Steven Jenks
On The Pole Structure of the S-Matrix for a Square Potential-Well

Poles on the scattering matrix or S-matrix exhibit many interesting phenomena that
describe the system of interest. These poles either correspond to the bounds states or
transmission probability depending on whether the energy of the particle is less then or
greater then the asymptotic potential on the left and right. In this short study, the poles
of a one-dimensional square well potential are determined and examined. It should be
noted that Maple was used to produce the plots and most of the calculations throughout
this paper (maple worksheets are attached in the appendix).

S-Matrix
The S-matrix relates the incoming amplitudes (A and Bg) for particles approaching a
potential with the outgoing amplitudes (Ar and By) leaving the potential. Elements for
this matrix can be expressed by the transfer matrix elements or T-matrix. It is easily
shown that the S-Matrix is

1 T2
|\ T T
121 det(T)
Tl Tl

The element Ty, appears in the denominator for each element. Hence, the pole structure
on the S-matrix is determined when T;;=0. In order to investigate the nature of the poles,
a one-dimensional square well is considered. This attractive potential’s length is fixed at
8 A with the depth varied at -20.0 eV and -25 eV.

Vtopzo CV

V=-20/-25¢V

=8 A
Remarks on units

As Dr. Gilmore dedicated a whole chapter on units used throughout his book, Elementary
Quantum Mechanics in One Dimension, it is necessary to say a few remarks about the
units used through out this study. It is shown in the picture above that the desired units
for energy are electron-Volts (eV) and as a consequence the desired units for length will
be angstroms (/f\). In order for these units to be properly used, the constants in k (where k
is sqrt(2*m*E/ h%)) are as follows; m(mass of electron)=0.911x10*" gm and h=1.054x10"
7 erg sec. In addition, for E to be measured in eV the charge, g=1.602x10"? erg, is
multiplied in the numerator of the radical and since k is always multiplied by the distance
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of the potential, L it is only natural to measure length in angstroms (since the product of k
is of the order 10* cm and one angstrom is 10™).

Bound states (E<0)

In the case when the energy of the particle is less then asymptotic left and right, E<0, the
wavefunctions have the form,;

¥ =B e, with k=sqrt(2m(V-E)/h%)
Wr=Are™, with k=sqrt(2m(Vg-E)/i%)
VL=VR=0
with amplitudes, A; and Bg, set to zero. From these boundary conditions, the transfer
matrix elements can now be determined, with T; being of particular interest. The
transfer matrix relating the asymptotic left with right is as follows;

A (left) Til TI2 A (right)
B(left) 121 7122 B(right)
Introducing the boundary conditions, A; and Bg being equal to zero, and looking at T,
the equation is produced;
0=Ty; * Ag
If Ar were equal to zero, then the equation is trivial (all amplitudes inside the square well

would be equal to zero, if this were the case). Therefore, to satisfy the boundary
conditions T;; must be equal to zero and poles or bound states are found.

The element Ty, is easily found to be

cos(k -d) + L ( K_ lﬁ) - sin(k- d)
2 k  «
where, k=sqrt(2*m*q(E—V)/h2), K=sqrt(2*m*q*E/ h?), and 6=8 A. The poles are
calculated graphically with V=-20eV first, then V=-25eV varying E from 0<E<-20 eV
and E from 0<E<-25 eV, respectively. When the T crosses 0, a pole is found, they are
shown in the plots below.
T11 as a function of Energy for v=-20e %

Figure 1-where Ty, crosses 0; the energy corresponds to a bound state (total of 6)
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T11 as afunction of Energy for %=-25e%
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Figure 2-where T, crosses 0; the energy corresponds to a bound state (total of 7)

The bound states for figure 1 (all measured in eV) are —19.52319800, —18.09749157,
—15.73849690, —12.47873223, —8.385639050, and —3.634858834 while the bound states
for figure 2 are —24.51304076, —23.05567592, —20.63935995, —17.28691048,
—13.04157825, —7.994860607, and —2.426037569 (all in eV). It is interesting to note
that when the potential was increased another 5 eV, an extra bound state is “formed” at
the top of the potential and the energy of the other six are increased ~5eV.

Poles associated with E>0

When the particle is associated with an energy that is greater then 0, scattering occurs.
The boundary conditions for scattering are a bit different then the conditions for bound
states, therefore T;; will be different. If a particle is incident from the left, the asymptotic
wave functions will have the following form;

Pr=Are™ +Bre™, with k=sqrt(2m(E-V,)/h%)
Yr=Are™, with k=sqrt(2m(E-Vy)/h?)
VL:VRZO

These are the boundary conditions that shape what T; will look like. It can be shown
with quite ease that T, is

cos (kprime- d) — l( kprime + k

2 k kprime
where, k’(kprime)=sqrt(2*m*(E-V)/hz), k=sqrt(2*m*E/ h?), and 5=8 A. There is an
obvious difference between the two transfer matrix elements, when E<0 T, was real,
while this element is complex. What does this mean?

) sin(kprime- d)

After some investigation, in order to satisfy the condition that T,=0, the energy has to
have a real part and an imaginary part, E is complex. It is a very daunting task to solve
this equation with out the aid of a computer (although, I do encourage interested readers
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to see if they can solve by hand); however when substitutions are made for the cosine and
sine term a familiar property is seen. Remember, the sin and cosine term can be
represented by the following;

i kx — ikx ke — ik
= —|—2e sin(k-x)=e 26.1_

and leaving the algebra out (can be found in the appendix), the equation can be worked

out to;
| = (1 4k k ) RED IR
(k+ k')

The third term in the equation above (4k’k/(k+k*)?) is the transmission probability in
which the potential undergoes only one discontinuous change (encourage readers to work
out to see for themselves). Is there is a connection with the transmission probability and
complex poles? This is the first indication that a relationship exists between the two and
will be explored a bit later.

cos(k -x)=

As stated previously, the equation T;;=0 was solved with the aid of a computer. First, the
solutions were obtained using the potential well V=-20 eV, then the well was extended to
V=-25eV. Below are plots of the poles from two different angles, clearly displaying the
pole structure in the complex energy plane.

The pole structure as a function of Energy in the complex plane The pole structure as a function of Energy in the complex plane

-10

=0
i
=

3
T

Lovvvvrr o bevorrronr brprrrraialig
il

-15

1l 20 40 B0 F0
Relz)

Figures 3(Left) and 4(Right)-Left two dimension view of pole structure (V=-20), Right three dimensional
view of pole structure (V=-20). Note that there is a pole near the origin although it is hard to resolve.

Explicitly, the first seven poles are worked out to be E=0.6356243305-0.928664716I,
8.135602450-3.1800332211, 16.81813769-4.9340967411, 26.68201817-6.6541864731,
37.72627705-8.4010713671, 49.95012974-10.191563861, and 63.35293001-
12.030536141. The next figures show the complex energy plane when the well was
extended to V=-25 eV.
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The pole structure as a function of Energy in the complex: plans

The pole structure as a function of Enengy in the complex plansa
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Figures 5 and 6-Left two dimension view of pole structure (V=-25), Right three dimensional view of pole
structure (V=-25). Note there is a pole that cannot be resolved near 3-1.91.

Explicitly, the first six poles are worked out to be E=3.230193326-1.9033160171,
11.91963692-3.8847825711, 21.78970431-5.626844608], 32.83955705-7.3463019721,
45.06850860-9.0888760981, and 58.47598920-10.86926114I1. It is interesting that the
pole near the origin in figures 4 and 5 has “disappeared” in figures 5 and 6. What
happened to this pole, did it really disappear or is it somewhere else on the energy plane?

Bound states, Complex Energy Poles, and Transmission Resonances

In this section, all the loose ends that were left unresolved in the previous sections will be
tied together. It was shown that the one-dimensional square-well has poles that are real
and poles that are complex. Even though these poles, both real and complex, were
treated differently (depending on boundary conditions) one might ask, is there a
connection between the two? Before this question is approached, the relationship
between bound states and transmission resonances peaks will be explored first.

In this paper, transmission resonance has been mentioned with the understanding that the
reader is familiar with the term. Briefly, in scattering (in the case considered here, E>0)
there exists a probability that the particle incident from the left approaching a potential
barrier V will either be transmitted through that barrier or reflected from it. The
transmission probability can be expressed as |1/T;;|* and this function can have peaks
when result is 1. These peaks or resonances can be found from the following expression;

72 (nw)?
E=2_(2C
2-m( o )
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above the potential. Below are the plots of the two potentials considered, with the
positive energy being the dependent variable. The peaks are easily seen and can be
specifically located using the equation above.

Transmission probahility for %=-20 Transmission probahility for W=-25
1.04 1.0
0.75 0.75+
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Figures 7(Left) and 8(Right)-Transmission probability for square well potentials V=-20eV and -25eV.

These first seven peaks or resonances for figure 7 are located at the positive energy
1.129664491, 8.75982169, 17.56384873, 27.54174604, 38.69351362, 51.01915151, and
64.51865967. The first six peaks of resonances for figure 8 are located at the positive
energy 3.75982169, 12.56384873, 22.54174604, 33.69351362, 46.01915151, and
59.51865967. These energies will be revisited a bit later.

It was previous stated what T;; looks like when E>0 and when E<0. What happens when
E approaches 0? It is fairly obvious that T;; will approach —i*k’sin(k’6)/2*k for E>0 and
—k*sin(kd)/2*k for E<0. Both of these functions will blow up as E goes to 0 but if
sin(k’0) is set equal to zero a transmission resonance can occur and similarly if sin(kd) is
set equal to zero a new bound state can occur. This condition describes the
transformation of a transmission resonance in becoming a bound state, when sin(k*6)=0
where k= k=sqrt(2*m*q(-V)/h2). A much more in depth look at this connection between
the bound states and transmission resonance is found in Chapter 25 of Elementary
Quantum Mechanics in One Dimension. Figures 7, 8, 1 and 2 have been combined to
illustrate this important connection.
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Foint plot of energy for Ww=-20
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Figure 9-Energy greater then O corresponds to a resonance and energy less then zero correspond to a bound
state
Foint plot of energy far Ww=-25
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Figure 10-Energy greater then 0 corresponds to a resonance and energy less then zero correspond to a
bound state

Before the potential is stretched, there is a resonance at 1.129 eV and 6 bound states.
After the potential is increased to -25 eV, the resonances begin at 3.7598 and there is an
extra bound state at -2.426 eV. It seems that the resonance at 1.129 eV was transformed
into a bound state at -2.426 eV. In fact a more detailed look at the resonances reveal that
they have shifted by approximately 5 eV closer to the origin and the bound states are
shifted approximately 5 eV away from the origin. A connection has been made between
the bound states and the transmission resonance.
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After talking a little on the connection between a bound state and a transmission
resonance, it is fitting to see what kind of a relationship exits between the bound states
and the complex poles that were found. Figures 11 and 12 below are constructed using

the complex poles found when E>0 and the bound states, E<O0.
Foint plot of energy for W=-20 eV
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Figure 11- Energy greater then 0 corresponds to a complex pole and energy less then zero correspond to a
bound state
Paoint plot of energy for W=-25 &%
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Figure 12- Energy greater then 0 corresponds to a complex pole and energy less then zero correspond to a
bound state
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It is shown from the two figures, 11 and 12, that the complex poles are shifted from their
original position when V=-20 eV to a position closer to the imaginary energy axis.
Another interesting artifact about these figures reveal that the pole right next to the
imaginary axis, E=0.6356243305-0.9286647161 eV, in figure 11 is no longer seen in
figure 12 but a new bound state is present. This kind of behavior that exists in these two
figures is very similar to that of figures 9 and 10. This is the second piece of information
that suggests the complex poles are associated in some way to the transmission
probability. Another way that suggests the transmission probability and complex poles
are related is to simply take a look at the raw data. The two tables below show only the
real energy of the complex poles against the energy of the transmission resonance. It is
obvious to see the similarity between the two energies.

Real energy of Complex Pole (eV) | Energy of Transmission Resonance (eV)
0.6356243305 1.129664491

8.135602450 8.75982169

16.81813769 17.56384873

26.68201817 27.54174604

37.72627705 38.69351362

49.95012974 51.01915151

Table 1-Energy of transmission resonance vs. real energy of complex pole for V=-20 eV

Real energy of Complex Pole (eV) | Energy of Transmission Resonance (eV)
3.230193326 3.75982169

11.91963692 12.56384873

21.78970431 22.54174604

32.83955705 33.69351362

45.06850860 46.01915151

58.47598920 59.51865967

Table 2-Energy of transmission resonance vs. real energy of complex pole for V=-25 eV

An explicit relationship between the transmission probability and complex pole structure
can now be related. In complex analysis, singularities or poles are normally associated
with its residue. When a given function f(z) can be represented by a series of positive
and negative integer powers of z-z,, the series is said to be a Laurent series. The
principal part of this series contains the negative powers and the residue is just the
coefficient of the power 1/(z-z,) of this Laurent series.

The complex poles that are associated with 1/T; can be classified as simple poles (poles
of the first order) and for simple poles the Laurent series is;

F(z) - -2

+ a0 + al(z — 20) + a2(z — z0)* +........
z— z0

remembering that the coefficient b; is the residue for that pole. Since 1/T;; can be
expanded in the manner above and complex poles are only contained in the principal part;
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1/Ty=ri/(E-Ejo), where r;residue of the ith complex pole and Ejj is the ith complex pole.
Finally the relationship can be made between the complex poles and transmission
probability;

T(E) = |/Tui* = [ti/*/|E-Eio|*
The residues were not calculated for the complex poles in this paper because of time
constraints and the ever constant struggle with Maple. The pole structure of the S-matrix

for the one dimensional potential well were shown throughout this paper to be
intrinsically connected with the bound states and transmission probability.
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