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THE C.C. MACDUFFEE AWARD FOR DISTINGUISHED SERVICE

Pi Mi Epsilon's highest award, the C.C. Macbuffee Awad for - .
Distinguished Service, was presented to Dr. Houston T. Karmes at

the smme 1975 meeting in Kalamazoo, Michigan.

Professor Karnes, past-president of Pi Mi Epsilon, has long
been active in mathematical circles. His service included appoint-
ments as professor of Mathematics and Biology, department head,

Dean of Men, public school teacher, before 1938 when he went to
Louisiana State University to start the cycle over again as
instructor, assistant professor, associate professor, full professor,
Dean of Men, and Director of several NS programs and institutes.
He has also served as President of a Board of Trustees, Consultant
and Lecturer both here in the URA and in Alahabad. As if all these
projects were not enough for one soft-spoken, always courteous
gentleman, he also participated in various research projects in the
mathematics of genetics and in mathematics education as well as
very ably promoting the interests of Pi Miu Epsilon, the national
college mathematics honor society.

It is rare to find so much ability and diligence in one person.
When that person is also a man of excellent taste and thoughtful
consideration, we have a Houston T. Karnes. He is a men we all
admire, respect and try to emulate.

It is with great pride that we add Dr. Karnes' name to those of
the earlier recipients of the C.C. MacDuffee Distinguished Service
Award.

1964, . J. Sutherland Frame
1966, . Richard V. Andree
1967, . John S. Gold

1970, . Francis Regan

1972, . J.C. Eaves

1975, . Houston T. Kames
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MATRX FUNCTIONS A POWERFUL TOOL1

by J. S. Frame
Michigan Sate. Univensity

1. Introduction -

Mathematical problems, both pure and applied, that involve linear
relationships among several or even large numbers of variables can often
be modeled most efficiently in terms of matrices. The solution of many
of these problems is greatly simplified by the use of matrix functions.

In this context the matrix functions considered are restricted topoly-
nomials or convergent infinite series in an n x n matrix A, although we
shall employ such scalar functions of A as its trace and determinant,
which are the sum and product of certain numbers )‘j called its eigenvalues.

2. Atomic Transition Probabilities
An example of matrix modeling was related to ne by Werner Heisenberg
in a dinner conversation at the 1950 International Congress when | in-

quired what led him to describe certain aspects of atomic structure in
terms of matrices. "Electronscannot be directly observed when they
remain in orbits assigned by the Bohr theory,"he replied, "but only by
energy changes displayed in spectral lines of certain specific frequencies
when the electrons jump from one orbit to another and the atom changes
its state.” Observed in a spectrogram by the relative densities of spec-

tral lines are the probabilities pij of transition from state j to state

7 in a certain unit time interval of exposure of the spectrogram, If

the components x.(£) of a column vector X(t) represent the population of
| atoms in state § out of the total observed population, and P = [pij] is
the transition probability matrix, then

X(t + 1) = PX(¢) (2.1

After k such time units the state distribution vector should be given by

lThis article is the text of the first lecture in the J. Sutherland
Frame Lecture Series which was presented at the 1975 summer meeting of
P Mu Epsilon at Western Michigan State University. The lecture series
is named in honor of a past president and a most loyal supporter of Pi
Mu Epsilon.

Houston T. Karnes
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Xt + k) =P <+ P -+ PX(t) = PkX(‘f:) . (2.2)

So the question arises: '"Honv does the matrix function Pk behave after
a long time, when k becomes infinite?"

A two state example is illustrated by the formula

273 1/2¢ [3r5 a/s [2/5 -3s5
# e = + (1/6) (2.3)
1/3 1/2 2/5 2/5 ~-2/5 3/5
Since (1/6)k becomes small for large k it is clear that
3/5 3/5)[x .6z, + x,)
2/5  2/5]ix, .u(xl + x2)
V¢ conclude that in the long run the relative population of the two

states is about 0.6 and 0.4. In general, the limit of as k becomes
infinite is the product

51[1,1,---,1] (2.5)
of a column vector S_Lwhose entries represent the long term relative

average population of the states and a row vector of 1's. Using matrix
functions, we shall see why.

3. Expansion of Matrnix Functions

It isrelatively easy to compute powers and polynomial functions of
an n x n diagonal matrix A

Al 0 cre 0

A= 2 (3.1)
0 0 -
whose diagonal entries are called its &7 ©F #{2) is any poly-
nomial or infinite series which convergss Zor @ £ tha genvalues
A3 of A we have
.k - B : : 0 .
)\l o] 0
k 0
O A oo 1]
Ak = 2 ' (3.2)
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In particular, the interpolating polynomial
A - )‘k :
g, (0 =T oo (3.3)
J ktg 3 T Tk

which vanishes for all A except Aj and assumes the value 1 at A'7 is

such a polynomial of degree |less than n and we have e

0 0 see O
0 1 0] « row 4
E, = q.(A) = . (3.4)
J q{} ‘.
0 0

where E3 has all entries 0 except for 1's where A. appears in A. The
matrices E3. are called constituent tdempotents of A and satisfy the
equations

E2=E,, E.E.=0 if i #J

g g e (3.5)

T E, =] (ldentity Matrix)
J 4

The matrix f(A) is a linear combination of the matrices Ej’ with coef-
ficients f(Ag),namer

=z JE, = Z )g. N 3.6
£ z f()\J)E"7 % f()\J)qJ(A) (3.6)

so f(A) is a polynomial in A of degree less than n. This fundamental
functional expansion formula for diagonal matrices can be extended to a
much larger class of matrices, called diagonable matrices, which have
the form

A = SAs’l (3.7)

where S is an invertible matrix and A is a diagonal matrix.
Since

42 = sasens™t = 2L, and 4K = safs (3.8)

for any positive integral exponent k, it follows that for polynomial
functions f

£) = SFMSTE = = 4 (3.9)
where a
A, = SES Y = sq.(087Y = g 08T = q,04) . (3.10)

] 3 J 3 3

The diagonal entries A3 and f(xé) of A and of f(A) are called the eigen-
values of A and f(A) respectively, and the idempotent matrices Aj = qJ.(A)
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= SES.S—l are their common constituent idempotent matrices.

Theorem. Ary polynomial or convergent series f(4) in a diagonable
matrix A is equal to a polynomial in A of degree less than n.
In particular, A" is such a polynomial, so A must satisfy a poly-

nomial equation of degree 7.

Let us now reexamine the Heisenberg atomic state probability problem

in the light of the expansion formula for f(4). Taking P for A and A
for f{x) we have

Pk = § )]fP. where P.=&.S (3.11)
Jd d

for some modal matrix S. Since P'3P1'. =0 forj#%1 and RP = R for the row
vector R = [1,1,*++,1], it follows that

_ _ k _ .k
RP{. = RPkPi =z A,,ngi = \RP, for all k. (3.12)

Hence either Ai =1 or RF{L = 0. Since

R=RP = X RP, (3.13)
J J
not all RPi are 0. |If RPl # 0, then )‘1 = 1 and
& - B + T o, (3.14)
i1 Jd d

Since Pk has non-negative entries with column sns 1, the entries remain
< 1 as k becomes infinite, so no A3 can exceed 1L in absolute value. Un-
less the states cannot be separated into two or more sets without transi-
tions between members of two different sets, only one eigenvalue will be
1, and the rest of the A:k.3 will approach zero as k increases without limit.
Thus

. o S
T, P = P, = (SE)E S = 5B (3.15)

. . -1 . _ i -
where Rlls the first row of § ~. Since RPl = R, the row R_L i S propor
tional to R and can be made equal to R by appropriate scaling of the
column eigenvector Sl'

4. Eigenvectons and the. Characternistic Polynomial
Given an » x n matrix A with real or complex numbers as entries,
when and how is it possible to factor it so that

A = SAS™L or AS= SA (4.1)

for some invertible "moda"™ matrix S and some diagszal " spectral™ matrix
A? Equating columns in AS = 5A yields
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These equations will have a non-zero solution 33 if and only if the de-

()‘jI - A)SS. =0 (4.2) .

terminant of the matrix A3.I - Ais 0. Hence A3 must be a root of the

characteristic equation of A defined by

DAY = |AT - 4] = W 4+ a7 g2

1 . T +'dn_x+dn=o. (4.3)

1
The sum and product of these roots, or eigenvalues, are
-d, = ZX, = 2a..

1 J 17

n = s ~ .
(-1) dn = }‘1)‘2 An det(4). (4.4)

It is easily shown that similar matrices, such as A and A have the same
characteristic polynomial D(}).

In the case A is the 2 x 2 probability matrix P mentioned above we

A - 2/3 -1/2
-1/3 A - 1/2

A2 - (7/6)x + 1/6 = (A - 1)(A - 1/6) (4.5)

have

D(X)

"

so the eigenvalues are Al = 1, A2 = 1/6. Also,

ql(x) = (A - AA - A Y = (61 - 1)/5,

2

se 6 .6
A = (84 - I)/5 = ; (4.6)

& T

q,(2) = (A - A/, - )\l) = (6 - BA)/S ,

se b -6
A2 = (I - A)6/5 = . (4.6)

-.4 .6

Note that the constituent matrices A3. have product 0 and am I. Each is
equal to its square, has trace 1 and determinant 0. Non-zero columns of *
each are eigenvectors 83 of A so a modal matrix S for A is

.6 o
S = .
B T (4.1)
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5  Longitudinal Vibrations of, a Weighted Spiing
Let a spring of length n + 1 be stretched horizontally between points
n +t 1 units apart and |l et n equal masses m be attached to the spring at

distances 1, 2, **+, n from one end when the spring is at rest. Consider
the resulting motion i f the masses are displaced horizontally, and the
1'th component Xy of an n-vector X denotes the horizontal displacement
from equilibrium of the £'th mass. Since the net force on the 2'th mass

i's proportional to the difference between the stretchings x. , - %, and
Xz = Xj_q0n the right and left, the equations of motion are
%z, ,
m Ez— = mk (xi_l - 2607: + :z:_i_'_l),
To = Ty =0

where mk? denotes the spring constant. This equation may be written in
matrix form as
&’z

£2 4. B2x = 0, B2 =k2(2r - 4) (5.1)
dt?

where A is the tridiagonal matrix

o0 1L O0:--0
1 0 -+ 0
. = 0 141 0 ++++ 0 (5.2)

sesssscesescnses

cesssacsss 0 1
[ sececereee 1 0]

By analogy with the scalar equation d2x/dt + b?x = 0 this differential
equation with initial conditions

x(0) = C, (dx/dt),_o =V (5.3)
is satisfied by setting
X(t) = (cos Bt)C t (sin Bt/B)V (5.4)

where the matrix functions cos Bt and (sin Bt/B) are given by convergent
power series in the matrix B2 = k2(2I - A). But these functions can be
expressed in closed finite form as polynomials in A of degree |less than
n by using the functional expansion theorem.
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In this case the matrix S with (£,7)-entry sin(7j8), where 8 =7w/(n+ 1)
serves as a modal matrix for A, since the (£,f)-entry of AS is

sin(Z - 1)76 + sin(Z + 1)j6 = sin(Zje)+*2 cos j8 (5.5)

and sin 0(j8) = sin(n + 1)j6 = 0 for 2 =1 and £ = n. Hence AS = SA-"
where the eigenvalues )‘j of A are

Aj = 2 cos 48, 6 =w/(n + 1) . (5.6)
The matrix S also has the convenient property that
52 = (n+ 1I/2, ST =(2/(n+ 1)1 (5.7)

so the constituent matrices for A have the simple explicit form

-1
A =5t = (2/(n + 10158 5.8
3 3 (2/(n ))33 ( )

where the row vector ST is the transpose of S,. These A3 are also con-

stituent matrices for B2 = k2(2I - A), whose eignevalues are
45 = k2(2 - 2 cos jo) = uk? sin2(ju/2(n + 1)) (5.9)

Hence the solution to the vibrating spring problem mey be expressed
explicitly in the form

n
X:Z(a.cos ¢, +b.sin ¢.) (5.10)
g1 Y Jj 3 3
where
a = 2S§:C/(n +1), b = 28§V/(n + Lo
¢3. = 2k sin(gn/2(n *+ 1)) (5.11)

The columns 83 of the modal matrix S, with 2'th entry sin{Zjn/(n+1))
describe the possible simple periodic modes of vibration of which the
motion is composed, and the eigenvalues ¢3 of B are proportional to the
frequencies of vibration in these modes.

6. Networks and the Exponential Function
May problems in electrical network theory are modeled by a system
of first order linear differential equations of the form

g’”-—t = AX(t) *+ Bu(t), X(0) =¢C (€.1)-

where X is an n-vector of states, U an m-vector of inputs or controls
and A and B are constant matrices. Here a solution is expressible in

terms of the exponential function of At and may be written
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¢
¥ = gtp +I A - gy A (6.2)
o

To evaluate this we compute the eigenvalues A3 and constituent
idempotents Aj of A and write

ALt - 1)
eA(t = T) 222 J AJ' (6.3)
J

whenever A is a diagonable matrix. This is discussed in the third of a
series of articles on matrix functions [1]. The more complicated expan-
sion valid for non-diagonable matrices is described in the fourth article
of the series.

7. Determinants of, Binomial Cinculant Matrices

Several years ago | was asked to evaluate and factor the determinants

Dn of certain binomial circulant matrices Mn such as

1 5 10 10 5

5 1 5 10 10
M_=(10 5 1 5 10 (7.1)

10 10 5 1 5

5 10 10 5 1

where for general n the (Z,7)-entry of Mn is the binomial coefficient
(I’b ’j J‘) Although I could evaluate these by brute force for n < 8,
no general pattern was obvious to ne from these numerical examples.
Since D19 is about 4.3 x 1050, it would be hard to factor even if it
could be accurately computed i n non-factored form.

Matrix functions provided the key to the discovery of many patterns
and the actual factorization for » 5 30, including the discovery of the
large prime factor 969,323,029 of an which is the integral part of

5, 5 JBNT

(-—2——‘) . V¢ write Mz in the form

M =(I +P ; (7.2)
n

where I% denotes the circulant oer n with eigen-

values rX where r is a primitiven' COT example
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0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0
P5=00010 P§=00001 (7.3)
0 0 0 0 1 i 0 0 0 0
1 0 0 0 0 0 1 0 0 0
. . . k
Since Dn is the product of the eigenvalues of Mn which are (L + ) - 1,
I:%1 can be factored in the forms
7 k\n
D, = [+ 29" - 13
k=1
n__n .
STTTT A + - 11 (7.4)

g=1 k=1

Factors with j = n or k = » have product A and can be omitted. Those
with g = k have product (_1)n—1(27z - 1), and the remaining factors are
equal in pairs, so

- DR . (7.5)

n
. 5] 4 . . . kK -7 . . .
Sincer + » -1is0if andonly if 2 = r* is a sixth root of unity,

D = (-1
n

Dn = 0if and only if 6 divides n. The problem for even n is simplified

by showing that

7 3
D. = -3p° (2 L l) x° (7.6)
2n n

where Kn is a rational integer.
When 7 is an odd prime p > 3, we can replace the index § by jk for
fixed k and write Ffl in the form
ﬁ):_’l.
E’; 2 N qJ.(p) (7.7)
where qs.(p) is a symmetric function of the r'k given by

p-l ) )
24P * E L P S pt = (p - 1)/2. (7.8)

In particular
p-1 X k ;
()=!|( +r -1) =1 (7.97
qp-l p A r

and qj,(p) = qé(p) if Ji' = Lmod p) so
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F_ = ']"T q.(p) (7.10)
p l<J'<J" J

where qé(p) are positive integral factors of Dp each congruent to 1(mod p)
W nowv use functions of a matrix again to evaluate in simple form
the integer

1
q,(p) = TET-(PQk tp - 1)(r'2k tp~.--1) . (7.11)
k=I

Multiplying the pairs of complex conjugate factors yields

g, =TT - 22 - 27 (7.12)
k=
Now
% 4 27K 2 5 cos 2k8, 8 = 21/p (7.13)

and the p' x p' matrices having eigenvalues 2 cos 2kO and 3 - 2 cos 2kO
are Tp' and 3Ip' - Tp" where

0 1 . e im 3 -l . = o
1 0 1 -1 3 -1
T L 5 37 j - Vi = e ® s & ® o e o = (7.]_!4)
p p p
1 0 1 -1 3 -1
s & & 1 -1 o e e -1 4

Hence q2(p) is the determinant dp' of 31p, - Tp' » which satisfies the
recurrence relation

- - d =4 d, =11 . 7.15
d3 3dj—1 dj-z , 1 s o ( )

The same relations are satisfied by f2j + f2j+2’ where fk is the
kth number in the Fibonacci sequence

1,1, 2, 3,5, 8, 13, *** (7.16)
and
= (1t /5)/2 . (7.17)

Hence for j = p' = (p - 1)/2,

I . =1
9P =d, = F ) v = (PG + 1) -t Plr+ T HIE
q,(p) = ¥ - P, = (1 + /5)/2. (7.18)

135

since 1P is less than 4, the factor q,(p) of Dp is the greatest integer
int. In particular

2

D_ = (25 - 1)q§(5) = 31*11 (7.19)

3 P
and q2(l+l) = 370248451, q2(u3) = 969,323,029 are large prime factors of
D, . and Du3 respectively. Other factors satisfy more complicated re-

41
currence relations which are a challenge to find.
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REFLECTIONS OF A PROBLEM EDITOR

by Leon Barkoff
Los Angeles, California

Introduction.

Telling is not teaching and listening is not learning. This terse
truism summarizes the difficulties in communication so often encountered
in mathematical education. Nevertheless properly directed telling and
intelligently oriented listening are essential components of successful
communication. The most effective way to measure the degree of such
success is by appropriate testing of the student's problem solving
ability.

Volumes can be and have been written on the importance of problem
solving in the learning process and in the growth and development of
mathematics. History is replete with instances where entire new branches
of the art and science of mathematics have sprung up as a consequence
of the search for the solution of some challenging problem. A note-
worthy example is the successful attack on the brachistochrone problem
by the Bernoulli brothers and the role played by this solution in the
birth of the Calculus of Variations. Another familiar example is the
emergence of the mathematical theory of probability as an offshoot of
problems considered by Pacioli, Cardan and Tartaglia and the arousal of
interest by the discussions between Pascal and Fermat. Even to this day,
mathematicians continue to indulge in the age-old pleasurable activity
of milking one another’s brains through conversation or correspond-
ence --- exchanging ideas --- collaborating on the solution of difficult
and perplexing problems --- hurling and accepting challenges emanating
either from their om gnawing inquisitiveness or from the frustrated
curiosity of others --- building, forging, developing and inventing new
tools and ingenious devices in the never-ending struggle for the estab-
lishment of mathematical order out of chaos.

In addition to the influence of private communication in the ad-
vancement of mathematical knowledge, it is important to recognize the
tremendous impetus occasioned by the dissemination of provocative, non-
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routine problems by way of mathematical journals. For the |ast three
centuries, readers of periodicals that contained problem sections have
been invited to submit solutions to proposed problems with the objective
of competing with other solvers for the publication ¢f what the editors
later judged to be the "best" solution. First came the reader's pride
in his successful bout with the challenging problem; then came his
natural desire to display the results of his cerebration; and finally
his curiosity as to how his solution stacked up against those submitted
by other solvers. It has always been the function of the editor to
solicit and select proposals suitable for the particular vehicle con-
cerned and to use his best judgment in choosing solutions for publication.
This often becomes a soul-searing problem for the editor, aswill be
discussed | ater.

Ore of the earliest periodicals to feature a section on problems
was the Ladies' Diary, which first appeared in London in 1704. In 1841
the Ladies’ Diary and the Gentleman's Diary, which made its debut in
1741, were united and published under the title of The Lady's and, Gentle-
man's Diary, which cane to an end in 1871. For some unaccountable reason,
the title of the Ladies' Diary was changed to the singular form when it
combined with the Gentleman's Diary. The treatment of proposals and
their solutions in these and in several other British publications of
that era became a model for the Mathematical Questions from the Educa-
tional Times, which had its inception in 1863 and continued uninter-
ruptedly until 1918. The spirit of the problem departments of the
British journals was picked up by various French publications such as
L'Enseignement Mathématique and Mathesis (Belgium) and also by the early
American journals, notably the Mathematical' Visitor, which was launched
at Erie, Pennsylvania in 1878.

In his introductory editorial to Volume I, Number 1 of the Mathe-
matical Visitor, Artemas Martin, editor and publisher, had this to say:

In England and Europe, periodical publications have
contributed much to the diffusion of mathematical learning,
and some of the greatest scientific characters of those -
countries commenced their mathematical career by solving
the problems proposed in such works.

It was stated nearly three-quarters of a century ago
that the learned Dr. Hutton declared that the Ladies' Diary
had produced more mathematicians in England than all the
mathematical authors of that kingdom.
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Similar publications have produced like results in
this country. Not a few of our ablest teachers and
mathematicians were first inspired with a love of mathe-
matical science by the problems and solutions published
in the mathematical department of some unpretending
periodical.

A world-renowned periodical that can certainly be considered "un-
pretending” despite its high level of sophistication is The American
Mathematical Monthly, which was founded originally as a show case for
proposed and solved problems. An exhaustive historical and statistical
treatment of the problem departments of this journal from 1894 to 1954
appeared in the Otto Dunkel Memorial Problem Book, published by the
Mathematical Association of America in August 1957 in commemoration of
that Journal's fiftieth anniversary. The author of that survey,

Mr. Charles W. Trigg, Dean Emeritus of Los Angeles City College, and
one of the better knomn and most prolific problemists of our day, has
put together a most informative, interesting and entertaining article
well worth the attention of all mathematicians, whether active problem-
ists or not.

Ore of the striking characteristics of most problem departments is
the high incidence of participation by eminent mathematicians as well
as by the "maen on the street” lover of mental gymnastics. As one browses
through the pages of the Lady's and Gentleman's Diary, the Mathematical
Questions from the Educational Times or the American Mathematical Monthly,
to name a few, one i s impressed to discover what an attraction problems
have held for so may wo have achieved great prominence in mathematics.
It comes as a surprise, for example, to learn that W. G. Horner, of
Horner's Method fame, solved what is nov knowmn as the Butterfly Problem
in the 1815 volume of the Gentleman's Diary. The list of problemists
who participated in the problem department of the Educational Times
reads like a veritable Who's Wo in British Mathematics from 1863 to
1918. Amayg the active solvers mey be found the names of Cayley, Cremona,
Clifford, Sylvester, Whitworth, Todhunter, Hadamard, Hardy, Salmon,
Beltrami and countless others far too numerous to list.

Currently the names of numerous prominent mathematicians mey be
found in the problem departments of the American Mathematical Monthly,
the Mathematics Magazine, the SAM Review, the Pi Mu Epsilon Journal,
Pentagon, School Science and Mathematics, the Journal of Recreational
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Mathematics, the Fibonacei Quarterly, the Technology Review, the Two-
Year College Mathematics Journal, Elemente der Mathematik (Switzerland),
and the Mathematics Student Journal. It is hard to estimate hov may
high schools and two-year colleges publish "newsletters" primarily for
their omn students. Examples are the Indiana School Mathematics Journal
and the Oklahoma University Mathematics Letter. Others are listed in a
booklet issued by the National Council of Teachers of Mathematics,
authored by William L. Schaaf and entitled "The High School Mathematics
Library™.

h a less formal basis, practically every issue of Martin Gardner's
Mathematical Ganes Department in the Scientific American offers several
intriguing problems for the entertainment and enlightenment of its read-
ers, with solutions revealed in the following issue. Some of these
problems have been known to generate heated controversy and discussion,
all to the betterment of mathematical science.

In addition to its noteworthy expository articles, the Mathematical
Gazette, while not containing a problem department, does nevertheless
publish short provocative notes that frequently set off a chain-reaction
of readership discussion and development. Furthermore, the Gazette
maintains a Problem Bureau which offers assistance in the solution of
problems whose sources are known. Fom those standpoints, the publica-
tion is a problemist's delight.

O course, there are mawy specialized journals that do not maintain
problem sections but most 'of the well-known ones do. It is hard to
imagine the dismal change in character that would descend on a journal
if its problem department were suddenly to be abandoned.

Problems of a problem Editor.

After the foregoing prelude, | et us nov come home to our own Pi Mu
Epsilon Jowrnal and dwell a bit on what goes on behind the scenes in
the conduct of the Problem Department. Let us also consider what can
be done to improve the department and to provide more enthusiasm and
enjoyment among our problem devotees and the readers in general.

Problems in a great variety of categories have appeared in the
Pi{ Mu Epsilon Journal since the time of its first appearance in April
1949. The Fraternity, which started at the University of Syracuse in
1903 as a mathematics club, achieved the status of a full-fledged chart-
ered organization shortly after the academic year 1914-15, but it was
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not until 1949 that the Pi Mu Epsilon Journal blossomed forth. In the
first issue Editor Ruth W. Stokes got the problem department off to a
good start by publishing eleven proposals, five of which were her omn

and the other six solicited from accommodating friends. With the

exception of the Fall 1957 issue, the problem section has appeared
regularly in each issue and it has been only on rare occasions that the
editor was faced with a shortage of suitable proposals to the point
where he was compelled to raid his om files to maintain an acceptable
balance and variety in the proposal department.

Considering the relatively small circulation of the Pi Mu Epsilon
Journal compared to some of the larger periodicals, the ratio of
participants in the problem department is rather high. However, it is

quite likely that many of the readers solve the problems, file them
away and never get around to submitting the solutions. Readers are

urged to try their hand at problem composition and to offer their solu-
tions for possible publication. One never knows when the presence of
an unusual gimmick or a clever solution device might in itself warrant
the publication of the solution.

This could be interpreted as a cry for help. The most difficult
task for the problem editor is not the selection of solutions for
publication but rather the selection of proposals of a type that
elicits reader response. By soliciting contributions from a wider
cross-section of the membership and from other interested readers, the
editor hopes to achieve a diversity of high-quality proposals in
geometry, analysis, number theory, inequalities, mathematical logic,
game theory, set theory, group theory, probability, paradoxes, fallacies
and cryptarithms, to name a few. In general, problems should rise

above the level of unimaginative text-book exercises and should strive

to give solvers an opportunity to demonstrate ingenuity and inventiveness.

One of the essential attributes of a suitable proposal is the
hard-to-define quality of elegance. This characteristic is usually
associated more with solutions than with proposals but i s nevertheless
an important element in attracting the attention of would-be solvers.
A beautiful example of an elegant proposal is the following one, due
to W. J. Blundon, of the Memorial University of Newfoundland:
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. Let I, O, H denote respectively the incenter, the
circumcenter and the orthocenter of a triangle with sides

a, b, ¢ and the inradius p. Prove that the area X of the
triangle IOH is given by
K =|a - b)(b - c)lc - a)|/sr.
This problem was proposed in the January 1967 issue of Elemente
der Mathematik and a solution was published the following January.

Opinions regarding beauty are often debatable but can anyone deny that

the economy of expression in the displayed result constitutes a pure
and austere elegance? One would hope that a proposal of such high
artistic merit would elicit a solution of comparable elegance.

Not all proposals can aspire to a high level of elegance in their
mere statement. Most problems are straightforward challenges to
duplicate or improve upon results already found by the proposer, espe-
cially if the method of solution or the final result is significant,
novel, generalized, instructive or entertaining. Ordinarily problem
editors require solutions submitted along with proposals. The purpose
of this is to assist the editor in the evaluation of the suitability of
the proposal, the complexity of the solution or the expected readership
response. n the other hand, conjectures and unsolved problems con-
nected with related investigations or research projects are sometimes
submitted with the hope that someone may successfully arrive at a
satisfactory solution. W such proposals are published, the readers
are alerted to the fact that solutions have not been provided.

Since the Pi Mu Epsilon Journal appears only twice a year, accept-
able proposals are filed away for possible use some time in the future.
This mey entail long delays in publication, especially if other prob-
lems in like categories have priority. Unused or unusable proposals
will be returned to the proposer upon request.

After an issue of the Journal comes off the presses and is sent
to the subscribers, solutions begin to trickle in. |n due course the
contributions are acknowledged, the solutions are filed away and the
envelopes in which they were mailed are discarded. That is why solvers
who would like to receive credit for their labors should be sure to .
identify their solutions with their names and addresses. Solutions to
more than one problem should be sent on separate sheets and, to facili-
rate filing, should not be co-mingled with extraneous correspondence.
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This saves the editor the inconvenience of photocopying portions for
separate filing.

With the approach of deadlines for submitting the copy to the
Journal Editor your problem editor examines all solutions received and
is often confronted with difficult decisions as to which solution to
publish. He is reminded of what motivates problemists to submit solu-
tions in the first place. Wy do they not simply solve it, file it
and forget it? Ore incentive, of course, is the altruistic desire to
share with others a well-thought out and well-expressed solution;
another is to gratify one's ego in a most acceptable way by seeing his
creation appreciated and published. Some problemists are so well
versed in so may diverse branches of mathematics that they breeze
through mog of the proposals with ease and take a delight in making
a marathon game of their knack for prolixity. These are individuals who
generally combine quality with quantity and in may cases are legitimate
candidates for inclusion in the Guinness Book of Records. The frequency
with which their solutions are published ney lead other solvers to
suspect favoritism on the part of the editor, but readers are hereby
assured that every effort is made to select solutions objectively on
the basis of merit.

When submitting a solution, the solver should try to present it
in the format adopted by the problem department. This saves the editor
time and trouble in re-typing it for the printer. Mog problem editors
are their owmn secretaries -- unsung heroes who meke a labor of love
out of serving as intermediaries between proposers and solvers. Con-
sequently when they are confronted with a difficult choice between two
otherwise excellent solutions they mey just tip the scales in favor of
the solution that permits them to follow the path of |east resistance.
O the other hand, neatness and good form cannot in themselves supersede
content; while they are qualities that are greatly appreciated, editors
are often grieved to have to turn dowmn a solution despite the evidence
of painstaking care in presentation.

Onh occasion, excellent solutions with widely separated approaches
are found to be too good to be |ost to posterity. In those cases a
diligent editor will attempt to do justice by concocting an amalgam of
the solutions or, if space permits, publishing multiple solutions.

Here again, the best mathematical and literary expression is considered
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along with the quality of the solution.

It mey be hard to believe, but your problem editor occasionally
receives an answer to a problem instead of a solution. Participants
in this arena are not really concerned with answers; their primacy"-
interest is in the way the solution was found -- the train of thought
that led to the solution, the transparency of the solver's heuristic
approach to the problem, essentially, the solver's ability to take
the reader by the hand and literally lead him over the various steps
of the proof. One of the tests of elegance is finding a way of doing
this adroitly without insulting the reader's intelligence by spelling
out procedures that should be evident to him. At the same time, the
solution should avoid the sins of omission -- skipping steps that are
necessary for a full understanding of the solution, proof or construc-
tion, as the case mey be.

To achieve this ability, the solver should be familiar with the
criteria for elegance -- what we call the ABCD's of Elegance. They
are A for Accuracy, B for Brevity, C for Clarity, and D for the Display
of Insight, Ingenuity, Imagination, Originality and, where possible,
Generalization. 1t always helps to be able to instill a dramatic
sense of awe, wonder and surprise. These are the intangible qualities
that elevate mathematical creations to the realm of high art, whether
they be proposals, solutions, short notes, expository essays or chap-
ters in some impressive tome.

In conclusion, it is hoped that the enunciation of these high
ideals will inspire readers to meke efforts to achieve them without
detering them from their most welcome participation in the Problem

Department of this Journal.

LOCAL AWARDS

I f your chapter has presented or will present awards to either
undergraduates or graduates (whether members of Pi Mi Epsilon or
not), please send the names of the recipients to the Editor for
publication in the Journal.




A CONFORMAL GROUP ON AN n-DIMENSIONAL
EUCLIDEAN SPACE

by Lonnie J. Kuss
Texas Tech Univensity

In this paper, we study inversions and homothetic transformations on
an n-dimensional Euclidean space. W shall employ the algebra and calculus

of a vector space over the field of real numbers.

1. Notation
W shall denote vectors by capital letters and the scalars by smaller

letters. The inner product of X and Y will be indicated by (X,Y) and

nxn = @02

will be orthonormal. Let E be an n-dimensional Euclidean space and f a

means the norm of X¥. Whenever a basis is considered, it

transformation on E. Then for A ® E, we denote the image of A under f
by Af instead of f(4).

2. Inversions

Let4 # 0, k # 0, and A € E. Then we can define a transformation f
on E which satisfies for each A

(1) The set {4,A5} is linearly dependent,

(2) lAfN AN = k # O.
This implies that Af # 8. The transformation f is called an inversion
on E with pole (center) 0 and power k. (See for example [1, p. 38] and
(5, p. 771.)

We shall obtain a formula for Af = B in terms of A. W observe that
(1) implies that there exists a scalar m, depending on A, such that B
= mA. Note that

.k
18Il = TAT

Therefore,

= K
Lml 141 =
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which implied that

+k
m = 5 .
Al

W shall study the case m > 0 since the other case is quite simi¥ére The

transformation f given by the equation of the inversion is then

kA

.
... 4#70.
A

Af = B

3. The Invense Function

Ore can easily show that

It is interesting to see that f2 = e, the identity, which means that f is
the inverse of itself (see[3, p. 193]). To that end, observe that

k[&”
2
Af? = (AP)F = [ Mz}f‘ - At .,
Al ” x4
nay?

4. The Dernivative of a Vecton

Let the vector X € E be a function of the real variable £; that is,
X = X(¢). "Suppose C is the curve described by the endpoint of X. Let
AX be defined by the rule X(z + At) = X+ AX  Then, the vector X is
parallel to the chord connecting the endpoint of X and X + AX, as shown
in Figure 1.

FIGURE 1



1u6

It is clear that ﬁi = Alt AX is also a vector parallel to the chord. Ve
AX _
define the derivative of X with respect to t to be lim 77 gl , i1f the

limit exists. The line parallel to the vector It

T athe endpoint of X

is called the tangent lime at X.

5. The Derivative o4 an Inner Product

i 5 &g d
Let X = X(¢) and Y = ¥(¢) and also let g and o exist. Then =3 (x,Y)
exists and
CZZ? (X,Y) = (dz,Y) + (X,%) .
This can easily be shown. First we let X = (ml,m2,---,xn) and »
Y = (yl,y2,---,yn). Then (X,Y) = (a::lyl Tyt xnyn) and
de dy dx dy ) T
d L R _n
(£sd = (tyl haw t & I T G
Therefore

%‘:_ (X,Y) = (%,Y) + (X g-_?_) .

6. Conformal Propenty of Inversions

If X describes a curve C and Y describes the image curve D under the
inversion f, then the following theorem states that ¢ and D make equal
angles with the line OX (see Figure 2). The proof for the two dimensional

case is given in [1, p. 471

D

FIGURE 2

147
Theonem. Let X = X(¢) ® E such that 3—2[( in a neighborhood of ¢ = ¢
exists. Let f be an inversion on E, with the equation Xf =Y = % .
X
Then
dy dax &
(%) ] (%)
TIE e .
Proof.

In section 5 we have shown that <4 and dr arevectors parallel
dt at EX

to the tangent lines of C and D. Let a be the angle between X and =7

and 8 be the angle between Y and Zﬁ Then since Y = Xf = kx/IXI?,
(%) (F
T E4EL Ell o
Differentiating Y = k—X gives
X 12
L Z _ox, L
E nxi
Nw we compute ”%“ Ore observes that
T A A o N i ”
| ikt (%) e T
Therefore
”d.Yu k"dtll i (2)
Il x 12

Next we see that

x( ) )

I X112 Ix1?

(1, &) - K (x, &)

(3)
ix2 VAt

Substituting (2) and (3) into (1) gives

TEE
boxiR

cos B = ‘—kl(lvf.llz%)

I x1?
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%)

T x ||——§" T

This proves the theorem and shows that B = = - a.

Theorem. Let Xy = X(8)s X, = Xz(t) € E have derivatives in a neigh-

borhood of ¢ = to. Let f be an inversion on E such that
kX kX,

1 2

If=8 @ —— Xf=Y, + —2

s I 1 2 2 2 2

1%, 15|

Then at X, = X, = X, i.e., the point of intersection on X; = Xl(t) and

= Xz(t), we have

o) (o)
T > dt dt > dt
ERIEC ]
at Il lde a I a i

(This means that f is a eonformal or angle-preserving mapping.)

Proof. Note that

dx dx
2 _ 1 _ o1 )
dy ) kIIXlll T 2( Xl

ary Z 5
dat = N H
lleII
and
) cU(2 (dX2 )
dY2 - "X2|| o 2 T X2 X2
at L
N, 0

Ore obtains, as in the proof of the previous theorem,

Ha‘*” L

IlX 1

Therefore,
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] |2
[t it PRy o A
& nx, 1 1z 1
& | | 2 i
- g2 1@ I lIdEl
nxit
Nw we see that
[ (=) )
(d'Yl f_y_Q_)zkg R W - Y o R s S v Bl i
a& > db ix, 2 # TR ] @ TAG
' (3 2 (2 1)
S D R v L M B v
x4 nxn* 1x? % I xn*
dx. dx dx dx, ((ﬂ{ )(a"X )
1 T2} (P 452 1 (82 2
=k2((F’ZZt_)_u(d ’X)(d ”‘)Q‘aw" i
nxn* I x e nxné
Therefore,
# &
1 2
g g
dt ’ dt nxi
Consequently,
@ G/l
d#dE ) e dt’dt
" 1 "ﬂ nxi® nxi®
&
(2, %)
& d
] fac
a |l IldE

Thus the transformation is conformal.

7 Product of Inversions

Let f and g be two inversions on E such that
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xl
>q
b
<

Xf=—+—8Y ad Yg=—2—=3.
X Y
Then

le k2kl

2 7.2 7% x

Ixl xl 2

ng = _Yg = 5 = 3 = E—X .

le " kl 1

nxi?l X1

\/ observe that fg is not an inversion since the ratio k2/kl i s independent

of X. W also note that in general fg # gf since

k2X
1 2 k
X
xgf = (Xg)f = — 2 - Ly,
k2X 2
I X112

Therefore, the set of inversions having a common pole on E is not closed
under multiplication. In order to obtain a group of transformations we
shall turn to another class of transformations.
. Ditatations.
Let A # 3, k # 0, and A € E. Then we define the transformation f
on E by the rule Af = B iff B = k4, The transformation f is called a
dilatation on E with center 0 and ratio k. (See [1, p. 311 and [5, 68].)
Ore can easily show that a dilatation is a conformal transformation.
Since the proof is very simple, we omit it.

Theorem (A conformal group). Let {f} be the set of all inversions

and dilatations on E.  Then {f,*} is a group.

Proof. V¢ have already proved that the product of two inversions
is a dilatation. (See section 7.) W shall study other products,

Let f and g be two dilatations given by Xf = le and Xg = k2X. Then
we observe that Xfeg = (klkz)X. Thus the product of two dilatations is
a dilatation.

Let f be the inversion given by Xi = kX/IXI2 and ¢ the dilatation
given by Xg = hX. ThenX(fg) = (Xf)g = kkX/XI2. Similarly,
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2
kxy o kx _TALE

Iax® Ll uxi® o onxi®

X(gf) = (Xg)f =

Thus the product of an inversion and a dilatation is an inversion..
Note that we mey obtain a function which looks like an inversion
with a negative power. Thus we shall study

_ kX

Xf =
2 ?
Ixu

k>o.
If we let Xf; = KX/ X112 and xf, = (-1)X, then [xf,1f, = (-1)Xf;
= -kX/IXI2 = Xf. Thusf = flf2 where fl is an inversion and f2 isa
dilatation of ratio -1. Consequently {f} is closed under products.

Let f € {f}. V& shall sow that f™* exists and f“'l € {f}. Lea
Xf =Y. Then there are two cases:

(i) In section 3 we have shown that the inverse of an inversion is

itself.

(ii) Let f be a dilatation. Then X = rX, and Xf"l =
f_l exists and f_l € {f}.

Consequently, {f} is a group under multiplication [4, p. 115, 127].

R

X. Thus

9. The Transform of a Hyperplane.
A hyperplane in E has an equation of the form

+ + oeee + = . ’
a,x, tayz, @z =c 1)

Let (al,---,an) = A and (ml,---,xn) = X. Then (1) becomes (4,X) = e.
Consider the inversion

e Y#0 .

12

Then the transform of (1) by fwill be

(A, k.YZ)
nxi
This will become (k4,Y) = ell YII2.
Two cases ney be considered:

(i) If e = 0, we get k(4,Y) = 0 which is the same hyperplane as
4,x) = o.

(ii) If e # 0, then we obtain the hypersphere k(4,Y) = cll YI? with
center k4/2¢ and radius | k/2¢1 Al and which contains 3.
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10. The. Thans form of, a Hypershphere.
The equation of a hypersphere in E islIX - C\'= ». Ve can write this
equation as (X - C, X - C) = r2. Expanding this we obtain

NX12 - 2(C,X) +ICI%2 - r?2 =0 . (1)
Nw consider the inversion X = k¥/lYl2, Y # 0. Then this inversion

transforms (1) into

kY
fri?

2
-2(0, 7‘1'2) slCI2 -2 =0 . (2)
1zl

Two cases nmey be considered:
(i) 1f ¢l = », then (2) will become (C,Y) = 5 s
which is a hyperplane.
(ii) If licht # r, then (2) will become the hypersphere

=

feh? - P2NTI% - 2%(C,Y) + k2 = 0 .

There is one special case which is important. Let the hypersphere
be 1Xll = Y&, Then the inversion preserves this particular hypersphere;
that is, applying X = k¥ YI2, Y # 3, we obtain ¥l = Y&, Thus this

hypersphere is invariant under the inversion.
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HYPERPERFECT NUMBERS
by Daniel Minofi and Robert Bear -
Polytechnic Tnstitute of NeW Vork

In this paper we generalize the concept of perfect number; some basic
properties are given, along with a few conjectures.

Definition. Let e be a divisor of m; e is said to be a proper di-
visor if L<e <m
Definition. An integer m is n-hyperperfect if
m=1+n Zdi
where the summation is taken over all proper divisors of m.

It is clear that 1-hyperperfect and perfect are equivalent concepts.

An n-hyperperfect number is highly deficient.

Theorem 1. If j|m with 1 < J < », then m i s not n-hyperperfect
(n > 1).

Proof. Say J =m. Thenm=<n, sothatm# 1+ n Edi' Say mow that
J is a proper divisor of m. Thenm/j is also a proper divisor of m. Con-

sider
= 1 Zd. =1 ;_3 e
8 +n Zd + Vl( + )

where the dots indicate other divisors of m, Since j < n, S > m and so
the definition is not satisfied. In conclusion, m is not n-hyperperfect,

as was to be proved.
Conollarny 1. 1f m is even, then m is not n-hyperperfect since it has
n>1

Proof. |If m is even, 2[m. By Theorem 1, m cannot be n-hyperperfect

forn > 2.
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A prime number p is obviouslynot n-hyperperfect since it has no proper

divisors and
p>1tn0
Similarly, if m £ n then m is not n-hyperperfect. This follows since
m<l+m2di<1+n2di. (m non prime)
It should be observed that if m i s n-hyperperfect, then m = 1 mad n.

Theorem 2. An n-hyperperfect number (# > 1) cannot be a power of a

prime.

Proof. Let m = p* be n-hyperperfect. Then p, p?, =+, p * are

proper divisors. V¢ know that

l+p+pz+---+pk—l=§k_“—ll
so that
T R Ef—lll.
p-1
This implies
k-1 k.
1+nlp+p2 +pd+ 0 +p )=l+nH

Case 1. n 2 p. Impossible since then m has a divisor p with p € n
(Theorem 1).
Case 2. Hence n = 2,3,*+*,p - 1; by hypothesis

k k=1 - k k-
m=p =1+nlp+p2+eestp )=1+nLE—l_p =1+npu_l.
This implies
k i k
p51+(p-l)§T§—-=l+p -p .

This implies 0 £ 1. - p. Sincep > 1, this is a contradiction. Therefore,

m # pk, completing the proof.

Theorem 3. Let m = pg with p, q primes, be n-hyperperfect. Then
the following relation must hold: #n <p < 2n < gq.

155

Proof. Letp <(qg. Thus

pq=l+nlp+q)=1+np+ng <1+ 2ng
SO

pq < nq
from which follows that p < 2n. Nw p # 2n, otherwise 2|m, which is a
contradiction of Corollary 1. Finally p < 2n. Similarly, pq > 1+t 2np,
so that

pq = 2np

and thus

qgez2n ;
as above, q # 2n so that q > 2n. Also (p - n)g = Lt np > 0, implying

p-n>0o0rp>n, as was to be proved.

Of course this theorem says nothing about more general n-hyperperfect
numbers of the form pzl pgz pzk. In view of the constraints imposed
by Theorem A, limiting the number of candidates for n-hyperperfection, it
is natural to ask if for any given n there exists at |east one hyperper-
fect number. For example, let M be some positive integer; :—!-M - P numbers

2
are candidates for 2-hyperperfection (P = number of primes between 2 and
M); only %‘M - %M - P numbers are candidates for 3-hyperperfection (see

Theorem 1). Also, having fixed M, the number of candidates for n-hyper-
perfection decreases to zero as n approaches M.

The search conducted by the authors, in which the integers between
2 and 25,000 were investigated, gives the following results (table ex-
haustive to 25,000).

n m
2 21
6 301
3 325
12 697
18 1333
18 1909
12 2041
2 2133
30 3901 -
11 10693
6 16513
2 19521
60 24601
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An astonishing relation exists between n-hyperperfect numbers and
generalized Mersenne numbers— for which we discuss here only the second

degree extension.

. . . . t-1,. .t
Definition. Lettbeaninteger. If 3t - 2 is prime, then 37 (37 - 2)

is called a second degree Mersenne number and 3 - 2 a Mersenne prime.

Observe the similarity with the regular Mersenne numbers defined as

212t - 1), for 2 -1 prime.

Theorem 4. If for some ¢, 375—1(3# - 2} is a second degree Mersenne
number, then m = St—l( 3t - 2) is 2-hyperperfect.

Proof. Let m = St-l(Bt - 2); we want to determine Zdi. It is known

from number theory that i f (a,») = 1 then ola,b) = ola)a(d).
By assumption on 3 - 2, (St_l, 3 -2) =1. Then

olm) = of(3¥ (3% - 2)1 = a(a¥ Ha(at - 2)

"

s(3Fhrt - 2) +11

since 3t - 2 is prime. Now,

t
-1, _ t-1, _1-3"_1 .t
0(3 )—(l+3+"'+3 )'1_3 2(3 l)
so that o{m) = %‘(St - 1)2. Now
l+22d7::l+2[cr(m) -m-1]
=1+ 20(3% - 1% - 3t - 2) - 1]
=g -2 -2 Nt -2y -1
T N LI Lo
Factoring,
1+ 2 Edi =32t s - 2) 4 3P - 249)

261, b1 _

=3 -2 m

Hence m is 2-hyperperfect, ending the proof.

Whether the above condition i s also necessary has not been established.

The table below shows how the 2-hyperperfect numbers can be generated;
the question whether these are the only 2-hyperperfect humbers between
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2 and 4,782,963 x 4,348,905 is contingent upon settling the necessary

part of the theorem.

. P st -2 Prime? | M+ = 3873t - 2)
1 1 1 No _
2 3 7 Yes 21
3 9 25 No

4 27 79 Yes 2,133
5 81 241 Yes 19,521
6 23 727 Yes 176,661
7 729 2,185 No

8 2,187 6,559 Nb

9 6.561 19.681 Yes 129,127,041
10 19,683 59,047 No

11 59,049 177,145 No

12 177,187 531,439 No

13 531,441 1,594,321 No

14 1,594,323 4,782,967 No

15 4,782,969 14,348,905 No

V¢ caution the reader from inferring that

a+otia+ ot -, K= 1,2,3,0-

will always be sufficient to generate k-hyperperfect numbers; in fact,
it is not, though it will work in certain situations. The process of
deriving appropriate Mersenne generalizations is an intriguing and dif-
ficult task, and is discussed at length by the authors elsewhere. W

conclude with two conjectures:

Conjecture 1. For all n, there exists at least one n-hyperperfect
number.

Conjecture 2. The converse to Theorem 4 is true.



THE HEIGHT OF THE LATTICE OF FINITE TOPOLOGIES

by RoLand E. Larson
Behnend Cellege of, Pennsylvania State. University
Several articles have appeared concerning the lattice of topologies
on a finite set. May of these papers deal with counting procedures for
different types of topologies definable on n elements. For example, the
lattice of topologies on a set containing n elements has 2" - 2 atoms and

2 .
n- - n anti-atoms.

Example 1. If »n is equal to three, the following diagram taken from
(9) illustrates that both of these formulas yield six. ‘,

As indicated by the diagram, there are 29 topologies definable on a finite

set of three elements. If the finite set consists of the elements a, b,
and c, then the topologies labeled 1 through 7 in the diagram are as
follows:
(1) The discrete topology.
{6, [al, [p], [el, [a,bl, La,el, [D,el, [a,b,el}
(2) Ore of the six anti-atoms.
{#, Lal, [b], [a,bl, [b,c], [asb,cl}

(3y (¢, [al, (b1, [a,p], [a,b,c]}

159

(4) {¢, [al, [b,el, [a,b,cl}
(s) {8, [al, [a,b], [a,b,c]}
(6) One of the six atoms.
18, [al, [a,b,el}
(7) The indiscrete topology.
{g, La,b,cl}
The two chains
7€6Cs5C3Cc2cCc1l
and
7€C6Ccu4c2cl
are both maximal in the sense that no other topologies may be included in
either of the two chains. However, the first is a chain of maximal length,
in this case 6, while the second i s not.
W can observe from the diagram that the maimum chain length in
this lattice is also six. This maximumlength i s called the height of the
lattice. Ve will show in this paper that the height of the lattice of

topologies on # elements is (n2 + n)/2.

1. Notation and Deginitions

For a definition of alattice, we refer the reader to (1) or any of
several other standard texts on lattices.

If L isalattice and Cis a subset of L, then Cis a
The length of the

chain if for every x, y € Ceither x s y ory < x.
chain C is simply its cardinality.

Finite lattices can be represented by diagrams, as seen in Example 1.
In these diagrams, the lattice ordering of x < y is indicated by placing
X lower than y and connecting them with a line.

A chain Cin a latticel is called maximal if by

Definition.

adding any other elements of L to C, ¢ is no longer a chain.

Definition.
length of a chain in L.

If L is alattice, then the height of L is the maximum

Note that it is possible to have maxima chains of dif-

Example 2.

ferent lengths. A simple example is illustrated in the diagram below:
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This lattice has a height of four, but along with a maximal chain of length
four, it also has a maximal chain of length three.

Definition. If L is a lattice with least element 0, then a is called
an atom of L if 0 < e < aimplies e = a. The dual notion of an atom is

called an anti-atom.

If X is a set, then we use Z(X} to denote the lattice of topologies
on X under the ordering of set inclusion. In this paper, we will assume
that X is finite.

In the proof of our main theorem, we will rely heavily upon Frdhlich's
ultratopologies [5] which form the anti—atoms in Z(x). If X isfinite,

the anti-atoms in Z(X) are precisely the ultratopologies of the form:
T(a,b) =[6E&X | a¢ Gor b €4l

Fréhlich has shown that T(a,b) = T(e,d) iff a=¢ and b = d, and that
Z(X) is anti-atomic; that is, any topology in Z(X) may be written as the
intersection of anti-atoms.

Maximal chains in Z(X) may be nicely represented by sequences of
ultratopologies in Z(X) as follows. Assume we have a maximal chain in
Z(x) of length k: [¢,X] = Tl ST2 _e_Tk = P(X). Tk-l must be an ultra-
topology, say T(al,bl) and Tk—2 must be the intersection of this ultra-
topology with another, say Tk—2 = T(al,bl) ] T(a2,b2). We may continue
this process t o obtain a sequence of ultratopologies such that Tk~m
= T(aysb) N T(a2,b2) A e N T(a b ). There will be exactly k - 1
ultratopologies in this sequence since the discrete topology P(X) is

greater than any ultratopology.

Definition. A sequence [Tl,T2,°--,TnJ of ultratopologies in Z(X)
i's independent if for every k < n, N[T, | i < %] # nT, | © < k1. A se-

quence which is not independent is called dependent.
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Example. 3. The sequence [T(a,b), T(a,e), T(a,d)] is independent as
long as a, b, e, and d are distinct.

Example 4. The sequence [T(a,e), T(e,b), T(a,b)] is dependent since
T(a,e) N T(e,b) = T(a,e) N T(e,b) N T{a,b). This example does not -depénd
upon the set X as long as X has at least three elements. Note that the"
order of a sequence of ultratopologies may be critical to its dependence
or independence. In this example, if we reorder the sequence to produce
[T(a,e), T(a,b), T(e,b)], we obtain an independent sequence.

Definition. |f S s a sequence of ultratopologies in Z(x), then by
the basie set of the sequence we mean the set of all a, b
T(a,b) € S.

€ X such that

7. Height of Z{X)

Theonem 1. If X isfinite and if an independent sequence of distinct
ultratopologies in Z(X) possesses a basic set containing » elements, then
the sequence contains at most [(#n2 *+ n)/2] - 1 ultratopologies.

Proof. The proof is by induction onn. |f n = 2, the only pos-
sible ultratopologies in the sequence would be of the form T(a,b) and
T(b,a). Since formn =2, [(n2 + n)/2] - 1= 2, the result is obvious.
Ifn=23 [(n2+n)/2]-21=5and since there are at most six distinct
ultratopologies in a sequence whose basic set has three elements, it is
clear that any sequence of more than five distinct ultratopologies is
dependent since it would contain a subsequence like that of Example 4.

We will assume the theorem to be true forn - 1. That is, any in-
dependent sequence having a basic set of n - 1 elements cannot have
[(n - 1)2 + (n - 1)]/2 distinct ultratopologies.

Assume S = [T(al,bl), T(a2,b2), e T(ak’bk)] is a sequence of dis-
tinct ultratopologies in Z(X) where k = (n?2 + n)/2, and assume that the
basic set of S contains n elements.

Case 1. Ifthere existsanelementmsuch thatm appearsn or less times
as eitherthefirst or second element in the representation of the ultra-
topologies, then there would be at least [(#2 + #)/2] - n ultratopologies
in S whose representations involved only the remaining » - 1 elements other
than m. Since [(n? + n)/2) - n = [{n - 2+ (n - 1)1/2, we may apply
the induction assumption to this subsequence involving the n - 1 elements
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other than m to conclude that the subsequence is dependent. It is easily
seen that any subsequence of an independent sequence must be independent;
therefore, we conclude that S is dependent.

Case 2. If every element of the basic set of S appears exactly n+1
times in the representation of the ultratopologies in S, then we will
focus upon the ultratopology T(ak’bk)' Note that no element in the basic
set can appear more than » + 1 times in the representation of the ultra-
topologies. W leave this verification for the reader. Since a, could
only have appeared in the second position in at most » - A ultratopologies
in 8, there must exist some a € X such that a # bk and T(ak’C) eS8, If
T(c,bk) € S, then ﬂ[T(ai,bi) | 2 <kl = ﬂ[T(ai,bi) | 2 < k] and the proof
would be complete. Therefore, assume T(c,bk) & S. We also assume that
the subsequence [T(x,y) € S | T,y # ak] is independent, since i f it were
dependent, then S would be dependent. However, by adjoining T(c,bk) as
the final term of this subsequence, we obtain a sequence on [{n - 1)2
+ (n - 1)1/2 elements whose basic set has only n - 1 elements. As in
Case 1, we can apply our induction assumption to conclude that this new
sequence i s dependent. Since the subsequence without T(c,bk) was inde-
pendent but with T(c,bk) is dependent, the following intersections must
be equal:

NT(x,y) €S | 2,y # @1 = NTx,y) €S | zy # a1 N T(e,by).

Call this topology Tl and | et T2 = ﬂ[T(a,Z.,bi) | © < k1. we claim that
T2 n T(ak’bk) = T2. To see this, choose G € T2. By the inclusion

T2 c Tl c T(c,bk) we know that G€& T(c,bk). Also, we know T, C T(ak,a)
which implies that G € T(g ,e). Asin Example 4, this implies G€
T(ak,bk) and our proof is complete.

Corollany. 1f X has n elements, then every chain in Z(X) has a length
of at most (n? + n)/2.

M‘ I1f X=1[1,2,++-,n] there exists a chain of length

(2 + n)/2 in 2(X).

Proof. W claim that the following sequence of ultratopologiesis
independent :

[T(1,2), *=+, T(1,n), T(2,3), ===, T(2,m), T(2,1), *=+,

T -2,n-1,Tn-2,n), Tn -2, 1), Tn -1, n),

T(n - 1, 1}, T(n,1)].
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Verification of this claim is messy, but straightforward. Ve will

indicate a method of proof by the following table. If the sequence is
relabeled [Tl’TQ’""Tk]’ then by G, we mean a set G_ L N 72 noeee
n Tm-l such that Gm & Tm. -
_Tm T(1,2) | T(1,3) | °°° T(1,n) T(2,3) | °*°
[1] [1,2] | "~ | [1,2,°++n - 11 (21 | °7°

14

T T(2,n) T(2,1) Tn - 2, n - 1) T(n - 2, n)

G, [2,3,°*-,m - 11| [2,3,°¢°,n] [n - 2] [n-2,n-1]

T T(n - 2, 1) Tn -1, n)| Tn -1, 1) | T(n,1)
|_m
G n-2,n-1, nl [n - 1] n -1, n] [n]

This sequence has n - 1 ultratopologies whose first termisd1,n - 1
whose first term is 2, n - 2 whose first term is 3, and so on. Therefore,
we have (n - 1) + (n -1) + (n -2) + +++ +3+2+21=0[(n%+n)/2]1-2
ultratopologies in the sequence. Since P(X), the discrete topology, is
greater than any of these ultratopologies, we may form a chain of length
(n? + n)/2.

The combination of the first two theorems brings us to our third
theorem.

Theorem 3. The height of the lattice of topologies on n elements
is (n2 + n)/2.

The following table compares four different dimensions of Z(X) for
|x| = 8.

number number of number of
n of atoms anti-atoms height [topologies [6]
2 2 2 3 4
3 6 6 6 29
u 14 12 10 355
5 30 20 15 6942
6 62 30 21 209527
7 126 42 28 9535241
8 254 56 36 646555994
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Ore interesting side result concerning chains of maximal length in
Z(X) is that they cannot contain a non-trivial partition topology. By
glancing back at the diagram of Z(X) where X = [a,b,e], we see that the
three topologies in the center of the lattice which are not contained in
a chain of maximal length are the partition topologies {#, [b1, [a,el, X},
10, [al, [b,el, X}, and {#, [el, [a,b], X}.

Deginition. A topology on X is called a partition topology if the
minimal open sets of the topology form a partition on X. Partition topol-

ogies are called symmetric topologies in (7).

Theorem 4. A chain of maximal length in Z(X) cannot contain a non-

trivial partition topology.

Proof. Assume P(X) = To, Tl, cen, Tk = [#,X] is the chain and as-
sume that it is represented by a sequence of ultratopologies S =
[T(al,bl), oee, T(ak,bk)] where T3 = T(al,bl) neeen T(a:%b:_g). Assume
that Ti’ i #0, © # k, is a partition topology. Since Ti isynon-trivial,
there must be at least two distinct minimal open sets in the partition and
one of them must have at least two elements. Say the partition is
[Pl,P2,°°°,Pm] where Pl = [pl’pQ’”.’pr]' The sequence of ultratopologies
has the property that if j < 2, then a3. and b3. are both in the same
equivalence class in the partition. Sincer £n = 1, we know one of the
members of Pl’ say p,» appears at most n - 1 times as some a. or bj where
j <. Ve my also assume that if 7 < J, then a3. # p, and b3. # py- If
either aj or b. were equal to pl, they could be replaced by Py- Finally,
the sequence [T(x,y) € S | z,y # pl] can have at most [(n - 1)?

+ (n - 1)]/2 - 1 elements, and since 123 appeared at most » = 1 times in
the sequence S, thereisat most [{(n - )2 + (n - NI/2 -1+ (n - 1)

= [(n2 + n)/2] - 2 ultratopologies in the sequence. Therefore, this se-
quence could not generate a chain of maximal length and we have a contra-
diction. This completes the proof.
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Fr ANOTHER PUZZLE

The day before his execution a prisoner was brought before the

king. The people were demanding execution, but the high court
was seeking a stay of execution in favor of a lesser penalty.
The king decided on a compromise in the form of a wager. The
prisoner was presented three urns, 1 black ball and 23 white
balls, and was told that the next day three palace guards would
be blindfolded and would independently take a ball from one of
the urns, without replacing the ball. The prisoner was to be
allowed to distribute the balls in the urns. If the black ball
was chosen by any one of the three guards, he was to be executed,
Hw should the prisoner arrange the balls?
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MATRIX MULTIPLI CATION AS AN APPLI CATION OF
THE PRINCI PLE OF COMBI NATORI AL ANALYSI S

by Mary Zimmerman
Westenn Michigan State Univensity

The principle of combinatorial analysis states that if there are two
events A and B which are independent (that is, the outcome of neither
event depends on the outcome of the other), there are m possible outcomes
for event A, and there are n possible outcomes for event B, then there
are m*n total outcomes for the two events A and B. For example, if a
student is to take an examination consisting of two problems, one problem
from a list A of three problems and one problem from a list B of five
problems, then the total number of possible examinations is 3+5 = 15,

It therefore follows that if A | A2, ey, Ak

wise independent (that is, every two events are independent) and there

are k events which are pair-

are al possible outcomes for Ai’ for 2 = 1,2,*++,k, then the total number
of outcomes for all k events is al-azo IR/ !

As a somewhat different illustration of this principle, suppose we
are given three sets X, ¥, Z of cities. Suppose further that there are
roads from cities in X to some cities in Y and roads from cities inY to
some cities in Z, but no road from any city in X to any city in Z (that
is, totravel from a city in Xto a city in Z, one must pass through a
city in ¥). In this context, we say that a "route" from a city x € X to
acity 2 € Z consists of a road from X to some city y € Y followed by a
road fromy to a. As a more specific example, assume that X = {ml,xz,xa},
Y = {yl,yQ,ya,yu}, Z = {zl,z2,23} and that the various roads are as de-
picted in the "graph” ¢ of Fig. A, where the cities are represented by
'vertices" and the roads by "edges".

The graph G of Fig. 1 is said to model the road system consisting
of the ten cities and the various roads between certain pairs of cities.
W now consider the number of routes from a city in Xto a city in 2.

The number of different routes from x, to z

1 1
mined by calculating the number of such routes which pass through each

for example, can be deter-

of the cities > Yyr Ygo and Yy and adding these four numbers. To

167

calculate each of these four numbers, one can think of employing the- prin-
ciple of combinatorial analysis. There is one road from X, toy, and one
road from y; to 2,3 therefore, there is 11 = 1 route from X_ to 2, through

1

In a like manner, we see that there are 0 routes from x, to 2. t_hrough

. 1

y%, 0 through Yg» and 1 through Y- Hence, the total number of routes
from z, to z,, isa1t+totot+ta=2 Similarly, we can calculate the
number of different routes from X. to B for any xI (¢ = 1,2,3) and any

2 (k =1,2,3).

FI GURE 1

In a natural way, two matrices A and B may be associated with the
graph G. The matrix A is a representation of the roads between X and Y,
and, in particular, A = [ai,j] is a 3-by-4 matrix, where aijis the number

of roads from Xi toy,. Since there is one road from z; to Yyo it follows
that @,y = 1. Similarly, a12 =1, a5 = 0,a =1, and, in fact,
1 1 0 1
A=1|1 1 0 1
0 0 1 0
(X to ¥)

The matrix B is a representation of the roads from Y to Z, namely,

B = [bij] is a 4-by-3 matrix, where bljtothe number of roads from yi to

2~ SO that
3
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168
& 4 B Through Bq- Therefore, the total number of routes from Xlto Wy is
§ T 1 2+ 0+ 2=4. 1Inalike manner, one can calculate the number of dif-
B = .
10 0 ferent routes from z, to Wy, for any Xi (Z = 1,2,3) and any w, (& = 1,2,3,4).
10 1 V¢ may now introduce a 3-by-4 matrix D = [dij] to represent the roads
Setween Z and W, where dij equals the number of roads from a2, to wj -
(Y to 2) From what we have now seen, the number of different routes from a city
Since a, is the number of roads from z, to ¥, and bll is the number X; € X to a city w, € W can be determined by calculating the product
. i Z = CD. The matrix E = [e..] is a 3-by-4 matrix where e.. i
of roads from yl to 2.5 a:llbzl:l_'s the number of roads from a:l to zl, L 1«7] Y 27«7 is the number
through Yy Hence, the total number of different routes from x, to 2 of routes from X, to w,j‘ Ve see that
can be written as 2 1 2]t 1 1 1 v 3 5 4
. . . BHoo= = CD=12 1 210 1 1 O =14 3 5 u4f =F
allbll+a12b21+a13b31+a14b41 1+0+0+1=2,
1 0 Ojj1 0 1 1 1 1 1 1
which we observed earlier. This is reminiscent of matrix multiplication;
. . . . . (X to 2} (Z to W) (X to W)
in fact, this number is calculated in precisely the same manner as the
entry in row one, column one of the product matrix ¢ = A*B. The matrix There is another way of determining the number of different routes
C = [cij]’ therefore, is a 3-by-3 matrix for which ci . is the number of from z; to w, . If we were to evaluate the product F = BD, then we see
J . . .
different routes from x; to 2je Hence, we find that that F = [fi:é] is a 4-by-4 matrix where fi . is the number of routes from

. J
v (2 =1,2,3,4) tow, {§ = 1,2,3,4). Therefore,

2 1 2 ) 3
c =12 1 2 1 0 0|1 1 1 11 1 1
1 0 0 BD'—‘OllOllO:llQl:F
1 0 0]]x O I 1 1 i
(X to 2) - .
10 1 2 1 2 2

The foregoing discussion concerning road systems may be extended so
that four, five, or more sets of cities are involved. There is a par-
ticularly interesting consequence when four sets of cities are considered.
Let us suppose there is a fourth set W = {wl,wz,ws,wu} of cities and that
the road system is now represented by the graph # of Fig. 2. (We say
that the graph G of Fig. 1 is a subgraph of #.)

W now investigate the number of routes from a city in X to a city
in W (By a route from a city x € X to a city W€ W, we, of course, mean H
a road from X to some y € Y, followed by a road from that ¥y to some 2 € Z,
which is then followed by a road from that z to w.) Suppose we wish to
calculate the number of routes from Xl tow,. W already know that there

1

are 2 routes from :cl to zl. Since there is a road from 2, to Wya it fol-

lows by the principle of combinatorial analysis that the number of routes

from Xlto wlthrough Z)» is2-1 = 2. Similarly, we see that there are FIGURE 2

1+0+0 routes from Xl to Wl through 2, and 2+1 = 2 routes from zy to wy
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W know there is one road from x to ¥, and one route from Y, tow,
Thus, by the principle of combinatorial analysis, there is 1+1 = 1 route

from xlto Wy through Yy~ Similarly, the number of routes from Xy to v,
through y, is 1, through y is 0, and through y, is 2. Therefore, the

total number of routes from X, to w, is 1+1+o0t+ 2= a4
we can determine the number of routes from x; (2 =1,2,3) to W, (j = 1,2,

In this manner,

3,4). This, however, is equivalent +o calculating the product M = AF,
where then M = [mij] is a 3-by-4 matrix and mij is the number of routes

from X, to wj. The calculations give us

1l 0 111 1 1 1 4 3 5 4
AF = o 1ij1 1 2 1 - 4 3 5 4 - N
o6 8 1 O/l 1 1 1 1 1 1 1
2 1 2 2
(X to Y) (Y to W) (X to W)

of course, M = E since M and E count the same things. This says
that M = AF = CD = E, or since F = BD and ¢ = AB, we conclude that

A(BD) = (AB)D .

This verifies the associative law of multiplication for the three matrices
A, B, and D This may make it appear more reasonable why matrix multi-
plication, in general, is associative.

Thus far we have been discussing graphs. The above analysis can also
be applied to certain kinds of networks. A network is a graph in which
each edge is assigned a number or value. (In fact, as we shall see, a
graph itself may be considered as a network in which each edge is assigned
the number 1.) W consider two examples of networks.

A multigraph is a network in which each edge is assigned a positive
integer. Often a multigraph is represented by a diagram in which a pair
of vertices is joined by the number of edges equal to the value assigned
the appropriate edge. For example, we might use a multigraph M to depict

roads between a set X = {xl,:cQ} of cities and a set Y = {yl,yQ,yS} of cities

as well as roads between Y and a set Z = {zl} of cities (one city in this
case). Such an illustration is given in Fig. 3.

As with the graphs we considered earlier, we may associate two mat-
rices A and B with the multigraph M. The matrix A is a representation
of the roads between X and Y; namely, A = [aij] is a 2-by-3 matrix, where

171

Y1 y3

FIGURE 3

aij is the number of roads from X; toy.. The matrix B is a representa
tion of the roads from Y to 2, that is,JB = [bi'] is a 3-by-1 matrix,

where bij is the number of roads from yi to z,. Hence, it follows that
J

a=-12 01 1
0 2 0 and B = {3
1

(X to Y) (Y to 2)

The product matrix ¢ = AB describes the number of routes from cities
inXtocitiesin Z; in particular, ¢ = [ci .J is a 2-by-1 matrix, where
cij is the number of different routes from x; to 24 In this case, we

find that

(X to 2)

As in the discussion with graphs, the number of routes from cities
in X to cities in Z given by the matrix ¢ can be interpreted as an appli-
cation of the principle of combinatorial analysis. Furthermore, the dis-
cussion on multigraphs may be extended to any number of cities. From
this, one can deduce the validity of the associative law of multiplication
of matrices whose entries are non-negative integers.
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As a second example of networks we consider " probability networks".
For a specificillustration, we investigate the network ¥ of Fig. 4.

FI GURE 4

The network of Fig. 4 is directed, that is each edge is "directed".
W& may interpret the network N as a model of a road system; in fact, it
is the same road system as in the graph G of Fig. 1. Each edge of N is
assigned a number, namely a probability; the probability of going to one
city given that we are at a specific city. In particular, the numbers
assigned to the edges of N imply the probability of being at city z, and
going to ylis 1/4, of going to Y, is 1/2, of going to Y, is 0, and of
going to Yy, is 1/4. Hence, the probability of being at z and going to
acityinYis1l/4 +1/2 + 0+ 1/4 = 1. In the language of probability
theory, the conditional probability of going to Y4 given that we are at
Xq is P(yllml) = 1/4. All other probabilities can be described in a
like manner.

In a probability network, each probability is a number p such that
0 < p s 1 (although an edge with probability O is ordinarily omitted)
and the sum of the probabilities of the edges incident from a vertex of

X or avertex of Y isone. In symbols, this says that

173

4
Z: P(yjlxi) =1 for Z =1,2,3
J=1

and
3 o

3 Pz |y.) =1 for j=1,2,3,u.
L kT

The probability of being at x, and going to 21, written P(xl]Zl),

1
can also be computed. Again, we turn to the principle of combinatorial

analysis. In probability theory notation, we have

n
2 [Py, le )Pz |y,)]

CP(z |z =
aR =1
1 1 11_ 5
—E‘l+§"0+0'l+EE-16

Thus, the probability of beginning at x 1

that the method of computing this is very similar to the method used to

determine the number of routes from x to z, in the graph G of Fig. 1.

1
The foregoing discussion suggests the introduction of two matrices,
namely a 3-by-4 matrix A = [a j] and a 4-by-3 matrix B = [bij]’ where
id = P(y.|z.) and b. . - P(z.|y.). Hence we have
aij = Ply;|=; o 54

11,1 10 0

¥ 2 m Ll
A=%’--§-O% and B = 2 2
1 0 0

0O 0 1 O }_o 3

& I

(X to ¥) (Y to 2)

The probability of going to city 25 (J = 1,2,3) given that one begins at
city X; can be determined with the aid of the principle of combinatorial

analysis (as we have seen) or by computing the product matrix ¢ = AB,

where ¢ = [e..] is a 3-by-3 matrix with ¢,, = P(z.|z;). |In particular,
Le;;] y i’ = p
11, 1]fr 00 B 4 7]
T 2 i 16 4 16 )
o L1 ,
1 1 1 2 2 5 1 5
AB = |= = 0o = = = = = =C.
3 3 3 10 0 12 6 12
0 0 1 0 1 . a 1 0 O
o I
(X to Y) (Y to 2) (X to 2)

and going to z, is 5/16. Observe
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VW note that the sum of the entries in each row of the matrix C is one;
that is,

3
E P(z.fx.) =12 4 7 = 1,2,3 .
= 7'

This, of course, states that the probability of going to some city of 2
given that we begin at some city of X is one.

In a like manner, probability networks may involve a larger number
of sets of cities. |In a natural way, several matrices mgy be introduced
and the associative law of matrix multiplication may be verified for
matrices having rational numbers as entries.

As a further illustration of the preceding discussion on probability
networks, we consider a manufacturing process. Assume that a raw part
starts off with three choices of assembly lines, with certain probabilities
that it will go to each assembly line. n each assembly line there are
specified probabilities that the part will take various routes during
the manufacturing process t o eventually become one of three different
finished products. The probability network of Fig. 5 models the above
situation with the probabilities of a part proceeding from one step to
another displayed next to the appropriate directed edge.

This manufacturing process may be described in terms of tasks. One
task Tl isto move a raw part to an assembly line, a second task T2 to
transfer the part to a manufacturing process from the assembly line, and

a third task T3 isto finally produce a finished product. W might also

Raw Part —

Assembly Lines — A

Manufacturning N
process

Finished
product

FIGURE 5

consider the "composite task™ T of manufacturing a finished product from
a raw part. The entire process of converting a raw part into a finished

product may be described by means of three matrices, which we denote in

the same manner as the corresponding tasks, Tl’ T2, and Ta. These matrices
are given below:
1 0 7 . 1
11 _ 13 1 _ {2 2
Tl'[aaal’ Ty = (v w|» amd Ty =
o L 2
0 1 3 3

(Raw part to
assembly lines)

(Assembly lines
t o manufacturing
process)

(manufacturing
process to
finished product)

The product matrix T = (Tl-Tz)-T3 = Tl'(Tz'Ts) is then a 1-by-3
matrix whose (1,4) entry, 4 = 1,2,3, represents the probability that a

raw part Rl becomes the final finished product Pj' Here, we have that

705 wm
T'[2u 3% 72}

, in terms of percentages,
T = [29% 14% 57%1.

This analysis could as well be applied to the probabilities of defects
ceurring in the assembling process. Such analysis has many applications.
In general, it can he used to describe the end results of a process or

task that can be expressed as a succession of component tasks.

MATCHING PRIZE FUND

-

If your chapter presents awards for outstanding mathematical paper
sy student achievement in mathematics, you may apply to the National

=

ffice to match the amount spent by your chapter. For example, $30

5f awards can result in the chapter receiving $15 reimbursement from

- § =

s

“he National Office. These funds may also be used for the rental of

= § ==

Department of Mathematics
The University of Maryland
College Park, Maryland 20742

- § —=

sathematical films. To apply, or for more information, write to:
Dr. Richard A. Good
Secretary-Treasurer, Pi Mi Epsilon
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1973-1974 MANUSCRIPT CONTEST WINNERS

The judging for the best expository papers submitted for
the 1973-74 school year has now been completed, The winners
are:

FIRST PRZE ($200): Charles D. Keys, Louisianna State
University, for his paper "Graphs Critical for Maxima Book-
thickness" (this Journal, Vol. 6, No. 2, pp. 79-84).

FOOND PRZE ($100): S. Brent Morris, Duke University,
for his paper "The Basic Mathematies of the Faro Shuffle"
(this Journal, Vol. 6, No. 2, pp. 85-92).

THIRD PRZE ($50): H. Joseph Straight, Western Michigan
University, for his paper "Applications of Finite Differences
to the Summation of Series" (this Journal, Vol. 6, No. 2,
pp. 93-98).

O —_—

1975-1976 CONTEST

Papers for the 1974-75 contest are now being judged’ and we are
receiving papers for this year's contest, so be sure to send us your
paper, or your chapter's papers(at least 5 entries must be received from
the same chapter in order to qualify, with a $20 prize for the best pa-
per in each chapter). For all manuscript contests’ in order for authors
to be eligibler they must not have received a Master's degree at the
time they submit their paper,

MOVING?? ‘i
BE SJRE 70 LET THE JOURNAL XNOW!

Send your namer old address with zip code

and new address with zip code to:

Pi Mu Epsilon Journal

601 Elm Avenue, Room 423
The University of Oklahoma
Norman, Oklahoma 73069

PROBLEM DEPARTMENT

Edited by Leon Banko{§
Los Angeles, California

This department welcomes probleme believed to be new and, as a rule,
demanding no Qgreater ability in problem solving than that of the average
menber of the Fraternity. Occasionally we shall publish problems that
should challenge the ability of the advanced undergraduate or candidate
for the Master's Degree. Old problems displaying novel and elegant methods
of solution are also acceptable. Proposals should be accompanied by solu-
tions, i f available, and by any information that w1l assist the editor,

Solutions should be submitted on separate sheets containing the m e
and address of the solver and should be mailed before June 15, 1976.

Address all eommunications concerning problems to Dr., Leon Bankoff,
6360 Wilshire Boulevard, Los 4ngeles, California 90048.

Problems for Solution

350. Proposed by R. Robinson Rowe, Sacramento, Califoania.

In the game of ELDOS, an acronym for Each Loser Doubles Opponents
Stacks, each of n players starts with his 'bank' (B) and at any point in
the play holds his 'stack' (5), which he bets on the next round. For
each round there is just one loser; in paying the n - 1 winners, he doubles
their stacks. Consider here a unique game when' after » rounds, each
player has lost once and all players end with equal stacks.

(a) For » = 5, what was the minimum bank, B, for each player?

(b) How many players, n, were there if the least initial B was 11
cents?

(c¢) Find a general formula for Bm, the initial B of the m'th player
zo lose, as a function of m and »n.

(d) Using the formula or any other appropriate-method, what was the
initial bank B of the 9'th of 13 players to lose?
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351. Proposed by Jack Garfunkel, Fonrest HiLLs High School, Flushing,
New Yonrk.

Angle A and angle B are acute angles of a triangle 4BC. |f angle
A = 30° and ha’ the altitude issuing from A, is equal to mb, the median
issuing from B, find angles B and C.

352. Proposed by Charfes W. Trigg, San Diego, California.

The edges of a semi-regular polyhedron are equal. The faces consist
of eight equilateral triangles and six regular octagons. In terms of the
edge e, find the diameters of the following spheres: (a) the sphere
touching the octagonal faces, (b) the circumsphere, and (c) the sphere
touching the triangular faces. (See solution to problem 198, on page
390 of this Jowrnal, Vol. 4, No. 8.)

353. Proposed by Clayton W. Dodge, Univernsity of Maine at Orono.

It is easy to show that if a and b are complex numbers such that
atb=0and |a|] = [b], then a® = b2. Prove that if a, b andc are
complex numbers such that at b+ e = 0and |a| = |B| = |e|, then a?

= b3 = @3, Can this result be extended to more than three numbers?

354,  Proposed bq Arthur Bernharnt and David C. Kay, Univensity of
Oklahoma, Noaman, Oklahoma.

In a triangle ABC with angles | ess than 27/3, the Fermat point, de-
fined as that point which minimizes the function f{X) = AX t BX t CX, may
be determined as the point Pof concurrence of lines AD, BE and CF, where
BOD, ACE and ABF are equilateral triangles constructed externally on the
sides of triangle ABC. If R, S and T are the points where PD, PE, and
PF meet the sides of triangle ABC, prove that PD, PE and PF are twice the
arithmetic means, and that PR, PS and PT are half the harmonic means of
the pairs of distances (PB, PC), (PC, PA) and (PA, PB) respectively.

355.  Paoposed by John M. Howell, Littlerock, California.

O the TV game show called "Who's Who?", four panelists try to match
the occupations of four contestants with signs marking their occupations.
If the first panelist matches correctly’ the contestants get nothing and
the game is over. |f the second panelist succeeds in matching correctly,
the contestants get $25. |f the second panelist fails but the third suc-
ceeds, the contestants get $50. |f the fourth panelist matches after the
third fails, the contestants get $75. |f there is no match, the contest-
ants win $100. Wha is the expected value of the contestants' winnings?
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Assume pure guessing and that no panelist repeats a previous arrangement.

356. Proposed by Erwin Just, Bronx Community College, Bhronx, New
York.

From the set of integers contained in [1, 2n] a subset X consi$ting
of n t 2 integers is chosen. Prove that at least one element of X is the
sm of two other distinct elements of X.

357.  Proposed by David L. Silvernman, West Los Angeles, Caldfornia.

Able, Baker and Charlie, with respective speeds a > b > ¢, start at
point P with Able designated "it" in a game of Tag which terminates when
Able has tagged both Baker and Charlie. At time -T, Baker heads north
and Charlie south, After a count taking time T, Able starts chasing one
of the two quarries. Assuming that Baker and Charlie will maintain their
speeds and directions, whom should Able chase first in order to minimize
the time required to mae the second and final tag?

358.  Proposed by Sidney Penner and H. |an Whitlock, Bronx Community
College, Bronx, Nw York.

Fom a 2n t 1 by 2n t 1 checkerboardy in which the corner squares
are black, two black squares and one white square are deleted. |f the
deleted white square and at least one of the deleted black squares are
not edge squares, then the reduced board can be tiled with 2 x 1 dominoes.

359.  Proposed by Gregony Wulezyn, Buckneff University, Lewisbunrg,
Pennsylvania.
Show that there is an infinitude of pairs of consecutive integers,

each pair consisting of a pentagonal number Pr% = % (3n - 2) and an hexag-

6 _m _
number Pm ol (4m - 2).

360. Proposed by Paul Erdds and Eanst Strauss, Univensity of Cali-
gomia at Los Angeles.

Denote by An the least common multiple of the integers < »n and de-
note by d(zn) the number of divisors of »n.

(a) Prove that E:=l A'L isirrational.
n

> dn) i< ; -
(b) Prove that Enzl An is irrational.

(e) Prove that En=l fén) isirrational, where f(x) is a polynomial
with integer coefficients.
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361. Proposed by Canl A Angila, De La Satle College, Manila,
Philippines.

Consider any triangle ABC such that the midpoint P of side BC is
joined to the midpoint Q of side AC by the line segment PQ  Suppose R
and S are the projections of P and Q respectively on 4B, extended if
necessary. Wha relationship must hold between the sides of the triangle

if the figure P@RS is a square.

Solutions

326. [Fall 19741 Proposed by Zazou Katx, Beverly Hiffs, Califonr-
nia.

Find solutions of the equation x2 + 32 *+ 22 = a2 + b2 + &2 + 42,
where each of the sets x, y, # and a, b, e, d consists of consecutive
integers.

1. Solution by J. S. Frame, Michigan State University.

Writing the two arithmetic sequences in the form
y-1l,y, y+1 and b-1,b,b+1, b+ 2 (1)

the equality of the two ans of squares requires

y2 =1t (20t 1)%/3 (2)
All positive integral solutions of the Diophantine equation
y2 =11 3u? are given by the formula

k

= ) % -k
3y 3 2/ \o /3 (r ~1p )

where » = 2+ V3 and 1/» = 2 - V3 are the eigenvalues of the square matrix

in (3). Since 3u=2b *t 1 isodd, k¥ must also be odd, say k = 2n + 1.
If q=2r®=71%u/3, then

CL)-CIO-CO0 e

( 2y ) qm+l
2b + L

£+

-m-1
1 1\/ + )
1 -1 (g +q )

Using [t] to denote the greatest integer<t we have
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m
+ + 2)/4]
n 7 (6)

2 +1=0q" - qo/Mml, q=7+u/3

The first few solutions for the midvalues (ym, bm +1/21 in the*{wo
ithmetic progressions (1) are

(2, +1.5), (26, +22.5), (£362, +313.5), (#5042, £4366.5) (7
r example’ the second positive solution fory and b yields

252 4+ 262 + 272 = 212 + 222 + 232 + 242 = 2030 (8)

1. Solution by Clayton W. Dodge, University of Maine at Orono.

Ve have (y - 1)2+ 2t (ytn2:=-a+t(at12+@t2)?2+ (at 3)?,
iich can be written in the form 3y2 - 3= (2a + 3)2, soais divisible

5y 3. Let a= 3r. The equation reduces to y2 - 1 = 3(2r t 1)2 or, letting
: = 2» + 1, we obtain the Pell equation y2 - 32 = 1, where a = 3(u - 1)/2,
which requires, of course’ that u be odd.

The solutions to this equation are well known and are found by
etting y T w/3 = (2 + V3" where » is an odd positive integer. Thus

(y,u) = (2,1), (26,151, (362, 209), **+, which produce (y,a) = (2, 0),

6, 21), (362, 312), -+-; that is,
12 + 22 + 32 = 02 + 12 + 22 + 32,
252 + 262 + 272 = 212 4+ 222 4+ 232 4+ 242,
3612 + 3622 + 3632 = 3122 + 3132 + 3142 + 3152, ee»

ALso sofved by LOUIS H. CAIROLI, Syracuse Univensity; VICTOR G.

"ESER, St. Louis Univensity; R. C. GEBHARDT, Hopatcong, N. J.; MARK
JAEGER, Ames, Towa; ARTHUR M. KELLER, Brooklyn, New York; ROY HAGGARD,
mivensity o4 Akron, Ohio; JOHN M. HOWELL, Littlerock, California; J.A.
HUNTER, Tonronto, Canada; EDITH E. KISEN, Portland State University,

Jzegon; JIM METZ, Grniffin High Schoof, Springfield, 1£ELinois; BOB PRIELIPP,

Univensity of Wisconsin-Oshkosh; R. ROBINSON ROWE, Sacramento, Calif.;
RLES W. TRIGG, San Diego, California; GREGORY WULCZYN, Buckneff Uni-
wAity, Lewdsburg, Pennsylvania; and the Proposern. .

omment by the ProbLem Editor

Charles W. Trigg offered the following references:
1. H. L. Alder, "n and n +* 1 Consecutive Integers With Equal Sums
quares," American Mathematical Monthly, 69 (April 1962), 282-285.
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2. Brother U. Alfredr "» and n t 1 Consecutive Integers With Equal
Sums of Squares," Mathematics Magazine, 35 (May 1962), 155-164. For
z <y <z anda<b <c<d, the given equation reduces to 3(x t 1)2 - 3
= (2¢ t 3)2. Alfred gives the first five values of (x,a)as(25,21),
(361, 312), (5041, 4365), (70225, 60816), and (978121, 8470770).

Louis H. Cairoli supplied a reference to the article by Brother
Alfred noted above and to an article by Brother Alfred in the September
1967 issue of the Mathematics Magazine.

Metz supplied a BAS C program and Keller a FORTRAN |V program used
to generate solutions and to confirm their results.

The Proposer derived solutions by using convergents of the simple
continued fraction expansion of Y3 in connection with the Pell equation
p2 - 3q2 = A

327. [Fall 1974] Proposed by Charles W. Trigg, San Diego, Cali-
fonia.

h a remnant counter there are six rolls of ribbons containing 31,
19, 17, 15, 13 and 8 yards. There are two widths of ribbons, some rolls
being twice as wide as the others. There are no price marks, but all
the ribbons sell for the same price per square inch. |f you wish to buy
$14.00 worth of each width, buying every roll but one, which roll would
you leave on the counter?

Solution by Clayton W. Dodge, Univensity of Maine at Orono.

In the five rolls we buy there must be twice as may yards of the
narrow width as of the wide width. Hence the total yardage must be
divisible by 3. Since the total yardage of the 6 rolls is103 = 1 (mod 3),
we must omit the 31-, 19-, or 13-yard roll. The remaining yardages are
72, 84, and 90 respectively. Nw no combination of the remaining rolls
will add up to either 24 (= 72/3) or 30 (= 90/3). Since 15+ 13 = 28
= 84/3 and 31+ 17 * 8 = 56 = 2-28, the 19-yard roll must be left.

ALso solved by VICTOR G. FESER, St. Louds Univensity, Missouri;
RICHARD A. GIBBS, Font Lewis College, Durango, Colorado; ROY HAGGARD,
Univensity of Aknon, Ohio; ARTHUR M. KELLER, Brookfyn College, New York;
EDITH E. KISEN, Poatland State Univensity, Oregon City, Onegon; STEVE
LEELAND, Univensity of South Flonida; CHARLES H. LINCOLN, Raleigh, Noath
Canolina; R. ROBINSON ROWE, Sacramento, California; and the Proposen.
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328. [Fall 1974] Proposed by Joe Dan Austin, Emorny Unlversity,
Atlanta, Geoxgia.

A group of 366 people are sequentially asked their date of birth.
Assuming birthdates are independent and all days are equally like@--
find Pk“ the probability that the first match is obtained when the k'th

person is asked. As 366 people must have at |least one match,

366

:z: P = L.
k=1

Sow this directly.
Solution by R. Robinson Rowe, Sacramento, California.

The text assumes no leap-day birthdates. In addition to the defi-
nition of Pk as the probability of a first match when the k'th person
is asked, we define Qk by

>
1-4, = P (1)
k = k

The first person asked has no one to match, so Pl = 0 and Ql = 1.
The next person has only one to match, SO P2 = 1/365 and Q2 = 364/365.
For the third person, there is a chance of Q2 that there has been no
previous match and 2 persons with different birthdates t o matech, so
P3=(36u/365)(2/365) and @ = @, = P, = (364/365)(363/365).

With the sequence of persons' corresponding relations will be of the
form Pn = Qn_l(n - 1)/365 and Qn = Qn_l(SSG - n)/365.

This can be expressed generally

(k - 1) 385!

P, = (2)
k 365k(366 -k - 1)
which answers the first question, and
4
365! (3)

Q =
k 365k(366 -k - 1)

For the second question, note from (1) that with k = 366 as the upper

limit, -
365!

—_—=z1-0=1
36576 (_1)1

%&?
P, =1-4 =1 -
= k 366

since factorial -1 is infinite.
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Also solved by JOHN M. HOWELL, Littlerock, Califomnia; ZAZOU KATZ,
Beverly Hills, California; NOMO KING, Raleigh, N. C.; MARK JAEGER,
Canliton College, Nonthfield, Minnesota; and the Proposer.

329. [Fall 1974] Proposed by Bernand C. Andenson, Henhy Fohd Com-
munity College, Dearborn, Michigan.

Show that f(x) = 2x * sin x is a strictly increasing function on
(-=, +) by using only pre-calculus methods.

Solution by N. J. Kuenzi, The Univensity of Wisconsin-Oshkosh.

More generally, it can be shown that any function of the form

flx) = ar * sin X witha = 1 is strictly increasing on {-=, +=). Let u

and v be any real numbers with u < v, Then
fv) - fw) = alv - w) *t sinv - sin u.

Recall that if X > 0 then sin x < X. (Refer to the unit circle.) Hence,

sinv_u
2

cos{v ; u} sin[v ; u}

< (v -w/2,

and

2 <V -u.

Using a standard trigonometric identity yields

lsin v = sinu| <v - u ,

or equivalently,
(v -w <sinv-sinu<v-u.
Adding a(v - u) to each term yields
(a - D(w - w) < flv) - flw <(a+ (v -w .

Sincea > 1, it follows that f{u) < f(») whenever u < v.

Also sofved by JEFFREY BERGEN, Brookfyn College, Brooklyn, N. Y.,
R. C. GEBHARDT, Hopateong, N. J.; RAY HAERTEL, Central Oregon Community
Coflege; CHARLES H. LINCOLN, Rafeigh, N. C.; C. B. A. PECK, State College,
Pennsylvania; R. ROBINSON ROWE, Sacramento, Callifornia; CHANDER LEKHA
SABHARWAL, Panks College of St. Louis University, Cahokia, T€&incis; and
the Proposen.

330. [Fall 1974] Proposed by R. Robinson Rowe, Sachamento, Cali-
fornda.
Starting at zero-zero latitude and longitude at 12:00 noon on Monday,
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Rumline Crowe flew his plane at a constant 180 knots loxodromically North
459 West. Where was he on Tuesday at 12:00 noon, local standard time?
Solution by Zazou Katz, Beverly Hills, California.

Since the northerly and westerly components of the plane's velocity
are each equal to 180 knots divided by ¥2, the northerly position after
7 hours is 180T/V2 times the conversion factor of 1° per 60 nautical
miles, or 3°T/¥2 N. Latitude.

One degree of longitude corresponds to 60 nautical miles times the
cosine of the latitude. Hence the westerly velocity of 180//2 knots can
be expressed in terms of degrees of longitude as 3° sec(latitude)/vZ or
(3°//2) |sec ﬂ]

V2
Then
T o o]
Longitude = Cd sec L
G V2 vZ
o] [o]
= 22 1n tan yso + 2L (1)
2v2

After 24 hours, the position of the plane will be 24(3°/v/2), or
50.91° North Latitude and, by substitution of 24 for T in (1), 59,3u°
West Longitude, thereby placing Rumline four time zones west, where the
local standard time is 8:00 AM. He now has four additional hours of
flying time at his disposal.

Trying T = 28 in (1), we find Rumline at Latitude 59.40° North,
Longitude 74.26° West, thus reaching the fifth time zone west and allow-
ing one extra hour of flying time.

Finally, at T = 29, Rumline's position is

Latitude 61.52° or 61°31'06" N
Longitude 78.56° or 78°33'54" W,

which is still in the fifth time zone west, with 75th-meridian time (since
one time zone is equivalent to 15° of longitude).

Also sclved by STEVE LEELAND, Univemnsity of South Florida, Tampa,;
Flonida; LEONARD BARR, Beverly Hilgs, Califonia; and the Proposern, who
notes that Rumline nreaches the east shore of Hudson Bay near Kingway,
Quebec at 72:00 noon on Tuesday. Two incornrect solutions were recelved.
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331, [Fall 19741 Proposed by Jack Gargunkel, Forest Hi£ELs High
School, FLushing, New Yohk.

In aright triangle ABC, A = 60° and B = 30°, with D, E, Fthe points
of trisection nearest A, B, ¢ on the sides AB, BC and CA respectively.
Extend CD, AE and B- to intersect the circumcircle (0) at points P, Q, R.
Sow that triangle PER i s equilateral.
|. Solution by Jeanette Bickley, Webster Groves High Schoof, Websten
Groves, Missourd.

In triangle BCD, DB = u4r/3, (B = /3, where r i s the radius of the
circumcircle of triangle ABC (see Fig. 1). With angle OBC = 30°, the
Lav of Cosines yields CD = »/7/3; fromthe Lav of Sines, sin BD = 2/V7.
Hence cos BCD = V377.

Similarly in triangle BAE, A = 2r, BE = r»/3/3, angle AEE = 30°.
Hence A= = »/773, sin BAE = ¥7/14 and cos BAE = ¥27/28.

Then cos PQR= cos(PRB + BRQ) = cos(BCD * BAE) = 1/2, and angle PRQ
= 60°.

In triangle BAF, A~ = 2»/3, B = 2r, angle B = 60°. Hence

B = 2r/7/3, sin AF = ¥21/14% and cos ABF = 5/7/14.
In triangle ACD, L = r, = 2r/3, angle GD = 60°. Hence
CD = »/7/3, sin ACD = V377, and cos ACD = 2/V7.

Since cos RQP = cos(R@4A + AQP) = cos{ABF *+ ACD) = 1/2, it follows
that angle RQP = 60°.

Then angle ARQ = angle RGP = 60° implies that triangle PQRi s equi-
|lateral.

Also solved similarnfy by the Proposen.
YA

FIGURE 1
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11 Nearty identical solutions by R Robinson Rowe, Gregony Wulezyn,
Chafes H. Lincoln, Mike Keith, Mark Jaegen, Jeffrey Bergen and Zazou

fatz.

On the unit circle =2 + y2 = 1, the coordinates of the vertices of
triangle AC are A= (-1,0); B = (1,0); C = (-1/2,/3/2) whence D = (~173,0);
Z = (1/2,/3/6); F = (-2/3,/3/3).

After the slopes of CD, AE and BF are computed, their intersections
with the circle are found to be P = (-1/7, -4/3/7); Q = (13/14), 3/3/14);
2 = (-11/14, 5/3/14).

Application of the distance formula shows that PQ= QR= RP = ¥3,

As a result, triangle PQR i s equilateral.
Conmat by the Problem Editon.

I f CD is a Cevian to side B of any triangle ABC, it is easily veri-
fied that 40/DB = AC sin ACD/CB sin CBD. Applying this principle to the
Cevians A and BF with respect to (AC, AB) and (4B, CB), and noting that
AC:4B:CB = 1:2:v/3, we find that tan @438 = tan CBR = ¥3/9, with the result
that arc & and BQ are equal, triangles BOR and RgB are congruent and

RQ = ¢B = Y3 in the circumcircle of unit radius. Hence angle RRQ = 60°.
In a similar manner, considering the Cevian A& with respect to
{AB, AC) and the Cevian CD with respect to (4C, ¢B), we obtain tan CAE
= tan PCB, so that angle CAE = angle RB and arc CQ = arc PB. It then
follows that arc RQ = arc PQand that RQ= PQ= ¢B = ¥3 and triangle PQR
is equilateral.
Note that ¢P i s perpendicular to AQ. Why?

332. [Fall 1974] Proposed by Richard Field, Santa Monica, Cati-
formia.

Several years ago | was spending the evening at the home of a friend
who is a musicologist. While there, | received a call fromthe president
of ny company, who apologetically told ne that he had traced ne to ask a
question he had to answer at the next morning's board meeting. Specifi-
cally, was our monthly average rate of sales growth (6%)compatible with
nis forecast that our business would double in the next year? | promised
o call him back as quickly as possible with an answer. At first | thought
I would have to dash home to consult ny slide rule, log tables, etc. —
5ut then in a flash it occured to ne that ny musicologist's library should
srovide the answer. A indeed it did! | called back in 5 minutes with
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the answer and proceeded without further disturbance to ny social evening.
What do you suppose gave ne the answer?
Solution by R. Robinson Row, Sacramento, California.

The interval between two musical notes is the ratio of the frequency
of the higher note to that of the lower. For consonance, the ratio should
be expressible with small numbers—such as 3/2 for a perfect fifth (G/C)
or 4/3 for a perfect fourth (#/C). On a stringed instrument, such ratios
are possible in any scale, but in the scale of &, for instance, there is
an F-sharp and in the scale of D-flat, there is a G-flat— with a slight
difference (called a 'comma) between F-sharp and (7-flat. Such differ-
ences were compromised for the piano and its predecessors by 'tempering'
so that there were 12 equal intervals between any note and its octave.

Nov the octave interval is 2, so if each of the 12 equal intervals (called
semitones) is <, then 1112 = 2, whence £ = 1.059463094+++. Analogously,

if sales growth was 5.9463094% per month, business would double in 12
months—a year. Surely the value of Z could be found in the musicologist's
library; since 6%was even more, the boss could be assured of doubling
inthe next year.

Also solved by CLAYTON W. DODGE, University of Maine at Orono,

Maine; VICTOR G. FESER, St. Lowis Univernsity, St. Louis, Missouni; R. C.
GEBHARDT, Hopatcong, N. J.; MARK JAEGER, Carleton College, Northgield,
Minnesota; and the Proposenr.

333. [Fall 1974] Proposed by Charles W. Trigg, San Diego, Cali-
fornia.

Find integers in the scale of eight whose 6-digit squares are per-
mutations of sets of consecutive digits.
SoLution by the. Proposen.

If 12 contains exactly six digits, then 266 < N < 1000.

If N2 is composed of six consecutive digits then it is a permutation
of

0,1, 2 3,4, 5with&2 =121 (mod 7) and N = 1 or 6 or
1,2, 3, 4,5 6with& =0 (mod 7) and N = O; or
2, 3, 4, 5 6, 7with I = 6 (mod 7}, an impossible situation.

i

Clearly, ¥ cannot end in 0. If N ends in 2 preceded by an odd digit, or
ends in 6 preceded by an even digit, then N2 ends in 44. If N endsin 3
preceded by a 0 or 4, or ends in 5 preceded by a 3 or 7, then N2 ends

in 1L
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These conditions reduce the number of possible values of ISin the
established range from 142 to 97. Of these, only three have squares with
distinct consecutive digits, namely: (527)' = 345621; (627)2 = 503421;
and (634)' = 513420.

Also solved by R. ROBINSON ROWE, Sacramento, California.

L

334. [Fall 1974] Paoposed by Richard Field, Santa Monica, Cali-
fomda.
What is the37'th digit in the decimal fraction

> 1
D ——— = .122324 -2
n=1 10" - 1

After how many digits does the first zero occur?

Solution by Bob Paielipp, The. Univensity of, Wisconsin-Oshkosh.
1 1

It is easy to see that 1gb—=54- I, ——— - 4, ~~o1,
10 -1 99
1 _ 1 = ; 1 .
ELO:"—-—J_.- = 599 ° .001, , and in general {7 -1 .00 01,
n-1 zeros

Let t(k) denote the number of positive integer divisors of the positive

Integer k. |If 2;::1 nl is thought of as an infinite sum of decimals,

then the number of 1}2 Whi?:-h appear in the kth column to the right of the
decimal point is 1(k). Using the procedures of elementary number theory
one can easily determine that the smallest positive integer solution of
the equation t(k) = 10 = 5.2 is 48(2%+3). Also t(49) = t(72) = 3 and
7(50) = t(2+52) = 2+3 = 6. Thus the first zero in the given decimal
fraction occurs in the forty-eighth place. Because there isS no "carry
number” involved, the37'thdigit in the given decimal fraction is t(37),
which is 2 since 37 is a prime.

ALso solved by LOUIS G. CAIROLI, Syracuse University, N. Y., VICTOR
G. FESER, St. Louis Univensity, Missourni; RICHARD A. GIBBS, Foat Lewis
College, Dunango, Colorado; MIKE KEITH, Hazlet, N. J.; EDITH E. KISEN,
Pontland State Univensity; CHARLES H. LINCOLN, Ralfeigh, N. C.; SIDNEY
PENNER, Brnonx Community College, Bronx, New York; R ROBINSON ROWE,
Sacnamento, California; and the. Proposer.

335, [Fall 1974] Proposed by Victorn G. Feser, St. Louis University,
Jt. Loudis, Missound.

Problem 65 in this Jowrnal (first presented in April 1954; re-
resented in Fall 1968; solved in Fall 1969) showed that every simple
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non-triangular polygon has at least one interior diagonal, that is, a
diagonal lying entirely inside the polygon.

(a) Sow that every simple polygon of n sides, n 2 3, has at least
(n - 3) interior diagonals.

(b) Show that for every n 2 3, there exists a simple polygon having
exactly (n - 1) interior diagonals.

Sokution by Charles ff. Lincoln, Raleigh, Nonth Carolina.

(a) A polygon with 4 sides has at least one interior diagonal, so
since n = 4, the statement is true forn = 4. (ltistrivially true for
n = 3.) Aswume that the statement is true for all simple polygons up
ton - 1sides. Let P be a polygon with n sides. It has at |east one
interior diagonal. This diagonal creates two simple polygons, one having
k sides, the other having n - k + 2 sides.

The first has k - 3 interior diagonals; the second hasn - k + 2 - 3.

Thus the two together have n - 4 interior diagonals, all of which are
interior diagonals of P. They are, of course, different from the one
which separated P into two polygons. Hence, there are at least #n - 3
interior diagonals in P.

(b) This part is shown by giving a method of constructing a simple
polygon with n sides and exactly n - 3 interior diagonals.

n a circle 0, choose points A and B so that arc AB = 60°, Let T
be the point of intersection of the tangents to 0 at A and B. For
nz 3, put n - 3 points on 0 between A and B. Polygon TAPlPQ---Pn_

3
has exactly n - 3 interior diagonals: IP,, TP2, ese, TP

Alsu solved by R. ROBINSON ROWE, Sacramento, Cauéo’}mza; and the.
Proposen.

Mwuay S. Klamkin, of the University of Waternfoo, Ontario, Canada.,
states that a solution to this probLem may be found in the American
Mat hemat i cal Monthly, December 1970, page 1111, problem E 2274, For a

more difflcult unsolved nelated problLem, see 7-25 SAM Review.

336. [Fall 19741 Proposed by Zazou Katz, Beverly Hills, California.

O the diameter B of a semicircle (0) perpendiculars are erected
at arbitrary points ¢ and D cutting the semi-circumference at points &
and F respectively. A circle (P) touches the arc of the semicircle and
each of the two half-chords. Show that P@, the distance from P to the
diameter AB, is equal to the geometric mean of AC and DB.
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Solution by Charles W. Trigg, San Diege, California—practically identical
{0 those submitted by CLayton W. Dodge, University of Maine (U, Onrono,
and by Chartes H. Lincoln, Raleigh, North Canofina and R. Rob.inson Rowe,
Sachamento, California.

Draw the radius of the semicircle, O = R= 40 *+ OB, and the radii
of thecircle (P), XP=RZ =r» =P =Q0Q=@g>. Then

AC=40-OQ-Q =R-r - ¢0,
and B=@-®+Q=R-rtQo
(These equations hold whether O falls on the segment M or outside it.)
Multiplying,
(AC)(DB) = (R - r)2 - (Q0)2 = (P0)2 - (Q0)2 = (PQ)2.

Also sofved by VICTOR G. FESER, St Lowis Univensity; RICHARD A.
GIBBS, Font Lewis College, Dwwango, Colorado; DAVID C. KAY, University
of OkLahoma, Noxman, Oklahoma; GUS MAVRIGIAN, Youngstown State Univensity,
Youngstown, Ohio; and the Proposer.

337. [Fall 1974] Proposed by the. Probfem Editon.
If R, » and ¢ denote the circumradius, the inradius gnd the orthic
triangle inradius respectively of an acute triangle ABC, show that
> ¢k. (The orthic triangle is determined by the feet of the altitudes
of the parent triangle).
Solution by Zazou Katz, Beverly Hills, Califomnia. .
It is known that the distance between the incenter | and the ortho-
center H of a triangle is given by the relation 152 = 2r2 - 4R cos A
os B cos ¢ and that ¢, the inradius of the orthic triangle is equal to
R cos A cos B cos ¢,
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It follows that "l would like to comment on problem 294. The comment by K. R. S..
:=try that Michael Goldberg's solution holds for any regular polygon is
¢/2B = cos A cos B cos C = (2r2 - TH?)/uR? < p2/2R? Y ) i Y _g P _yg
scorrect. The January 1971 issue of Mathematies Magazine contains some
and that ¢r < r2. comments by J. F. Rigby (pages 45-53) which includes a counter-example,to
ALso so0Lved by R RCBINSON ROWE and the. Proposen. -be analogous problem for hexagons. In the same comments by Rigby there.
298 [Spring 1973; Spring 19741 Proposed by Paul Endds, Budapest, a proof for problem 294.
Hungany, and Jan Mycielski, University of Colorado, Boulder, Colorado. Two other issues of the Mathematics Magazine which contain results
Prove that on analogous problems are the November 1970 and the May 1971 issues.
) }z—m ;'_L-(\/n + ¥ o4 o .,.Q/n) =1, I personally think it would be of interest to publish as many dif-
1 1/log n ferent solutions to problem 294 as possible."
(2) lim—(nl/l(>g 3, /1l 4w v piflogmy _ o, P . P
nren Comment by the. ProbLem Editor.
The. solution to part (1], by Donnelly J. Johnson, was published in the It is the policy of the Problem Department to welcome novel and_
Spring 1974 issue. The. §oLLowing solution t 0 parnt (2) {5 by the Pro- elegant solutions, including significant improvements on those previously
posens. published.
1/1 1/log n )
First of all, observe that nl/l°g3>n/og4*"'*n &
> (n - 2)e since n2/1°8 " = e and the terms are decreasing. Next we i ML @eses -

give an upper bound for the sm as follows:
Put

& 1/log k
Y pl/loe =3 +3,+2 FRATERNI TY KEY- PINS

3
k=5 2
Gold -key-pins are available at the National Office (the Univer-

where in 2, 35 k £ a1 inz /190 (% < n/10g 0 and in 23
sity of Maryland) at the special price of $5.00 each, post paid

n/log n < k < n.
Ve evidently have to anywhere in the United States.

,1/100 1/1cg 3 1-(1/1000) Be sure t O indicate the chapter into which you were initiated 4

) O O RO IO ORI MG

< < m for every n > 0. d Lo
1 and the approximate date of, initiation. 8
&5
22 < eloo(n/log n) <mn for every n if n > no(n) b S o N o
1/(log n - log log n) s
Z,<nn <en(l +n) ifn > no(n). REG ONAL MEETINGS CF MAA
Thus
”’ May regional meetings of the Mathematical Association regularly
log k : .
Z nl/ %8 % < + smn for every n > 0 if n > no(n)s have sessions for undergraduate papers. If two or more colleges and
k=3 . .
at least one local chapter help sponsor or participate in such under-
which proves the result. graduate sessions, financial help is available up to $50 for one local
Comments chapter to defray postage and other expenses. Send request to:
. . . Dr. Richard A. Good
The following observation was sent to the Problem Editor by John Secretary- Treasurer, Pi Mi Epsilon
Oman, The University of Wisconsin-Oshkosh: Department of Mathematics

The University of Maryland
College Park, Maryland 20742



JOURNAL WELCOMES N&W OFFICERS

The Pi Mi Epsilon Fraternity elected a newv slate of officers during
the past year, so we congratulate them and wish them well in their new
offices. For the benefit of the membership at large, we introduce them

below and include a brief background sketch for each officer.

President

E. Allan Davis, Professor of Mathematics at the University of Utah,
received his bachelor's and master's degree from the University of Cali-
fornia at Berkeley and earned his Ph. D. in 1951 there also. He came to
the University of Utah in 1955, and has taught at the Universities of
California and Oregon. He was the Associate Program Director of the
National Science Foundation Special Projects in Science Education in
1961-62 and was Program Director for the Student and Cooperative Program
in Pre-College Education in Science from 1967 to 1970. He has also served
as the faculty advisor of the Utah Alpha Chapter.

President-Elect

Richard V. Andree, Professor of Mathematics and Professor of Infor-
mation and Computing Sciences at the University of Oklahoma, received his
bachelor's degree at the University of Chicago, Ph. M. and Ph. D. degrees
at the University of Wisconsin. He has been National Secretary-Treasurer
since 1957. An active teacher, author and research worker both in mathe-
matics and computing science, he has written a dozen books and more than
200 articles on mathematics and computing. He is a frequent lecturer at
national and international meetings as well as a travelling lecturer for
MAA, SAM, and ACM.

Secretary-Treasurer

Richand A. Good, Professor of Mathematics at the University of Mary-
land, received his bachelor's degree at Ashland College and his master's
and Ph. D. degrees at the University of Wisconsin. Renowned teacher,

author, editor, and lecturer, he is active in mawy local and national

185

-athematical organizations. He is the author and co-author of several
mooks and numerous expository and research articles. Director of several
NSF supported projects on teaching of mathematics as well as supervising
widergraduate mathematics instruction at the University of Maryland, he
is the originator and producer of the University of Maryland telex;,iws‘i'qn
mathematies instruction program.

Councillors

MiLton D. Cox, Assistant Professor of Mathematics at Miami Universi-
ty, Ohio, received his bachelor's degree at Depauw University and his
master's and Ph. D. degrees at Indiana University. He served as Research
Analyst at Aerospace Research Labs, Wright-Patterson AAB Has been spon-
sar of Ohio Delta since 1969, and has sponsored the regional Pi Mi Epsi=
len meeting in the spring of both 1974 and 1975.

Robent M. Woodside, Associate Professor of Mathematics at the Uni-
versity of East Carolina, received his bachelor's and master's degrees
at North Carolina State University, and has completed post master's work
at Indiana University and Harvard. He is founder and sponser of North
carolina Delta Chapter, and has sponsored student speakers at six national
Pi M1 Epsilon meetings, as well as organizing a regional meeting. He
has served as chairman of the Faculty Senate at the University of East
Carolina, and is a member of numerous honorary and professional organiza-
tions.

V¢ also welcome back E. Maurice Beesfey, Professor and Chairman of
the Department of Mathematics at the University of Nevada, and Eileen L
Polani, Assistant Professor of Mathematics at Saint Peter's College (Jer-
sey City), who will each be serving another term as Councillor. Profes-
sor Beesley has been a Councillor since 1969, and Professor Poiani, since
1972. Houston T. Kanwes, Professor of Mathematics at Louisiana State
University, will serve as Poet-President, and David C. Kay, Associate
Professor of Mathematics at the University of Oklahoma, will continue as
Journal Editor.
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