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TAUBERIAN THEOREMS FOR ABEL SUMMABILITY®

Charles B. Huelsman, 11I, The Ohio State University
1. INTRODUCTION.

First we consider Abel's summability method. Assume that the power series

ngo a,x* converges for |x| = 1 and for each [x| <« 1 define f by

£(x) = nz=:0 a, x* .

Assume further that lim £(x) exists and let

x~1
lim f(x)} = a
X-1=- -
The number a is the A-aum of the series nz=:0 a,. W say in this case that

=
is A-sununable and we write:
=
(A)nz=:0 a, = a.

The following properties are obvious:

(1) 1f (A 2 a =a and (M) Z B

b, then

(A) L. (2 + by} = a + b.

n=0
-]
(1i) If (A)nz=:0 a = a, then for any c we have

(A)né:o ca, = ca.
(iii) 1f (A)nz__:o a, = a, (A)ngo b, =b and a < b for all n, then
a < b.

Thus the A-aum of an A-summable series has the most important properties of
the sum of a convergent series.

We show next that the A-sum of a series nz_:o a, coincides with the
py =

ordinary am of the series nz:o a whenever this series is convergent.

the other hand it is easy to show that there exists series which are not
convergent, but which are A-summable. W have for example:
@ @

o= L 1'% and so (A) 2 (-1)'x =3, while X (-1)*

does not converge. From these results and the following theorem it follows
that the concept of the A-aum of a series actually extends the concept of
the usual sum in a consistent way.

THEOREM 1 (Abel's Theorem). |f ngo a =a then (ann:o a = a

This theorem has various interpretations. Ore of these interpretations
is the following continuity theorem for power series near the circle of
convergence:

I f ri:oa converges, and if the function £ is defined by:

Eu:a,x‘, [x] <1
n=0
f(x) =

o
n-Oa' ! x =1

then f is left continuous at 1, i.e.,

]
’1::;_ £(x) = n);Oa. = £(1)
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2 : & Proof. If |imss = s, then S + 3 (s, - sa.y) =s and by THEREM 1
a3, o —_— a B -1
Proof of THEOREM 1. |If n§0 a is convergent, then obviously ngoa,x e =1
converges for all |x| < 1 and we have only to show that Iir]r]_ £(x) = a - -
* lim [ss + 2,(s, - %-1)%*] = s. And so (A)so + (52 - 84-y) =5, i.e., e
Ex) 2 x1 el n=1
Let s; =1= a. For |x}] <1 wehave Tox = T l = an.x‘ (a)liras, = s.
= =

= is.x’, and so £(x) = (1 - x) is,x‘. Since a = (1 - x) Z_:a:?
n=0 n=0

for |x] < 1, we have £(x) - a = -(1 - x) gjo(a - 5 )x*. Thus

I P N L A R L o
vom

m - x]xm+l
< (1 -x) %_ la_sll + sup la'svl _ .
- n= v>m = x|
Thus for all 0< x <1 we have

m
£(x) —al < (1-x)2 ]Ja-s|+ supa - s,/
I nz—:ol y)rE\) vl

It follows that lim |£(x) - al| < supla -~ syl. Since & -~ a as n- Ce
X-1- ¥>m

the result follows by choosing m large enough.

The concept of A- limitand A-convergence of sequences can be introduced
similarly. The number s is the A- limitof the sequence (s;} if and only if:

-
(R)so + 2. (5 = Sa-1) = 8-
n=1
We write in this case simply (A) lim sy = s Such a sequence is said to
n—e

be A-convergent.

THEOREM 2. (A)lim s, = s if and only if
)
lim{l - %)Y sax® = s.
x-1- g=0]
Proof. If (aA)lim s, = s, then letting a =% and a = S ~ Ss:-1
— e
we have (A) n);o a = s, i.e.,

But ‘E: 8, X =8 * L (5 - s5..)%¥ = (1-x) XL s,x* and the conclusion

i s obvious.

conversely if

x-17
from
(1 - %) X sp%x* =85 + 2 (sa = Sp-q )%
n= n=1
we have -
lim ([so + Z(s. - 5.1 )xX"] = s,
x-1" n=0
i.e., =
(A)so + 2 (Sa - S3-1) =5
n=1
and so

(A)lim sy, = s.
n—e
The analog of THECREM 1 can be stated as follows:

THECRAV 3. If lim s, = s, then (A)lim s, = s.

n—e n—e

N

II. SPECIAL TAUBERAN THEOREMS

As we have already pointed out, an A-sumable series is not necessarily
convergent.

is knownn as a Tauberian problem in the theory of A-summability.

theorem we conclude from the summability of a series
@

hypothesis about {a }, that Zoa, converges. Tauberian theorems gain
n=

their name from the following theorem published by A. Tauber [1] in 1897 in
which he gave the simplest converse of Abel's theorem.

THEOREM 4 (Tauber's First Theorem). If (A) z:a, =s and a = o(l/n) as
- n=0
n - =, then 3 a =s.

Proof. Given € > 0, choose ng such that for all n 2 ng we have:
(1) |na; | < €/3

lal + 2lap] + -o- v njm] €
(2) = - < 3
1 - A €
(3) lf(l-n)-—5|—lkgoa,(l—n)_ﬂ( £
We have for n» ne:
-
- = - - 1
s £{x) s+ 12:0 a (1 x) =y a;x!'.

Since 0< x <1, we have

(L-x') = (L-ox)(l+x+ -+ +x1)<i(l -x)
and e -

la | =Lz*'|‘<';—n for i>n)>no.

Thus

-»
- - - € '
Isa =8| <J£x) - 5] + (2 x)igliau * 30ty X

< 1£(x) - s] + (1 - x)iglliad +

e €0
n(l - x)

Choosing x = 1'% we get by (2) and (3) that

1 1
lse - sl <l£1 -2 - s +;i);|ia.| +5<i+ s

Thus @
a = 1li = s.

Lo = lma =
~_In the proof of this theorem we have used the fact if _ = na then
limea =0 implies ® g
nN—e . &

lim S o + to 0.

n-e R
Consequently the condition na = 0 as n - « could be weakened by
assuming only that

a | 2ag | e n

-0 asn-— =,

This is done in the following theorem.

This problem of determining which A-summable series are convergent
In a Tauberian

a, and an additional
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THEORRM 5 (Tauber's_Second Theorem ). If (A) nZ_:oa = s and zoia, = o(n)
i=

as n -~ =, then Za. = ‘8.
n=0

Proof. Define w, = iglia‘ fornn=1, 2, ..., and we = 0. Then
-» -
_ W ow Bl _ £~x"‘ ]
f(x)—a°+n§1 n #-a°+n§lw'[n n+ 1
= + i w, [x‘ 5 sk . ]
2 n=1 ° n+1l " n(n+l) ‘
since 2 X ntlx -t | ox -t x
n "~ n + | n(n + 1) nt+1 " nnt1) °
We have
- -
- _ Wy X* wxt
(4) £ =2+ (L-x Xy BES 4 ) BES

By hypothesis % =o0(n) as n-®. Thus wy/(nt 1) =0(l) @as n-=

o0
and by T O M 2 1-x)2 ML . 5(1) as x - 17. Since £(x) - s as

n=ln+ 1
x = 17 we obtain from (4) -
—_ .,
lim_ n=l n(n + 1) 8 =
x-1
since =, ~-= o(l/n), as n = ®, py Tauber's Pirat Theorem we obtain

2 n + 1)

n§1 na+ D) -8 % e,

N N
- a = M [}: W s Vaey | M
= o Llim ngl n(n + 1) lim n=l ®* n N+ 1
N N-=
= m as v = o(N), as N ==,
Therefore i
= 8.
n—Oa'

In 1910 J. E. Littlewood [2} replaced the condition a = o(l/n) by

the more general a = 0(1/n). Littlewood's proof was complex. Other

proofs remained complex in spite of the number of researches {3], [41, {51,
{6) devoted to it. In 1931 Karamata {7] essentially simplified the proof of
Littlewood's theorem by means of the following theorem.

THEOREM 6. If a, >0, forn=0 1, ..., and
- 1 -
(5) ,an‘x.~l-x as x = 1
then
T
5'=i§03‘~n as n ~ @,

Proof. By the Weiératrass approximation theorem if g is continuous on [0, 1]
then for any € > 0, there exists a polynomial Q such that

max [g(x) - Q(x)] < %t- For all xe¢[0,1] we have p(x) = Q(x) - % f
0<x<l
< g(x) < Q(x) + -g-‘ € = P(x). Thus we have constructed polynomials p and

P such that
(6) pix) < g(x) < P(x) for all xe[0,1], and
1 1
(7) Lisw - peotax<e ana [teoo - goorac< e
Next suppose that g is continuous on [0,1} except at c ¢(0,1) where
gle~) < g(ch). We can still construct polynomials p and P satisfying
(6) and (7) above. Let 6 < min {e,e-1) and define:

g(x)+%c, x<c-6
Dix) = {max(x(x),g(x)+elsl, c-6<x<e
g(x)+-i-t, x>c

X

g(x) --:-s, <c

P(x) = {min {4 (x), g(x) '%‘(], c<xgcts

-1
g(x) 3 € x>c+ b
where £ and ¢ are linear functions such that:
- _ - 1 1

He =6) =g(c™8) + g€ g0 =gieh t2¢,
- -1 -

Le) =gleT) ~F € and L(c+6):g(c+6)-%g,

Clearly ¢ and $ are continuous and Q(x) < g(x) < &(x). W can find
polynomials r and R such that

|d(x) - R(x)| <%e, and (e (x) = r(x)| <%¢,

\—m[n

Figure 1

B
-

0 c-6 c+b 1

We have 1
p(x) = r(x) - 2 ¢ <olx) < glx) < Bx) < R(x} + % € = P(x)

and (6) is satisfied. Let N be the larger of the two values

mx (&%) .= g(x)], and max {g(x} -e@x}]. Ve let & = €/48 < min {c,c-1).

0<x<1 .' , 0<x<1
Then as 1
P(x) ~ g(x) =7 € + R(x) = &(x) + Hx} = g(x),
we have 1 5
1 -~ c 1
Pix) - ax < = -
Lpea - soatex <3 e ([T o T0m - goex
< % € + % € + % € = €.
Similarly g(x) - p(x) = .2:5 to(x) - r(x) + g(x) ~e@(x) and so
1
1 c c+6 1
St - peotac < 3o 5T 1100 - sporax
cresre L oo
2 3 z '

and thus .
jo'lg(x) - plx)lax < ¢.
Thus (6) and (7) have been satisfied.
Next we show that the hypothesis (5) implies that

S, 1
(8) Lim )@ P(x*) =fP(t)dt
0

x~1" n=0

for any polynomial P. It is sufficient to consider the case P(x) = x*.



4 Thus we have to show

: 1 1
lim Za.x‘“‘ =TI =_/c; x* dx.

x-1" n=0
®

Let n(x) = (1- x)Za.x' -1 Then nu(x) -~ 0 as x = 17. We have
=0

Z“ 1

S s+rke

l( x) a, X' T
n=0

1 - x? Z B+ka 1
L+ x4 *o- 4+ x* n_a.x -k+1l”

0
=| n(x**1) & 1 1
L4+ X+ *2° + x° L+x+ - +x “k+1
X+l 1 -
< [ntx )|+|l+x+'°'+xr—k+1l 0 as x - 1.

Next we show
=

(9) lim (1 - x) Za.x‘g(x‘) =flg(t)dt,
0

x=1" n=0
for_any a wpich is continuous everywhere except at ¢, {0,1] where

9(c”) < g{c™). | et p and.P be the polynomials havin roperties (6) and (7).
Since a3 > 0 for np= 0,1,..., andp g)zx)ny P(x) fogJ px ep[0,1] vgle)have M

lim (1 - x)Za.x'g(x‘) < Tim (1-x) Za,x‘P(x‘)
=0

x-1" n=0 x-1"

1 1
_/o'P(t)dt < _/[).g(t)dt + €.

Since ¢ can be chosen arbitrarily small we have

— £ l
1:I.m_ (1 - x) Za.x'g(x') S_fg(t)dt.
n=0 0

x—-1

In

By a similar argument we obtain

1
Lnm (1-x) ) axgl) > [stae,
0]

x=1 n=0
and (9) follows.

Finally, define g as follows:

o, te [o'e-l )
g(t) = , .
1/t, t efe?,1]
105

Then flg(t)dt =1 By (9), given ¢ > 0 we can choose 6 such that
0
0<6<x<1 implies
|(1 - x) D axtg(x) - 1| g

n=0
1 n
Then for n > , we have l(l -~ et/n) Zag - ll <e, i.e.,
= i=0
log 3 . i
; s, l - el/®)s 1
1im (1 - e¥/*)s, = 1. Since ;‘ =T - )n and lim Y YLy
o o
=1 we have lim 5 = 1, i.e., s ~n, as n =~ =,
N

Nov we can give a simple proof of Littlewood's theorem.
=
THEOREM 7 (Littlewood's Theorem). If ‘A‘E a =s and a = 0(1/n) as
n ==, then n=

<

Proof. since a = 0(1/n) we have |na,| < c for n=1.2,..., and so
[£°x)] < Dontn - Vg |x*"® <c Do (n - x-? = —S |
7=0 n=0 -
First we show that £'(x) = o(1/(1 ~ x)) as x - 1~. Define
x' =81 -x) +x for 0<6< %‘ . Then by Taylor's formula
£x') = £(x) + 6(1 - X)E' (X)) + 3 67 (1 - x)?£"(C)
for x<{ < x'.

Thus £ix' £ 1
(1 -x)f'(x) = ok - 2 6(1 - X)),

1 (2 - x)£* (%) s]ﬂx__Lg_f(ﬁ_L +%6c.

and so

Choose 6 < €¢/c. By choosing x sufficiently near to 1 we obtain:

'y =
£{x - £{x < £ Thus for x sufficiently close to 1, 11 = x) £t (x)]

, i.e., £'(x)2=o(l/(1 - x)) as x - 1.

Using this result we obtain

_ na, -1 = 1 £'(x) q ™
n§=E[1 ’—c‘]x‘ i B TR " e ~ T as x - 17.

Since (1 - na,/¢c) > 0 for every n, by THEOREM 6 we find that 106
iy} l . : -
ia, ~n as n-=, i.e., = Z[l - i‘-aJ] -1 as n =, Therefore
é < 1 ¢
n

E 1_2, -~ 0 as n-==, i.e., Zia, =of(n) as n- =, Thus, the
i= i=1

hypothesis of Tauber's Second Theorem is satisfied and consequently

)

n=0 n
The two conditions a = O n and E ia; = o(n) describe different
i=0
sets of sequences. We illustrate this with the following examples. We

n .
have (-1)®/n = 0(1/n) yet  2(-1)! = # o(n). Also
241 i

2
2. (-1)" log i 2. log
(-1)*log n 12;1 iS5 21 - 1
= # 0{(l/n) yet o = >n o(l)
| 28 ~ 141 2
as 1og 2i - 1 2i ~1°

If we replace izrj:lia; = o(n) or a = 0(1/n) by the more general
iizlia‘ = 0(n), we find that rgoa, does not necessarily converge. For
example, let a = (-1)>. We have already seen that {(~1)®*) is A-summable

and that ni;l(—l)' does not converge. But
ifli(-l)‘ = i 2i - 'il(zi “1) =n(nt1) . M@ =n=0(2n). However
= i=

we can prove the following theorem.
=

So#Sy +rcts,

then s

OEMSB. 1f (a) ). a =s and v

=0 & i
s = Ea,, for n =
ix0

Proof. Let a = IT'H_ i{LoS’ for n=20,1,.... Then
f(x) = (1-x) Z sex' = (1 - x)? Z(So tg + o0t o5 and thus
i=0 =0

as n =, where

£(x) = (1 - x)? Z (i + V)oyx* = s as x - 17,
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If we divide by (1 - x)® and integrate, we get
X
f(t)dt
(10) oy xt*l = [—Ll—)—
= o (1 -¢F
Since £(x) ~ s as x - 1- wehavefor 0<1-6¢<tg<x<1

fxi_s'_‘). dt < [x —E(t) 4 f M)_ at.
1-b 1-6 1-6

-—
(™
1
[
~—
©
|

(1 - t)? t)3
1-6 x
£(t) 8 - €
—g(l't)'dt+gi")l16

fl-b——(—)—f” at + lere) ‘x
)

Thus

O\
®
=
1o
[ad
"
]
1
(13
4

n

- t) 1 - t)

Multiplying by 1 - x and subtracting s we get, since

£(t £(1 -6)
/__Ut—)h 1 -6 £ , that
X 1 -6)1f(1 -6
o [ o« e oo [ atpren]
i.e., I(l-x)/‘(:L ).dt-s < et (1 -x)c £ 2¢ for 6 <x<1,

as f is bounded for such x. Thus

X
(11) tm (1 -x [ =2 ae = s,
- (1 - ¢t)
x-1 0
From (10) and (11) it follows that
(12) l-x)Zo,x -8 as x -~ 17,
i=0Q o
From this and (1- x) Ls,x‘ - s asx - 17 follows
»1=0
(1 - x) E(s; o0y )x* =0 as x-17.
i=
Since L2}
n
. 1 D DY
8 -0y = k;o[a‘_n*'ls“] = n+1 o
and n
1
-M < n 1 kglka. < M

we have (s; -0, * M) > 0. Then from

(l-x);(s; ~0y +MX = (1-x);(s, ~o)x +M = M
=0 =0

as x = 17, and from THEOREM 6 we conclude
n

1 M) - M as n-®
= (8, - 0y + M) '
1=
i.e.. % Er (sy —oy) -~ 0 as n-e=,
i=0
Since s -0y = (i + 1)ay - i@y -0y = iloy - 0y-y) We have
n

2 i(oy - 0,-,) = o(n) whére o_, = 0. Finally from this condition and
i=0
(12) we have by THEOREM 5 that

;(01 -01-1) = s.

In 1913, [andau [B) weakened the Tauberian condition further, as follows:

©
THEOREM 9. | f (A)zﬁa. =8 and

n+k
- as 6
w(b) = 1_,11' 1Hns | o™ 0 -0
then %
)T

n=0
Proof. By hypothesis w(6) must exist for some 6. If 6 > 2, w(2) exists
since

n+k n+k

< .max
= 1Kk<Bn

max ay
1<k<an | &4

1f 6 <2, let mbe the greatest integer such that (1t §)* < 3 Then for
1< p< 2n we have

n+p m-1 | n(l+§)?*? n+p
Za‘ < ag + ay
n+l 3=0 | n(146)%+1 n(1+6)" +1
fm_: n(1+6)! +k
< . a
S 4 3 1
£ 1cxFatiee) TN
and so
l'l+p
w2) = Tim max | Ya | < m+ (w2 + ) < e
@ 1<p<2n n+l
Next we show 109
n
(14) > ia, =0(n) as n-s.
1=1 n+k
Let (n,8) = max a ! =[ n + 1 g
P 160 nZ;lx . 1 2“1 and ng 2'\ .
Then
T SPED N SN SR YR

X=0 [x+1]<‘<[2 ] x=0 n<i<ng

We have by partial summation

Z 1a, = Z i(sy - 83-1)

ny <icng n <idng
Ny ng -1
= Dis - X (i+ s
m n -1
-1
= = rz; 8 + (ng - nx)sls +n (5-‘ - 5-;1)
i.e., ng =1
(16) ia, = E : (s.g -85)+n (s..a - s.l_,).
m <icng n
Since n +{ng-n; ) ny +{i-ny )
s.2 -8 = a; - a, ¥
j=n j=m
we have m -1+k
Sy, - S < 2 max ag | .
o 1 - -1 4
| a | <k<ng - (ny 1) =

Thus

(7]
[
]
[}
0
-
N

= -1 :
Zp(n., ™ = 1 ), for m-1< i< ng-1,



and from (16) it follows that

; - -1
T iag | £ [Z(na-nx)+2nx]p(n., — )
£ 2ngp(ma,2)
since
g - (my - 1) ng
™ - 1 < - 15_ 2.
110 Using this inequality we get from (15) .
n = N N @ 1
dia| < 2§[x p([x . 2) < 2np(n.z)>‘z=;J X
i=1 2 2
< 4np(n,2)
i.e., n
L1 5a| ¢ 42y .
n i=
Consequently n
iim = ‘ 2 ia | < 4TI p(n2) < 4w(2) < e.
PR e 1 e

Thus the relation (14) is proved.

3 n
By THEOREM 8, from  (A) Eo a =s and 21 ia; = 0(n) we have
n= i=
(17) gy, ™ 8 as n -~ *,

It remains to be shown that this and (13) imply LL@ S, = S.

From the identity

n=1 1
{n+ i+ 1) o =1 n +l+i—i)s+Zs
ST+ n O T+1 |n &gt st £ S
we get i
1
2 —— - -
omoas =TT [oe mon o TRT & B
lLetting i = {nb] we have
i
n s e -
lsa = 0apal & g lones ~@al + 757 i Ispen ~ Snl
Thus,
lsl - Sl _<_ Isl 'Un+ll + |U...1 - Sl ,

1
< Floes - ol + 32z [Pnen - sl + loaes - 8]

Given € > 0. Since w(6) ~ 0 as 6~ 0, choose 6 < 2 such that .w(5) < €.
By (17) for any € > 0 and for any fixed 6 > 0, we can choose an N such
that for n>» N we have

S 1 1 1 be e _
5 loges = Goonl £ 3 [Gaus - s| +5 loa-y -8l £ 26 T 26 €.

Thus, for n > N we have
be
s.-s < et mx _|s -s | +5,
l n = 1A<né n+A n 2
and so
Tim |sy -s| < € +w®) +e < 3e.

n~e

Thus
lim s =s
n-e
n

i.e., 2, = s.
n=0

In conclusion we note, that in these few pages we have proven four

Tauberian theorems that took a number of mathematicians 34 years to prove.
Only with hard work does mathematics progress.

*

This article is not original, but expository. |ts results are known
to those versed in series and summability, but the entire sequence of
theorems presented can not be found in any one book.

FOOTNOTES

{1] A Tauber, Ein Satz aus der Theorie der Unendlichen Reihen, Monatshefte
f. Math.,, Vol. 8 (1897), pp. 273-277.

{2] J. E Littlewood, Onh the Converse of Abel's Theorem on Power Series,
Proc. Lond. Math. Soe. (2), Vol. 9 (1910), pp. 434-448.

{31 G H Hardy and J. E Littlewood, Tauberian Theorems Concerning Power
Ser+es ered Dirichlet's Series Whose Coefficients are Positive
Proc. Lond. Math. Soc. (2), Vol. 13 (1914), pp. 174-191.

[4] & H Hady and J. E Littlewood, Abel's Theorem and its Converse, Proc.
Lond. Math. Soec. (2), Vol. 18 (1917), pp. 205-235.

{s] G H. Hardy and J. E. Littlewood, Abel's Theorem and its Converse (L1),
Proc. Lond. Math. sec. (2), Vol. 22 (1923), pp. 254-269.

[6] J. Karamata, Uber die Hardy-Littlewoodschen Umkehrungen des Abelschen

Stetigkeitssatzes, Math. Zeitschr., Vol. 32 (1930), pp. 319-320.

{71 g. Karamata, Neuer Beweis and VerallgemAiRerifg der Tauberschen Satze,
Weétehe ete Laplacesche und Stieltjessche 'l‘ransform_aTBetreffen
Journal fur die Reine und Angewandte Mathematick, ol. (1931),
pp. 27-39.

{8] E Landau, Uber einen Satz des Herrn Littlewood, Rendiconti di Palermo,
Vol. 35 913), pp. 265-276.

BIBLIOGRAFHY

1 Hardy, 6. H. Divergent Series. Oxford: Clarendon Press, 1949..

2. Knopp, K. Theoxry and Application of Infinite Series (2nd ed.), trans.
from 2nd Ger. ed. and rev. in accordance with the 4th ger. ed. by
R. C H. Young (London: Blackie and Son Limited, 1951).

3. szdsz, 0. Introduction to the Theory O Divergent Series. Am Arbor:
Edwards Brothers, Inc., 1944.

4. Titchmarch, E C. The Theory of Functions (2nd ed.), Oxford: clarendon
Press, 1939.

112



113

THE GALOS CROUP F A NCRVAL SUBFIELD
Sister M. Josepha Mcbougall, Rosary Hill college

Introduction. In the theory developed by Galois an interesting relationship
exists between fields and their Galeis groups. Every normal subgroup of the
Galois group of a finite extension field K corresponds to a unique normal
subfield L of the field K. It is this correspondence which I shall demon-
strate in the following example. All the theory used 4n this paper can be
found in [1], (2], (4], and [5].

cyclotomic rield, The polynomial f(x) =* - x  + X -t - x+
irreducible over the field Q of rational numbers, is called the cyclotomic
polynomial of index 15, since the zeros of £({x) are the primitive fifteenth
roots of unity. If a primitive fifteenth root, e(1/15), where e(k/n)

denotes ezaik/n' is adjoined to Q, a normal extension field Ks = Q(e(1/15))

is formed. The field KR is called a cyclotomic field.

Subfields of ®Kg. It follows from the fact that a primitive n-th root of
unity generates all the n-th roots of unity that the field ¥s contains all
the fifteenth roots of unity. The cube roots of unity, 1, e(5/15), e(10/15),
and the fifth roots of unity, 1, e(3/15), e(6/15), e(9/15), e(12/15), are
among the fifteenth roots.

The cube roots of unity are the zeros of the irreducible polynomial
g(x) = ¥ + x *+ 1 and the primitive fifth roots are the zeros of
hix) =2 +3 + +x + 1 The extenfion fields K = q(e(1/3)) and
¥ = Q(e(l/5)) include all the zeros of these polynomials and are normal
extension fields. Since these zeros belong to the field ¥Ks the fields
Ks and Kg are normal subfields of Keg-.

Fhe Gateis group. Since Ks is a normal extension of Q, we consider the
automorphisms of the field Kg Which leave all elements of the field Q fixed.
This set of automorphisms is called the Galois group of the field ks Over
the field Q and is denoted by G(¥Ks.Q).

An arbitrary automorphism from the Galois group G(Ks= Q) carries every
zero of the polynomial £(x) into a zero of the same polynomial, that is, this
Galois group carries a primitive fifteenth root of unity into another primi-
tive fifteenth root of unity. There are eight of these roots so there are
eight automorphisms belonging to the Galois group corresponding to the
cyclotomic field K g. These automorphisms may be denoted as follows:

1+ e{l/15) = e(l/15) Re : e(1/15) -~ e(8/15)
a1 el(l/15) - e(2/15) A, e(l/15) = e(11/15)
A1 e(1/15) T e(4/15) Ma: e(1/15) - e(13/15)
A: e(l/158) - e(7/15) Mmei  ©(1/15) - e(14/15)

114 114

An examination of certain subgroups of the Galois group wi

|
demonstrate the relation that exists between them and the sub‘%l“é’l%i'sox)(, and
K of Ks. Let us look at the multiplication table of G(K,Q).

I A A M A My M3 Ay
I I A A M Re M, Ms Ay
Ag A A Ra My I Ay Py Ma
A A R I M3 A By P My
L) M My Ma A My A I Pe
A, As I Aa My A M3 LY L
All My M M B Ms I Pa A,
Als M3 Ay Ay I My A Ay P
LY Me My Ay R A A Ag I

This is a commutative group but not a cyclic group. sinpce every subgroup
of a commutative group is commutative al | subgroups of G(K s,Q) are normal
i .

The Subgroups of G(¥,Q). The subgroups of G{ke.Q), besides the group
itself, are:
S = (I, A, My, Bys) T o= (I, A&,)
S = (1, Ao Py A‘L‘] T, = (I, A‘] G(Ks,Q)
Sy = (I, Aa, A, 2a) Ts = (I, By, )
E = (1}.
The diagram at the right shows the inclusion S Sa s
relationship existingamong these subgroups. >®<
Now we shall make a study of the sub-
fields corresponding to these subgroups. Ta Ty T
The elements of ¥ which remain unchanged
by the automorphisms of a subgroup S of

G(Kys.,Q) form a normal subfield of K.
The degree of this field is equal to the
index of Sin G(¥Ks,Q).

A Basis fo+ K 3. A basis for the field K¢ iSs formed by raising a primitive
fifteenth root of unity to the 0, 1, ..., 7 powers. In general a basis ig
formed by raising a root of the splitting polynomial to the 0, 1, ..., n-1
powers where n is the degree of the polynomial.

The basis formed by using e(1/15) is {1, e(1/15), e(2/15); e(3/15),
e(4/15), e(5/15), e(6/15), e(7/15)}. Every element of ke has a uniqug
representation as a linear combination of this basis. A typical element



1

a + a;e(l/15) + age(2/15) + a,e(3/15) + age(4/15) + age(5/15) + a,e(6/15)

8 =
belongs to Q.

8 of K has the form:

+ age(7/15),

15

where a,

The following table shows

Every automorphism of G(K s,Q) carries B into another element of K.
what happens to the coefficients of the basis elements when the automorphisms of G(K s,Q) operate on 8.

Automorphisms

s
e & e
N £
. 1 & & & & 5 G
N R 2 R T
. voT
o o 1]
L)
]

- §
] I S I I A )
\£+7+|2|‘.€
e 7 f & o & 1
[} Illﬂln.,‘
= N R e
NEAEE R A
s o o Fon d
& L] 1 L]
[
B Y A g
) P R +
e & 7 & & & 8§ &
i++l [ I |
sl & & & &
] ]

. &

] Y S T S
\;+|m:€++..
mld s 0a ¥ ]
P I & o
ol T L4 1
] L)
B, T 88 g1
n ¢ @
N A 2 T T B A
o & ! ! @
]
- ) £ 2 &
w ] 1 + o+
e & & & & & & &
: L B S D e |
= g ) & &
| |
@
]
¥
S A A A
DU SR T SR T B
! HL S S N T S 4
A SR R SR MR N
& @ +
-]
- 0 e
U R Y . £ &
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Fhe subfield Corresponding te Sy . An examination of the above table shows
that if the automorphisms of §; are to leave 8 unchanged the necessary
condition isthat a3 =a =.a =a =a =4a = 0. The cube roots of

unity 1, e(5/15), and e(10/15) are fifteenth roots of unity. By examining
the elements of s, we see that under each of them 17 1, e(5/15) - e(5/15),
and e(10/15) - e(10/15). The group $, leaves all the elements of K fixed,
that is, 8 is the Galois group of G(Ks,Ks).

Fhe subfield Corresponding to Ty . An examination of our table shows that
if the automorphisms of T, are to leave 8 unchanged the necessary condition
isthat a3 =a =2 =0 and a; = ag. The automorphisms of T, leave
elements of the form a *+ a e(3/15) t a e(6/15) - age(12/15) fixed.
{e(3/15), e(6/15), e(12/15)]} is a basis for Ks; therefore Ty leaves Kg
fixed and is the Galois group G(Ks.Ks).

Fhe subfiedrd Corresponding to Sz. An examination of the table shows that if
the automorphisms of s; are to leave B unchanged the necessary condition is
that a =a =a =a =0 and ay = -3, = a. The sun of the primitive
fifth root of unity e(3/15) and its inverse e(12/15) is equal to

2 cos 21/5 = (-1% J/5)/2. This sum remains unchanged when e({3/15) - e(3/15)
and e(12/15) " e(12/15) and also when e(3/15) -~ e{(12/15) and

e(12/15) - e(3/15). The extension field L = Q{(-1* J/5)/2) is unchanged
by &, that is; I, corresponds to S;.

The subfield Corresponding to T;. For # to remain unchanged by the elements
of T, it is necessary that a =aQ, a =a = -a and & = 0. Thus elements
of the form a_ * ae(5/15) - a (e(3/15) + e(12/15)) * a (e(1/15) * e(4/15))

remain fixed under T,. The composite subfield L; = Qe(5/15), (-1+ ./5)/2)
of degree four corresponds to Ty .

The Subgroup Corresponding to T3 . The sun of e(1/15), a primitive fifteenth
root of unity, and its inverse e(14/15) equals 2 cos 2#/15. The sum is
unchanged by the elements of Ts, that is, L = Q(2cos 2r/15) corresponds
to Ts. The degree of Ls is four since the order of Ta is two.

The subfield Corresponding to 8;. The
elements of ¥ which remain unchanged
under the automorphisms of 8y form a
field X. The author is making a further
study of the nature of these elements.

>

Relationship Of Subfields in Ks. The
inclusion relation among the subfields

of K s has the same structure as that of
the subgroups of G(Ks.Q). The relation-
ship is, however, in the inverse order to that of the corresponding subgroups.
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2 §‘ Q ) -,“g sH TWO IDENTITIES INVOLVING FOLYGONAL-NUMBER EXFONENTS
+ — @~ — @ O
-~ |0 [ 0 & Myron S. Kaplan, Temple University
831 & AR o™ ’
[ 1] ~ + HN =]
LR ~N B I m O
11 W [ 2133 o :
58 ’g v < oo >4 In this note we generalize two identities due to Euler involving square
mam [ q A2 85 [1; 2771 and triangular [1; 2841 numbers, to polygonal numbers of arbitrary
== - :.Sﬁ order. The development parallels that used by Euler (1].
—_ o~ Y
v = 8 In 1636, Fermat gave the general form of the u-th polygonal number of
E S 5 5 order m+2, denoted here by P(u,m), as
B, —~ (R 1
= L & = (1) P(u,m) = 0 m{u® - u) + u.
—t L] + -
E I.:T EA zg We obtain immediately from (1) the following result:
Z 4 SNw g9
o o > 22 el LEMMA. For any integral value of m,
3 # 5 =S 14
he — & 5§ o2 3& (2) P(n+l,m) - P(n,m) =1 4+mn, n=0,1,2,c...
) n o~ + 1~ [}
“ ~ ~N - — [
L] N, n n o~ 20
- [ & AN g . .
w v 2 = al w5 1. GENERALIZATION OF THECREM 345 (1; 277]. Let the differences in (2) be
E s o v o3 2 - used as the powers of x in forming the infinite product
o o 2 0
+ Jd & o=
2 o8 ae Q (x) = (l+x)(1+xl+m)(1+xl+2m) e,
E & & ET n
g l We now use Euler's device of introducing a second parameter a. 119
0
0 4
: & =1 Let
2] [*] -~ ”n - o 0
&
g g‘g E g & & & & ’ K(a) = K(a,x) = (1+ ax) (1+ axl+m)(1 + axl*2m)
3 3 -
< » o =1+ ¢catcea®t -
where ¢, = ¢, (x) is independent of a. Clearly
K(a) = (171 ax)K(ax™ ,
or
Ltgatga® t... = 1tayateaga+ coaZm2™ 4 we
Hence, equating coefficients of a, we obtain
[} :X+c‘xm’ Cz :c1XIn+1+c:x2m, e
c_==¢ x(s_l)mﬂ'-&-cxsm, e

s s=-1
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so that

x(s—l)m+1

(3) s = sm €s-1
1l1-x

xl+(m+l)+(2m+l)+' co+[(s-1)m+l]

= 2m
x

(1= x™(1 - x™ <=0 (1 - x5

But
1+ (m+l) + (2m+l) + »=+ + [(s=-1)m+l] Sop(s,m) .

Thus (3) mey be written as

xP(s,m)
39 s = _.m _ .2m sm, °
(L= x)(1 = x"7) »+« (1 -x)

1t follows that

(4) (L+ax)(t ax1+m)(1 + axl+2m) cee =1 +—Lm
1-x
2 m+2 3_3m+3
% ax + ax + aes
m 2m m 2m 3m
(1 -x)(1-x"") (1 -x)(1 ~x")(1 -x"7)

For the special case of a = 1, (4) becomes

(5) (1+x)(1+x1+m)(1+x1+2m) vee = 14 i
1- %"
m+2
+ —_—— t s
(1- x™ (1~ 2™
In another form, (5) is
» ) « -
(5" I_I (1 + xHm 1+Z RAC m). .
3j=0 a=1 FI 8 _me)
j=1

These infinite series and products are all absolutely convergent for

|x] < 1. For the special case of m = 2 . Euler's identity f
self-conjugate partitions (Ll; 277, 279]. =1 becomee wiers tdentity ftor

2. GENERALIZATION CF THEOREM 354 (1, 2841 An altered form of one of
Jacobi's identities (1; 2831 may be written as

-] a
) n ((1 + x2XP¥khy () | 2kntkth, (1 - x2KnH2K) ) Z o +hn
=0

n=-o

with 0 < |x| < 1. But (1) can be rearranged as
1 1
> m? + (1 - 3 m)u.

Thus, by setting k:%‘m hzl-%m, (and n =u) in (6), and noting

from (2) that n is non-negative, we now have for the right-hand side of (6):

KP(n,m ;
o=

this is the infinite series with polygonal-number exponents, which is
equivalent to an infinite product—-+.: the left-hand side of (6). For
the case m=1 (x =h = 1/2), we have Euler's identity (1; 284] involving
the triangular numbers.
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REFARCH FRCBLBEVIS

This section is devoted to suggestions of topics and problems for
Undergraduate Research Programs. Address all correspondence to the Editor.

Proposed by LEO MOSER.

I f two numbers are expressible as saum of two squares then their
product is so expressible. If n=2 n n*t1 are each so expressible
then soare n -1, nd ? +1 sincethe firstis (n=-1)(n+1), the
second is P + 0 and the third P + 1% Since 8=22 +2*, 9=3 +0
and 10 = 3 + 1* it follows that there are infinitely many triples of
consecutive numbers each expressible as sum of two squares. On the other

hand, since no number leaving remainder of 3 on division by 4 iS so expres—
sible, no 4 consecutive numbers are so expressible. Perhaps one could prove,

however, that apart from every 4th number, longer blocks are expressible.
For examples is it true that there exist infinitely many blocks of 7 con-

secutive numbers, 6 of which can be represented as sum of two squares?

Proposed by FAUL C. ROSENBLOOM.

Differential actuations — Differential Geomeiry. .

A space curve is determined, to within a rigid motion, by the curvature
and torsion as functions of arc length, x(8) and t(8). The curve can be
constructed by solving the Riccati equation

g8 216 _ @
38 ir(l + - B

2
or an equivalent linear differential equation of the second order.

In principle, therefore, theorems on such differential equations can be
interpreted in terms of the geometry of space curves. |nvestigate such
interpretations and find the geometric implications of the theorems on
differential equations.

References: Struik,
Eisenhart, Differential Geometry
Coddington and Levinson, Theory of Qrdinary Differential
Equations
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FRCBLEVI DEPARTMIENT

Edited by
M. 8. Klamkin, Ford Scientific Laboratory

This department welcomes problems believed to be new and, as a rule,
demanding no greater ability in problem solving than that of the average
member of the Fraternity, but occasionally we shall publish problems
that should challenge the ability of the advanced undergraduate and/or
candidate for the Master's Degree. Solutions of these problems should
be submitted on separate, signed sheets within four”months after publi-
cation.

An asterisk (*) placed beside a problem number indicates that the
problem was submitted without a solution.

Address all communications concerning problems to Mr. M. S. Klamkin,
Ford Scientific Laboratory, P 0. Box 2053, Dearborn, Michigan 48121.

FRCBLAEVIS FOR SOLUTION

172. Proposed by John Baudhuin, Sparta High School, Sparta, Wisconsin
(student).

Given: Semi-circle 0 with diameter c D
AB and equilateral triangle
PAB; C and D are trisection
points of AB (i.e.,
AC = € = DB).

Prove: E and F are trisection points
of 3B,

Note: A synthetic proof is desired.

173. Proposed by K. . Murray, New York City.
I f P
D' (x)/x = ¥ (x)/x**H,
show that
DY, (x) = xX*D"*? @(x).

174. Proposed by €. S. Venkataraman, Sree Kerzala Vanna College, Trichur,
South India.

Find the locus of a point which moves such that the squares of the

lengths of the tangents from it to three coplanar circles are in
arithmetic progression.

175. Proposed by Ri C. Gebhart, Parsippany, Nev Jersey.

The twenty-one dominoes of a set may be denoted by (1,1), (1,2), ...,
(1,6), (2,6), ..., (6,6).

(a) Is there any arrangement of these, end-to-end with adjacent ends
matching, such as ... (3,1)(1,1)(1,6)(6,4) ..., such that all
twenty—-one dominoes mey be involved?

(b} Wha conditions must a general set of dominoes satisfy in order
that such an arrangement in (a) exists?

Editorial Note: A related problem would be to find the largest and
the smallest chain which can be formed with a given set of general
dominoes.

176.

150.

159.*

160.

Proposed by M. 8. Klamkin, Ford Scientific Laboratory.

Determine all continuous functions F(x) in [0,1], if possible, such
that F(x®) = F(x)®* and

(a) F(0) =F(1) = O,
(b) F(0) = F(1) =1,
{c) F(0) =0, F(l) =1
(d) F(0) =1, F(0) = 0.

SOLUTIONS

Proposed by D. J. Newman, Yeshiva University.

Ag
Given two overlapping parallel
rectangles 2 AgAsA, and
B, BgBaB, and a quadratic B, By
polynomial Q(x,¥). f
show that Q cannot be > 0 A I A
at Ay, B, Pa. A and < O
at 8, Ba, By, B . 5 By

Solution by M. 8. Klamkin, Ford Scientific Laboratory.

The result is also valid for any function Q(x.y) Wwhose graph
divides the plane into only two regions. For then 8 would have the
same sign as &, A, As and A. ~ pr
Consequently, we only have to
consider the case when Q(x,y) = 0

II
I 5
is a hyperbola (or the various M n
degenerate cases of straight lines). A >ﬂx< ( I:
A line through B, || A Rs must / \

intersect both branches of the
hyperbola exactly once each. Whence By lies in region I or III and 124
has the same sign as », .

III

Also solved by H. Kaye, D. Smith and the proposer.
Proposed by David L. Silverman, Beverly Hills, California.

If A, denotes the largest integer divisible by all the integers less
than its nth root, show that a3 = 24 and As = 420. Find a general
formula for A,.

Editorial Note: A partial answer is given by Mathematics Review 1085,
Aug., 1965:

'‘Ozeki, Nobuo
n the problem 1, 2, 3, au.y [0 *}|n.
J. College Arts Sci. Chiba Univ. 3 (1961/62), 427-431.

It is proved that 720720 is the largest integer which is divisible by
all the positive integers that do not exceed the 5th root of n.

Similar results for x*h roots are proved in the cases 6 < k £ 10.

The results for k = 2, 3, 4 are known."

Proposed by Sidney Kravitz, Dover, Nav Jersey.

I have here," said the editor, "a cryptarithm which shows a two digit
number being multiplied by itself. You will note that the subproducts
are not shown, only the number being squared and the final product.”

"Well," said the reader, "lI've tried to solve this cryptarithm but
the solution is not unique. It is possible that I might be able to
give you the answer if you told me whether the number being squared is
odd or even. "

"The number being squared is odd," said the editor.
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162.

"Good," said the reader.
know the answer."

"1 was hoping you would say that. 1 now

What is the solution to this unique cryptarithm?

Solution by Charles w. Trigg, San biego, California.
Consider all the following possible patterns with their solutions:
1 AS = (DEA 42° = 1764, 48° = 2304, 93° ~ 8649.

2. AB® = CDBE AB = 53, 57, 59, 79, or 54, 72, 84.
3 AS = BDE M = 52 or 87.

4. AS' = ACDB; AB = 95 or 96.

5. AS' = cppB; AB = 35, 65, 85, or 46.

6. AS' = cpcB; AB = 45, 81, 91, or 56.

7. AH' = COEB;, M = 36, 86, or 51, 61, 71
8. AH' = cDE M = 34, 58, or 47, 67.

9. AH' = caaB; M = 76.

10. APF® = BODB AB = 41 or 75.

11 AB® = CDBE; AB = 32, 78, or 82.

12. AP = CBDE AB = 73 or 89.

13. AP = B(DA, /B = 64.

14. ap® = (BAD, A = 74.
15. AH' = Bcac; AB = 63.
16. AP = ACDE AB = 98.
17. ap® = CADE AB = 37 or 49.
18. AB® = (DAE AB = 43 or 69.

19. A = CADC A = 68.
20. A = GAAD, A = 83.
21. AB = ACDA; AB = 97.
22. M = EC M = 30

23. AB = CDED; AB = 92.
24. AA = CDEF; AB = 33 or 44.
25. AA = CDEA; AB = 55 or 66.
26. AA = ACDE AB = 99.
27. AA = CDHED AB = 77.

The three digit possibilities are given by
AF° : CDB(16,31); AcCD(13,14); CDE(17,29,18,24);
ccB(15,21); CAB(25); BCB(26); BAC(27);
CBD(28); CAD(23); CDA(19).
AA%  AcA(ll); cpc(22).
From the question asked and the answer given it follows that the

particular pattern must lead to only one odd value of A and more than
one even value. This corresponds to (1) and the value

937 = B8649.

Also solved by H Kaye, Paul Meyers, K. S. Murray, M. Wagner, F. Zetto
and the proposer.

Proposed by M. s. Klamkin, Ford Scientific Laboratory.

|f a surface is one of revolution about two axes, show that it must be
spherical.

163.

Solution by Sidney Spital, California State Polytechnic College. 126

Denote the two axes of revolution by A and B and their intersection
by 0. Consider a plane through O normal to A. Its intersection with
the surface is acircle all of whose points are equidistant from O.
Revolve this circle about B. 1t sweeps out a spherical zone all of
whose points are equidistant from 0. Nw revolve this zone about A,
thus increasing the width of the spherical zone. By continued rotations
about alternating axes, the entire sphere will be covered.

Solution by the proposer.

1 Also solved similarly as above, but one has to first prove that
the two axes intersect. Assuming the surface is bounded, it follows
by symmetry that the centroid of the figure must lie on each axis and
thus the axes must intersect. Also, the surface could be a spherical
annulus.

2 Analytically the functional form of a surface of revolution about
the axis

XxX-a _ y-b _ =z -c¢c

A m n

is given by
(x ~a)® + (y -b)® + (2 -c)® = G{x + my + nz) .

This is obtained by noting that the circular cross-sections O the
surface to the axis can be gotten either by intersections of the
surface with spheres

(x=a *(y~"v?*t(z-¢e)P =7
centered on the axis, or by planes
4x + my + nz = p

which are 1+ to the axis. Then there has to be some functional relation-
ship between p and r, say r* = G(p). Since the two axes intersect,

we can choose a coordinate system whose origin is the point O inter-
section and such that the two axes (of revolution) are symmetric with
respect to the z-axis and to the y-axis. Then the equation of the
surface is given by both

2+ + 22 =F(nz + 4x) ,
¥ + Y + 2 =Gnz - Lx) .

Choose x and z as independent variables (y will then be the dependent
one). For all points (x,y,z) on the surface,

F(nz + 4x) = G(nz - 4x) .

Since x and z are independent variables, so are nz * 4x and nz - ix.
The only way a function of one independent variable can be equal to a
function of another independent variable is for both functions to be
constant. Whence,

x® + 4 + 2% = constant,
which is a sphere.

Also solved by James Opelka (incompletely), M. Wagner and F. Zetto.

Editorial Note: The geometric solution suggests a new problem. Given
two axes of revolution meeting at a given angle. Nw starting with a
given point of the figure, how mawy alternate rotations about the two
axes successively does it take to generate the entire surface of the
sphere? |If the two axes are orthogonal, the number will be two if the
point is on an axis (not the center) and three for any other point.

Proposed by Seymour Schuster, University of Minnesota.

Can any real polynomial be expressed as the difference of two real
polynomials each of which having only positive roots?
Solution by the proposer.

Assume, without loss of generality, that the leading coefficient of
the given polynomial Pp(x) of degree n is unity. W can then write

127



"Good," said the reader. ™| was hoping you would say that. 1 rnow Solution by Sidney Spital, California State Polytechnic College. 126
know the answer."

Denote the two axes of revolution by A and B and their intersection
by 0. Consider a plane through O normal to A. Its intersection with
the surface is acircle all of whose points are equidistant from 0.
Revolve this circle about B. It sweeps out a spherical zone all of

What is the solution to this unique cryptarithm?

Solution by Charles W. Trigg, San piego, California.

Consider all the following possible patterns with their solutions: whose points are equidistant from 0. Nw revolve this zone about A,
1. AP = CDEA; 42° = 1764, 468° = 2304, 93° = 8649. thus increasing the width of the spherical zone. By continued rotations
about alternating axes, the entire sphere will be covered.
2. AP = CDEF, AB = 53, 57, 59, 79, or 54, 72, 84.
3. AP = BCDE; AB = 52 or 87. Solution by the proposer.
4. AB® = ACDB; AB = 95 or 96. ’ 1. Also solved similarly as above, but one has to first prove that
the two axes intersect. Assuming the surface is bounded, it follows
5 aF CDDB;  AB 35 65, 85, or 46. by symmetry that the centroid of the figure must lie on each axis and
6. AB® = CDCB; AB = 45, 81, 91, or 56. thus the axes must intersect. Also, the surface could be a spherical
125 7 Ap® = cDEB; AB = 36, 86, or 51, 61, 71 annulus.
8. AR = CCDE; AB = 34, 58, or 47, 67. 2. Analytically the functional form of a surface of revolution about
9. AB® = CaAB; AB = 76. the axis
x-a _ Y- b . z-c
10. AP® = BCDB; AB = 41 or 75. < - =
11 AF® = CDBE; AB = 32, 78, or 82. i's given by
12. AP’ = CBDE; AB = 73 or 89. (x - a) + (y - b)* + (z - c)? = Ggix + ny + nz) .
13. AP = BCDA; AB = 64. This is obtained by noting that the circular cross-sections of the
14. AP = CBAD; AB = 74. surface to the axis can be gotten either by intersections of the
surface with spheres
15. AaB® = BCAC; AB = 63. 2 o
x-a *t(y-bP t(z-¢eP ="
16. ag® = ACDE AB = 98. tered th X b |
centered on the axis, or anes
17. AB' = CADE; AB = 37 or 49. ! v P
4x + my + nz = p
18. as® = CDAE AB = 43 or 69.
9 _ - 68 which are . to the axis. Then there has to be some functional relation-
19. AB = CADC; AB = - ship between p and r, say ? = G{(p}). Since the two axes intersect,
20. AB = CAAD, AB = 83. we can choose a coordinate system whose origin is the point of inter-
_ section and such that the two axes (of revolution) are symmetric with
21. AB = ACDA; AB = 97. respect to the z-axis and to the y-axis. Then the equation of the
22. AB = CDEC; AB = 39. surface is given by both
23. B = e AB = 92. ¥ + ¥ + 2 =F(nz + 4x) ,
24, AA = CDEF, AB = 33 or 44. ¥+ y + 2 = Glnz - Lx) .
25. AA = CDEA; AB.: 55 or 66. Choose x and z as independent variables (y will then be the dependent
one). For all points (x on the surface
26. AA = ACDE AB = 99. ) P .y 2) s ’
F(nz + tx) & G(nz — 4x) .
27. AA = CDED; AB = 77.
Since x and z are independent variables, so are nz *+ 4x and nz - ix.
The three digit possibilities are given by The only way a function of one independent variable can be equal to a
function of another independent variable is for both functions to be
AB°: CDB(16,31); ACD(13,14); CDE(17,29,18,24); constant. Whence,
CCB(15,21); CAB(25); BCB(26); BAC(27); o x* +y* + 2% - constant,
cBD(28); CAD(23); CDA(19). which i's a sphere. 127
aA®: ACA(ll); cDpC(22). Also solved by James Opelka (incompletely), M. Wagner and F. Zetto.
From the question asked and the answer given it follows that the Editorial Note: Th_e geomet_ric solution suggests a new prob_lem. _Given
particular pattern must lead to only one odd value of AB and more than two axes of revolution meeting at a given angle. Nw starting with a
one even value. This corresponds to (d)and the value given point of the figure, how many alternate rotations about the two
5 axes successively does it take to generate the entire surface of the
93" = 8649, sphere? If the two axes are orthogonal, the number will be two if the
point is on an axis (not the center) and three for any other point.
Also solved by H. Kaye, Paul Meyers, K. S. Murray, M. Wagner, r., zetto
and the proposer. 163. Proposed by Seymour Schuster, University of Minnesota.
162. Proposed by M. S. Klamkin, Ford Scientific Laboratory. Can any real polynomial be expressed as the difference of two real

. . . polynomials each of which having only positive roots?
If a surface i s one of revolution about two axes, show that it must be

spherical. Solution by the proposer.

Assume, without loss of generality, that the leading coefficient of
the given polynomial P(x)} of degree n is unity. W can then write
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164.

m Ng
P(x) = I Z a; b
H { +i=1x-k,} {X-1+i§1x-h>
i=p -4

where a;, by >0 and n +n, = n (thek and ¢, are the positive
integers 1,2,...,n). Let

n ng
£x) = A+ 2 —A_ f2(x) =A -1 + 2 —B |
1 (%) PR 2 (%) A Racl rer

£, (x) has m Positive poles and n, zeros. I\bN—(’:onsider the graph of
£ (x). By continuity, there must be a zero in between each pair of
consecutive poles which accounts for n, = 1 of the zeros (which are
positive). The mth zero is in the interval (<=, min X )« Since

£, (x) is negative just to the left of min x,, this zero will be
positive (by continuity) if £ (0) > 0. This can be insured by taking
A sufficiently |large. Similarly, f3(x) has n; positive zeros. Then

P(x) = £ (x) Fl (x - i) - f£5(x) Fl (x - i)
i=1 i=1

gives an affirmative answer to the question.

Also solved by Robert J. Hursey, Jr. and K S. Murray.
Proposed by F. Zetto, Chicago.

Which numbers of the form 300...007 are divisible by 37?2

Solution by Charles Ziegenfus, Madison College.

Let
n
N = ) ¢1l0° ,
i=0

where 0 £ e < 999. Since 10°®* = 1 (mod 37) for n > 1, we see that

n
N is divisible by 37 if and only if Zc, is divisible by 37. In
i=0

the special case of 300...007, if the 3 occupies the (3k + 2)-th

position, k=0,1,2,..., then 300...007 isdivisible by 37.

R. C. Gebhardt, Parsippany, New Jersey, and Robert L. Winkler,
University of Chicago, in their solutions note that, equivalently,
the number of zeros must be divisible by 3. Gebhardt also gives the
following table:

37 = (37)(1)
30007 = (37) (811)
30000007 = (37)(810811)
30000000007 = (37) (810810811)
30000000000007 = (37) (810810810811)

Also solved by H Kaye, P. Myers, D. Smith, M. Wagner and the proposer.

EX IN THE MCDERN MATHEMATICS QURRCULUM
-- a letter to Professor Paul C. Rosenbloom

The following is an unaltered letter received by Professor P. C.

Rosenbloom from the Director of Instruction of School District No. 6,
Greenfield, Wisconsin.

Dr. Paul Rosenbloom
Department of Mathematics
University of Minnesota
Minneapolis, Minnesota

Dear Dr. Rosenbloom:

During the summer OF 1964 you presented an address to the National
Council of the Teachers of Mathematics, entitled "Science and the Math
Curriculum." bpDr. Bmma Carroll heard this talk and suggested that we procure
the tape and use it to help present to our teachers the ideas put forth.
asked one of our students to listen to the tape and present ne with a type-
written copy. Her lack of familiarity with a mathematics vocabulary produced
this inadvertent but humorous result.

"Let me start with the idea of sex, which has been considered a sort
of hallmark for a simple modern mathematics curriculum. For purely mathe-
matical purposes you need only the term sex, the idea of one to one corres-
pondence, and the union of sex without common members in the teaching of
addition of integers. For geometry the English word sex is certainly better
than the Latin word, locus.

"In solving some equations in algebra, the solutions are in the
intersection of the graphs of the equation in the system. You don't need
the notation or the techniques of the algebra of sex. Any more extensive
treatment of sex hangs in midair, since the student has nothing to do with
this knowledge.

"The first place i n school mathematics where you can do anything non-
trivial with sex is in the theory of probability. Except for a chapter in
the SM.SG. text and some enrichment material such as that of Glen and
McCully and Professor Johnson, no one has written anything on probability
for school use, below the 12th grade level.

"So long as you stick to pure mathematics curriculum, the critics of
an over emphasis of sex in school mathematics are entirely justified. But,
classification taxonomy is fundamental to the science curriculum. The
whole system of Linnaeus for classifying plants and animals constructing
sex, genus, the family, the species, which form a structure of sex and
subsex.

"Some of our experimental teachers recommend that we throw out our
discussion of the intersection of sex in kindergarten. We won't do this.
First, our achievement tests, test those children who have mastered the
concept very well. Second, the scientist used the concepts very extensively
in their first grade unit on objects and their properties. Here the child
classified objects with respect to several properties at the same time and
the need to form the intersection of sex."

I hope, Dr. Rosenbloom, that you too share ny view that this slight
change produced some "interesting" results.

Yours truly,

SCHOCOL DISTRICT NO 6,
CITY OF GREENFELD

Clyde G. Wallenfang,
Director of Instruction
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Edited by
Roy B. Deal, Oklahoma State University

The Elements of Real Analysis. By Robert G Bartle. Nev York, John Wiley,
1964. xiv T 447 pp.

An elementary introduction to real analysis with precise definitions,
rigorous proofs, biographical sketches, and a wide variety of levels of
problems, some designed to give research orientation.  Based on lectures to
students from freshman to graduate level, often non-mathematics majors, and

covers the topology, differentiation, and integration of finite-dimensional

Cartesian spaces, as well as the Riemann-Stieltjes integral, infinite series,
manifolds, differentials, line and surface integrals, and Green's and Stokes*
Theorems.

Readings & Mathematical Psychology, Volume 11 Edited by R. D. Luce, R. R.
Bush, and E Galanter. Nav York, John Wiley, 1965. ix * 568 pp., $8.95.

With one exception, this volume consists of papers deemed by the authors
and the editors of the Handbook of Mathematical Psychology to be especially
relevant to approximately half the chapters of the Handbook. These articles
partition naturally into six categories: computers, language, social
interaction, sensory processes, preference and utility, and Bayesian statis-
tics. Articles on measurement, psychophysics, reaction time, learning, and
the stochastic processes that are relevant to the remaining chapters of the

Handbook were included in Volume | of the Readings in Mathematical Psychology,
which was published about a year earlier.

Basic Concepts of Geometry. By Walter Prenowitz and Meyer Jordan. New York,
Blaisdell Publishing GO, 1965. xix * 350 pp., $7.50.

A modern treatment of the foundations of Euclidean and non-Euclidean
Geometry with incidence properties for affine and projective geometry as well.

Analvsis, Volume I. By Einar Hille. New York, Chelsea Publishing co. vi
+ 234 pp.

A modern elementary Cours d' Analyse of functions of one variable with
sufficient complex analysis to develop the theory of elementary transcendental
functions, treating rigorously, with historical perspective and many examples
and problems, the topics normally covered in an integrated course in calculus
and analytical geometry.

Fextbook-of Algebra, Volumes I, II. By G Chrystal. Nav York, Chelsea
Publishing Co., 1964. xxii ¥ 584, xxiii + 628 pp., $4.70.

The young reader should perhaps know that these old classics contain a
rich source of complicated classical results in classical algebra and
elementary complex function theory which are often useful.
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Multidimensional Gaussian Distributions. By Kenneth s. Miller. Newv York
John Wiley, 1964. viii T 129 pp., $9.50.

A concise presentation of basic facts about multidimensional Gaussian
distributions (or multivariate normal) for those with basic knowledge in
linear algebra, probability theory, and advanced calculus, including some
applications to Gaussian Noise.

Combinatorial Mathematics. By Herbert John Ryser. Nav York, Wiley, 1963.
Xxiv T 154 pp., $4.00.

An introduction of the same fine caliber as the other carus Monographs.

Presupposes elementary modern algebra, particularly some matrix theory.
Mawy counting arguments of an elementary, but difficult nature are used, which
seems characteristic of the subject.

F+rst Sedrse—+n Mathematical Logic. By Patrick Suppes and Shirley Hill.

An outgrowth of the famous experiments in teaching logic to selected
elementary school students, which develops for utilization in the study of
mathematics the sentential inference, inference with universal quantifiers,
and applications, of the theory of inference developed, to the elementary
theory of commutative groups. Existential quantifiers are not discussed in
this volume.

Lectures-on -Modern Mathematics, Volume I. Edited by T. L. Saaty. Newv York,
John Wiley, 1963. vii + 175 pp., $5.75.

This volume contains the first six expositions in a series of 18 lectures
given at George Washington University and sponsored jointly by the University
and the office of Naval Research. These are excellent discussions by six
of the very best mathematicians, for research mathematicians to learn what
the current trends are in fields related to the specialty, but most under—
graduates should not attempt to read this book.

Mathematical Discovery, Volume 11 By George Polya. Nav York, John Wiley,
1965. 220 pp., $5.50.

Professor Polya continues his illuminating heuristic discussions on the
ways and means of discovery, and a 43 page chapter on "Learning, Teaching,
and Learning Teaching."

Eirst Couwrse--n Functional Analysis, By Casper Goffman and George Pedricke
Englewood cliffs, Nav Jersey; Prentice-~all,1965. xi + 282 pp., $12.00.

A beginning graduate text which i s done so thoroughly, howewver, that 2
good undergraduate student with some elementary general topology., modern
algebra, and a modern advanced calculus course can gain an excellent intro-
duction to modern analysis from it.



132

Distributions, An Outline. By Jean-Paul Marchand. @ Amsterdam, North-Holland
Publishing Company, 1962. ix * 90 pp.

By confining himself to less general situations, the author is able to
obtain the fundamental theorems of both Schwartz and Mikusinski for readers
with an elementary knowledge of functional analysis.

Ordinary Differential Equations. By Philip Hartman. Nav York, John Wiley,
1964. xiv T 612 pp.

Fed
A comprehensive treatment of ordinary differential equations for those in
mathematics, physics, and engineering with a knowledge of matrix theory and
modern advanced calculus, with an impressive collection of classical and
modern theorems and theories on the qualitative stability and asymptotic
behavior of solutions.

Elements of Numerical Analysis. By Peter Henrici. Nav York, John Wiley,
1064. xv T 328 pp, $8.00.

Based on lecture notes for a course at UCLA, and a summer institute
for numerical analysis sponsored by the National Science Foundation. This
book covers quite well the fundamental facets of numerical analysis with many
modern algorithms, excluding linear algebra, eigenvalue problems, and machine
language.

PhilosoghyOf Mathematics. By Stephen F. Barker. Englewood Cliffs, Nav
Jersey: Prentice-Hall, 1964. xiii * 111 pp., $1.50.

This little book in the Foundations of Philosophy Series discusses
questions of truth, existence, and knowledge attained in mathematics, focusing
on geometry and numbers from both literalistic and non-literalistic use with
some interesting comments on axiomatized and formalized systems, the synthetic
a priori, the logistic thesis, the paradoxes, constructivity, and Godel's
theorem.

Conformal Mapping. By L. Bieberbach. Nav York, Chelsea Publishing Co. wi
+ 234 pp., $1.50.

A translation of the last edition (fourth) of Bieberbach's well-known
Einfuhrung in die Konfonne Abbildung, Berlin 1949, covers the fundamental
facets of conformal mapping including a proof of Riemann's mapping theorem
and many examples. For those with a bare introduction to the theory of
complex variables, including use of the Cauchy integral theorem.

NOTE Al correspondence concerning reviews and al |l books for
review should be sent to FROFESSOR ROY B. DEAL, DEPARTMENT CF
MATHEMATICS OKLAHOVA STATE UNI VERSI TY, SI' ILLWATER, GKLAHOVA

74075
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L. J. Adams Applied Calculus. Nav York, John Wiley, 1963. ix * 278 pp.

Shmuel Agmon:  Lectures on Elllptlc Boundary Value Problems. Princeton,
Van Nostrand, 1965. iii T 291 pp., $3.95.

Nathan Altshiller-Courts Geometry, Nav York, Chelsea
Publishing Company, 1964. Xiv 353 pp.

Aaron Bakst: Mathematical Puzzles and Pastimes. Second Edition. Princeton,
Van Nostrand Publishing Company, 1965. vii * 242 pp., $5.50.

Richard E Barlow and Frank Proschan: Theory of Reliability.

Nev York, John Wiley, 1965. xiii + 256 pp.

Beckenbach, Drooyan, and Weoton: College Algebra Belmont, California;
Wadsworth Publishing Company, 1964. x * 438 pp.

W. G Bickley and R. E Gibson: Via Vector to Tensorr Nev York, John Wiley,
1962. “xv * 152 pp.

Emile Borel: Elements of the Theory of Probability. Englewood Cliffs, Newv
Jersey; Prentice-Hall, 1965. 179 pp., $5.75.

Edward L. Braun: Digital computer Design. Newv York, Academic Press, 1963.
xii + 606 pp., $16.50.

J. R. Britton, R. B. Kriegh, and L. W. Rutland: Universitvy Mathematics,
Volume II. San Francisco, W. H. Freeman and Company, 1965. Xxii + 650
pp., $9.50.

Bryant, Graham, and wiley: Nonroutine Problems in Algebra  Geometry and
Trigonometry. Nav York, McGraw-Hill Book Company, Inc., 1965. 89 Pp.

Robert R. Christian: A _Brief Trigonometry. Nav York, Blaisdell, 1965. xii *t
108 pp., $1.75.

Haskell Cohen and B. E Mitchell: A _Nev look at
Englewood Cliffs, Nav Jersey; 1965. x t 354 pp., $4.95.

Richard M. Cohna Difference Algebra  Newv York, Wiley Interscience, 1965.
xiv *+ 355 pp., $12.95.

J. Cunningham: Complex i i Technaolaogy. Prince-
ton, Van Nostrand, 1965. vii + 178 pp., $7.50.

Flora Dinkines: Abstract Mathematical Systems  Nav York, Appleton-Century-
Crofts, Division of Meredith Publishing Company, 1961. VIl + 97 pp. 134
Flora Dinkinesa Elementary Concepts of Modern Mathematics. Newv York,
appleton-Century-Crofts, Division of Meredith Publishing Company, 1961.
x *+ 457 pp.

Flora Dinkines: Elementary Theory of Sets. Nev York, Appleton-Century-
Crofts, Division of Meredith Publishing Company, 1961. viii + 237 pp.

Flora Dinkines: Introduction te Mathematical Logic. Nav York, Appléton-
Century-Crofts, Division of Meredith Publishing Company, 1961. Viii +
122 pp.

John R. Dixons A Programmed Introduction to Probability. Nav York, John
Wiley, 1964. xiv * 392 pp, $3.95.

Fobes and Smyth: Calculus and Analytic Geometry, Volume I. Englewood Cliffs,
Nav Jersey; Prentice-Hall, 1963. xv T 660 pp.

Fobes and smyth: Calculus and Analvtic Geometry, Volume 11. Englewood Cliffs,
Nev Jersey; Prentice-Hall, 1963. xi *+ 450 pp.

J. Heading: An Introduction to Phase-Integral Methods Nev York, John Wiley,
1962. 160 pp.
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Francis B. Hildebrand: Methods of Applied Mathematics. Second Edition.
Englewood Cliffs, Nav Jersey; Prentice-Hall, 1965. ix *+ 362 pp., $10.00.

Rufus |saacs: Differential Games. Nav York, John Wiley, 1965. xXxii + 384
pp., $15.00.

J. €. Jaeger: An Introduction to the Lawlace Transformation. New York,
John wiley, 1962. viii T 156 pp.

N. L. Johnson and F. €. Leone: Statistics and Experimental Design: In )
Engineering and the Physical Sciences. Volume I. Nav York, John Wiley,
1964. ix * 523 pp., $10.95.

-

N. L. Johnson and F. C. Leone: gstatistics and Experimental Design: In
Engineearing and the Physical Sciences, Volume 11. Nav York, John
Wiley, 1964. ix + 399 pp., $11.50.

Edmund Landau: Differential and Inteqral Calculus. Nav York, Chelsea
Publishing Company, 1965. 372 pp.

Serge Lang: A _First Course in Calculus. Reading, Massachusetts; Addison-
Wesley, 1964. xii T 258 pp., $6.75.

Howard Levi: Foundations of Geometry and Englewood ¢liffs,

Nev Jersey; Prentice—Hall, 1960. xiv * 347 pp.
A. I. Lur'e: _Dimensional Problems of the Theory of Elasticity. Nav
York, Wiley Interscience, 1964. xii + 493 pp.

A. I. Mal'cev: Foundations of Linear Algebra. San Francisco, w. H Freeman
and Company, 1963. xi T 304 pp., $7.50.

A. I. Markushevich: Theory of Functions of a complex Variable, volume I.
Englewood Cliffs, New Jersey,; Prentice-Hall, 1965. xiv + 459 pp,
$12.00.

Leopoldo Nachbin: The Haar Integral. Princeton, Van Rostrand Company, 1965.
xii t 156 pp., $2.50.

Louis L. Pennisi: Elements of Complex Variables. Nav York, Holt, Rinehart
and Winston, 1963. x T 459 pp.

Edwin J Purcell: Calculus with Analytic Geometry. Naw York, appleton-~
Century-Crofts, Division of Meredith Publishing Company, 1965. xv *+
843 pp.

L. B. Rall: Error in pigital computation, volume I. Nav York, John Wiley,
1965. ix * 324 pp. $6.75.

J. B. Roberts: The Real Number Svstem in an Algebraic Setting. S$an Francisco,
W. H. Freeman and Company, 1962. ix T 145 pp., $L1.75.

Evelyn B. Rosenthal: Understanding the Nev Math. Nav York, Hawthorn Books
Inc., 1965. 240 pp., $4.95.

Shepley L. Ross: Differential Equations. Nav York, Blaisdell Publishing
Company, 1964. xi T 594 pp., $10.00.

Frank M. Stewart; Introduction to Linear Algebra. Princeton, Van Nestrand
Company, 1963. xv T 281 pp.

Hugh A. Thurston: Calculus for Students of Engineering and the Exact Sciences,
Volume X. Englewood Cliffs; Prentice-Hall, 1962. ix ¥ 193 pp.

Hugh A. Thurston: Calculus for Students of Engineering and the Exact Sciences
welsme #2. Englewood Cliffs, Nav Jersey; Prentice-Hall, 1963. 208 pp.
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