN){D1(/’NPY - R9PKP157) + D,(pypz — Rloplzd’i) + Dy(pypg — R11P13<P12r)} s
(A10)
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d
37 P = {0V {(pon + 0,08) = Rolowpy + pipy)

+ Pi[(p.py * ppy) — Rylpcpz + pips)]

+P,[(p.p= + Pop2) — Ri(pxpat+ PrPa)]+ Pslpr — Rypxpil}

+{pinvan ) {(PrPx T PcPR) ~ Ry(popy + p,05)

+A[(prpy + pxPy) = Rs(popz + pop)l + Al(prpz + pxpz) = Ro(prpo + popa)l}
+{pxUni) {onPx — Rep + Dilpyps + pyps = Ro(ppa + pipa)l

+ D,[pypz + PPz — Ri(pxps + prp )1+ Dilpupa + Pxpo — Ri(pos + e},

(A11)
with the following definitions
Pl - < YU‘TI'Y> . PZ: <U "U =X P;: <O-—rr-n' 1r-rr>
( 'rva‘rrNj <U-1TNU1TN> ’ <o-'rrNU-rrN>
g U =Uis
A= 2 KY KY> A= <0'1< RS ) (A12)
O'KNUKN> <0'KNUKN>
D = <U$;4ﬂvYN> . D.: { 25112”1705&) D.: <U3K+2ﬂvmﬁ>
L < Sw > 2 < S ) 37 7
ONRUNN TNNY N <0'NNUNN>
E- x % © % x\2
Ri=Pefz. p._PePy. g PPy g (gﬂ)f
PaPk P=Px PyPx PxPk
R:=£kP=. g ._PKPy. g ._ PRPN
PoP PPz Py P
PRPY PyPx PPy PaPs
Ry'= —3; R, = ==+, R,'= —=—3; R, = =7 ,
o(p2) P (pr)(p7) Y (pr) () () (p7)
where the p; denote the equilibrium densities which are given by:
o 4T (my : Mg\ | =3
pra= 3 (1) L) (A1)
- AT (m5)2 K (mE) AT A2 Al13b
Pz~ 277_2 T 2 T q s ( )
* 8T3 mY ? mY *2 , =1
p\a? = —? T K2 —7,,— Aq /\s 3 (A13C)
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™ 4 ’ N 2 my +3

pin= g (7) K 5) 40 (A130)
. 2T (m Mg\ 1=

Prx™ 2t (—TK—> KZ(_TE) )‘ql A, Y (Al3e)
. 3T (m_\? m, 2m 3m_

pi= 35 () {rl%e) + () + 12 (A130)

Except for the case of pions, the densities are calculated in Boltzmann approximation. Note that K, K
denotes the K-mesons containing an s, s quark, respectively.

One should notice that all reaction constants defined under (A12) are independent of the fugacities
Ags A, since these quantum numbers are conserved for each reaction. Therefore they only depend on the
temperature and the masses of participating particles in the HG. The quantum number (chemical
potential) dependence enters through the initial condition, in our case e.g. the assumption of
equilibrated phase space of nucleons.

Appendix B: Parameterization of strangeness production cross sections in hadronic gas

Unfortunately a unique parameterization of measured cross sections [He83] over the whole range of
the centre-of-mass energy is not feasible. The full energy region is divided into smaller intervals where
simple parameterizations apply. In the following we adopt the parameterization of ref. [KR84] rather
than that of refs. [MES2, CL84].

Specifically, we have chosen the following fits. In the case of the 7 + p— K + Y reactions.

- (Bla)
(AVE—VE):  VH<VI<VE,;  V5;=1683GeV;

V5,=1934GeV; A=0.7mb/0.218 GeV
o(Vs)=1Bexp(—CV35); V5.<V5<VSy; V5 =3GeV;

B=6026mb; C=231GeV!

‘Dexp(—EVS); V5g<Vv3i<w; D=036mb; E=0.605GevV ™!

m P—KA: (B1b)
F AV - V5,); VS, <VS<VE_; V5,=1.613GeV ;

Vs, =1.684 GeV ; A=0.9mb/0.091 GeV
o(VS)={ Bexp(~CV5); V5,<V3<V3; V5x=2.1GeV;

B=4363mb; C=4.154GeV!

 Dexp(—EVS); VSx<V3i<w; D=0314mb; E=0301GeV’
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7 P—3°K’:
(A(VS —V5,);
a(v5) =91 Bexp(—Cvs);

LD exp(— Ev3) ;
m P>3%K":
F(constant) ;

o(Vs) =D exp(— EV3) ;

P. Koch et al., Strangeness in relativistic heavy ion collisions

(Blc)
V85, <VS<Vs.; V5,=1.689GeV;
V5, =1722GeV;  A=10.6mb/GeV
VI <VE<VSg;, V5 =3GeV;
B=137mb; C=192GeV”’
VS <Vs<w; D=0.188mb; E=0.611GeV’
(B1d)

VB <VE<SVEL: VS =1691GeV

VS <Vs<ox; VS, =V =19GeV;
D =309.06 mb ; E=377GeV ™",

In figs. Bla-B1d we show these respective fits with data taken from CERN-HERA Reports [HES3].

]UUL TP— YKt 100% L TP+ AKC j
i f? I %
g o' 1 -
= L 108 =R A &
E I £ N
S R
0 E . 0 \\\i“
o - N
10’3 | :.n I 10‘3 L:n Loy J
0 - 0 Z L 6
VS [Gev] VS [Gev]
1° TP—IK° 100# TP— I K* T
| i \ |
o' i 0 & ]
< | ™ §
107 | 0 ' 1
o N S
I
10'3 | L i TR 10'3 | T N N
0 2 A 6
VS [GeV] VS [Gev]

Fig. B1. Cross sections for the strangeness production process. Data are taken from CERN-HERA Reports [HE83]. Our parameterization as

outlined in appendix B.
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Since we are now interested in an isospin averaged cross section, we have adopted the approach of
ref. [CL84] and taken the mean wN— KY cross section as:

a(@N—->KY) = {{orw'p=>2"K) + o(n p=>2K’) + a(x p—>3I"K)}.

In the case of strangeness exchange cross sections

KN—-Yxn

we only have data for the mostly measured reaction
K p—An’

and few data points for
K N->An~

as displayed in fig. B2.
In order to obtain an isospin averaged cross section, we assume

G(KN—Ym) = H{o(K p—>An") + o(K N> An")}.

The fits for the shown cross sections (fig. B2) are:
K p—>wA: (B2a)
Bexp(—Cvs); V5,<Vs<Vs¢; V5, =1473GeV;
o(K p—An’) = B =1479.53 mb C=3377GeV™!

Dexp(—EV3); Vsg<v3<w; D=03mb; E=072GeV"

K'P—AT L i K'N—=AT

= b | €.+
=10 i glﬂ - lii
i -
‘-{}._4 )
0 a1
.
]034 | S R B S| 10"34 [ A
0 2 L — 6 0 —2—&— &6
VS [Gev] VS [6ev]

Fig. B2. Data and our fits to the strangeness exchange cross sections. Data are taken from [HE83].
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K n—>Anr : (B2b)
oK n=>An")=Dexp(—EVS); Vsg<Vs<o; Vs =V5_=1699GeV ;
E=3.063GeV™'; D=1132.27mb.

These fits are also shown in figs. B2a and B2b.
In the case of annihilation cross sections into five pions we only have information about the channel

pp— Su(n” +2n +7) (B3)

and we took
d(NN—57) = g(pp—2n" +21n + ')

and fit the data to the form
o(pp—2n’ +2n +7’)=Dexp(—EV3); Vig<V5<®;
Vi, =V5,=1985GeV; D=871.72mb; E=195GeV".

The fit is shown in fig. B3.

10 h j
PP —> 57
}
10’ %
%
t
\
_ t
0 \
Eio° 3
o =
b
A\
lo—l_
16 PR —
0 i 2 3 4 5 © 7 8
s [GeV]

Fig. B3. Data and our fit to the baryon annihilation channel with data from [HES3].
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Notes added in proof

Several relevant articles have come to our attention following the completion of this report. These works
include:

1) Matsui et al. [MAS86], extending their earlier work [MAS8S5], have studied strangeness evolution in
the framework of Bjorken’s hydrodynamical description of the spacetime evolution in the central rapidity
region of ultrarelativistic heavy ion collisions. Their framework is similar to that of Kapusta and Mekjian
[KM8S], in particular, they only consider pions and kaons in the hadronic phase, but not baryons.
Their results are very similar to [KM85]; when a plasma state is formed the resultant K/ ratio will be
enhanced roughly by a factor of 4 from that in pp collisions as has been predicted by [GR85]. They also do not
consider hadronic chemical reactions in the final phase and neglect gluon fragmentation.

2) The influence of strange particles on critical thermodynamical variables arising from a model for the
phase transition from hadron gas to quark gluon plasma is studied by [LRH86] and was found to be small, in
line with naive expectations.

3) In a recent preprint Heinz, Subramanian, Stocker and Greiner [He86] have also pointed out the
importance of entropy conservation for the hadronization scenario. They conclude that their earlier results
[He85] concerning antinuclei production must be taken with caution, but no new results are presented.

4) Biro and Zimanyi [BZ86] have investigated strange hadron production in the context of a mean-field
model of the hadronic phase.

5) The experimental situation concerning strange hadrons (K, A) in relativistic nuclear collisions up to
2.1 GeV/u. isreviewed by Stock in his comprehensive review article [St86]. He also discusses the possible use
of A-polarization as a probe for collision dynamics.
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