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Optimal Power Allocation for Distributed Detection
Over MIMO Channels in Wireless Sensor Networks
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Abstract—In distributed detection systems with wireless sensor
networks, the communication between sensors and a fusion center
is not perfect due to interference and limited transmitter power
at the sensors to combat noise at the fusion center’s receiver. The
problem of optimizing detection performance with such imperfect
communication brings a new challenge to distributed detection.
In this paper, sensors are assumed to have independent but
nonidentically distributed observations, and a multiple-input/mul-
tiple-output (MIMO) channel model is included to account for
imperfect communication between the sensors and the fusion
center. The J-divergence between the distributions of the detection
statistic under different hypotheses is used as a performance
criterion in order to provide a tractable analysis. Optimization
of performance with individual and total transmitter power con-
straints on the sensors is studied, and the corresponding power
allocation scheme strikes a tradeoff between two factors, the
communication channel quality and the local decision quality.
For the case with orthogonal channels, under certain conditions,
the power allocation can be solved by a weighted water-filling
algorithm. Simulations show that the proposed power allocation
in certain cases only consumes as little as 25% of the total power
used by an equal power allocation scheme while achieving the
same performance.

Index Terms—Distributed detection, multiple-input mul-
tiple-output (MIMO) channel, power allocation, wireless sensor
networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have received con-
siderable attention recently. Event monitoring is a typ-

ical application of wireless sensor networks. In event moni-
toring, a number of sensors are deployed over a region where
some phenomenon is to be monitored. Each sensor collects and
possibly processes data about the phenomenon and transmits its
observation or a summary of its observation to a fusion center
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(FC). The FC makes a global decision about the state of the phe-
nomenon based on the received data from the sensors, and pos-
sibly triggers an appropriate action.

The essential part of event monitoring is a detection problem,
i.e., the FC needs to detect the state of the phenomenon under
observation. In wireless sensor networks, due to power and com-
munication constraints, sensors are often required to process
their observations and transmit only summaries of their own
findings to an FC. In this case, the detection problem associ-
ated with event monitoring becomes distributed detection (also
called decentralized detection).

Distributed detection is obviously suboptimal relative to
its centralized counterpart. However, energy, communication
bandwidth, and reliability may favor the use of distributed
detection systems. Distributed detection has been studied for
several decades. Particularly, the design of optimal and sub-
optimal local decision and fusion rules has been extensively
investigated. Tsitsiklis [31], Varshney [32], Viswanathan and
Varshney [33], and Blum et al. [3] provide excellent reviews of
the early work as well as extensive references.

However, most of these studies assume that a finite valued
summary of a sensor is perfectly transmitted to an FC, i.e.,
no error occurs during the transmission. In distributed detec-
tion systems based on wireless sensor networks, this assump-
tion may fail due to interference and limited transmitter power
at sensors to combat receiver noise at the FC. The problem of
optimizing detection performance with imperfect communica-
tions between the sensors and the FC over wireless channels
brings a new challenge to distributed detection.

Rago et al. [28] consider a “censoring” or “send/no-send”
idea. The sensors may choose to transmit data or keep silent ac-
cording to a total communication rate constraint and values of
their local likelihood ratios. Predd, Kulkarni, and Poor [27] ex-
amine a related protocol for the problem of distributed learning.
Duman and Salehi [13] introduce a multiple access channel
model to account for noise and interference in data transmis-
sion, and optimal quantization points (in the person-by-person
sense) were obtained on the original observations through a nu-
merical procedure. Chen and Willett [6] assume a general or-
thogonal channel model from the local sensors to the FC and
investigate the optimality of the likelihood ratio test (LRT) for
local sensor decisions. Chen et al. [5] formulate the parallel fu-
sion problem with a fading channel with instantaneous channel
state information (CSI) and derive the optimal likelihood ratio
(LR)-based fusion rule with binary local decisions. Niu et al.
[24] extend the results of [5] to the case without instantaneous
CSI. Note that both [5] and [24] assume orthogonal channels
between the sensors and the FC.
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Chamberland and Veeravalli [7]–[9] provide asymptotic
results for distributed detection in power (or equivalently,
capacity) constrained wireless sensor networks. More specif-
ically, [7] shows that, when the sensors have i.i.d. Gaussian or
exponential observations and the sensors and the FC are con-
nected with a multiple access channel with capacity , having
identical binary local decision rules at the sensors is optimal in
the asymptotic regime where the observation interval goes to
infinity. [8] considers a similar problem but with a total power
constraint instead of a channel capacity constraint, and shows
that using identical local decision rules at the sensors is op-
timal for i.i.d. observations. [9] considers the detection of 1-D
spatial Gaussian stochastic processes. An amplify-and-relay
communication strategy with power constraint is used and the
channels are orthogonal with equal received signal power from
each sensor. They assume sensors are scattered along 1-D space
and have correlated observations of the Gaussian stochastic
processes. The tradeoff between sensor density and the quality
of information provided by each sensor is studied using an
asymptotic analysis.

Liu and Sayeed [20] and Mergen et al. [21] propose the use
of type based multiple access (TBMA) to transmit local infor-
mation from the sensors to the FC, and present a performance
analysis of detection at the FC. The results of [20] and [21]
focus mainly on the case with i.i.d. observations at the sensors.
Jayaweera [15] studies the fusion performance of distributed
stochastic Gaussian signal detection with i.i.d. sensor observa-
tions, assuming an amplify-and-relay scheme.

Chamberland and Veeravalli [10] provide a survey of much
of the recent progress in distributed detection in wireless sensor
networks with resource constraints.

In this paper, we propose a distributed detection system infra-
structure with a virtual multiple-input multiple-output (MIMO)
channel to account for nonideal communications between a fi-
nite number of sensors and an FC. Our analysis does not con-
sider an infinite number of sensors because in many practical
cases, only a few tens of sensors are used. We assume the sen-
sors have independent but nonidentically distributed observa-
tions, so they have different local decision qualities. Each sensor
has an individual transmitting power constraint, and there is also
a joint power constraint on the total amount of power that the
sensors can expend to transmit their local decisions to the FC.
The goal is to optimally distribute the joint power budget among
the sensors so that the detection performance at the FC is opti-
mized.

The J-divergence between the distributions of the detection
statistic under different hypotheses is used as a performance
index instead of the probability of error in order to provide a
more tractable analysis. A power allocation scheme is devel-
oped with respect to the J-divergence criterion, and in-depth
analysis of the special case of orthogonal channels is provided.
The proposed power allocation is shown to be a tradeoff between
two factors, the quality of the communication channel and the
quality of the local decisions of the sensors. As will be shown
in the simulations, to achieve the same performance in certain
cases, the power allocation developed in this paper consumes as
little as 25% of the total power used by an equal power alloca-
tion scheme.

This paper differentiates from previous work in the following
aspects.

• A system with the sensors and the FC connected by a vir-
tual MIMO channel is considered.

• The sensors have independent but nonidentically dis-
tributed observations,1 and hence they have different local
decision qualities.

• We develop the power allocation scheme for a finite
number of sensors rather than asymptotically.

• To improve global detection performance within a power
budget, we focus on how to efficiently and effectively
transmit the local sensor decisions to the FC rather than
how to design local and global decision rules.

• The proposed power allocation quantifies the tradeoff be-
tween communication channel quality and local decision
quality.

The rest of the paper is organized as follows. In Section II,
we introduce a distributed detection system infrastructure with
a MIMO channel model. In Section III, we develop the optimal
power allocation scheme with respect to the J-divergence per-
formance index. In Section IV, we study a special case in which
the sensors transmit data to the FC over orthogonal channels. In
Section V, we provide numerical examples to illustrate the pro-
posed power allocation. We conclude the paper in Section VI.

II. MODELS

Let us consider a hypothesis testing problem with two hy-
potheses and , as shown in Fig. 1. There are wire-
less sensors with observations . The obser-
vations are independent of each other but are not necessarily
identically distributed. The conditional probability density func-
tions of these observations (conditioned on the underlying hy-
potheses) are given by for . The sensors
then make local decisions according to their
local decision rules:

decide
decide

(1)

where . In this paper, we assume the local sensors
do not communicate with each other, i.e., sensor makes a de-
cision independently based only on its own observation . The
local decision rules do not have to be identical, and the
false alarm probability and detection probability of sensor are
given by

(2)

and

(3)

We assume the sensors have knowledge of their observation
quality in terms of and , which can be obtained by various
standard methods from detection theory [25]. The joint condi-
tional density functions of the local decisions are

(4)

1TBMA [20], [21] and amplify-and-relay [15] schemes usually assume that
the sensors have i.i.d. observations.
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Fig. 1. Distributed detection system diagram.

and

(5)

The local decisions are transmitted to an FC through a MIMO
channel, modelled by the following sampled baseband signal
model (see, e.g., [35]):

(6)

where contains the received signals at the
FC. is a diagonal matrix, the diag-
onal elements of which are the amplitudes of the signals trans-
mitted from the sensors. is the channel matrix, which is as-
sumed to be deterministic in this paper.2 is an additive noise
vector which is assumed to be Gaussian with zero mean and
covariance matrix . We assume that the channel quality (in
terms of the and matrices) is known at the FC. This infor-
mation can be obtained by channel estimation techniques. The
dimension of , determined by the receiver design, is , which
does not have to be the same as the number of sensors . Many
different wireless channels and multiple access schemes can
be expressed with the MIMO model in (6), including CDMA,
TDMA, FDMA, as well as TBMA [20], [21], [34], [30].

The conditional density function of the received signals at
the FC given the transmitted signals from the sensors is

(7)

The conditional density functions of the received signals given
the two hypotheses are

(8)

where the summation is over all possible values of . The FC
applies its fusion rule to to get a global decision

(9)

The system is summarized in Fig. 1. We notice the Markov prop-
erty of the system: forms a Markov
chain, which is used to derive (8) and will be used in the next
section.

2We focus on the case in which the sensors and the FC have minimal move-
ment and the environment changes slowly. In this case, the coherence time [30]
of the wireless channel can be much longer than the time interval between two
consecutive decisions made by the FC, and instantaneous CSI can be obtained.

In this paper, we do not focus on the design of local and global
decision rules to optimize the detection performance at the
FC. Instead, we focus on how to intelligently distribute a total
transmitter power budget among the sensors, by choosing
an amplitude matrix within the constraint .
There are also individual power constraint for each sensor,

, to account for the maximum output power
at each sensor. Here, denotes the component-wise
square root of , where

is the transmitting power limit of sensor . The matrix
inequality means is positive semidefinite.

III. OPTIMAL POWER ALLOCATION

In this section, an optimal power allocation among the sen-
sors in the distributed detection system described in Section II
is studied. We first choose a detection performance metric for
our analysis.

There are three categories of commonly used detection
performance metrics [25]: exact closed-form expressions of the
miss probability (which equals ) and false alarm
probability (or the average error probability , if prior
probabilities of the hypotheses are known), distance related
bounds, and asymptotic relative efficiency (ARE).

The closed-form expressions of and (or ) are hard
to obtain even for centralized detection. ARE is useful for de-
tection systems under large-sample-size (long observation du-
ration) and weak signal conditions. Distance related bounds are
upper or lower bounds on and (or ), such as the Cher-
noff bound, the Bhattacharyya bound, and the J-divergence [25].

In this paper, we use distance related bounds, more specifi-
cally the J-divergence, as the performance metric. The J-diver-
gence, first proposed by Jeffreys [16], is a widely used metric
for detection performance [17]–[19], [26]. It provides a lower
bound on the detection error probability [18] via the in-
equality

(10)

We choose the J-divergence as the performance metric because
it provides more tractable results in our study, it is closely
related to results in information theory, such as the data pro-
cessing lemma [12], and it is also closely related to other types
of performance metrics. [19] shows that the ratio of the J-diver-
gences of two test statistics is equivalent to the ARE under some
circumstances. The J-divergence and the Bhattacharyya bound
both belong to a more general class of distance measures, the
Ali–Silvey class of distance measures [1]. The J-divergence is
the symmetric version of the Kullback–Leibler (KL) distance
[11], [12], and the KL distance is asymptotically the error
exponent of the Chernoff bound from Stein’s lemma [11].

The J-divergence between two densities, and , is defined
as

(11)

where is the (nonsymmetric) KL distance between
and . and are defined as

(12)
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There is a well-known data processing lemma on the KL dis-
tance along a Markov chain [12, Lemma 3.11].

Lemma 1: The KL distance is nonincreasing along the
Markov chain , i.e.,

(13)

and

(14)

This result can be easily generalized to the J-divergence with
the following corollary.

Corollary 1: The J-divergence is nonincreasing along the
Markov chain , i.e.,

(15)

and

(16)

Corollary 1 tells us that a performance upper bound of the de-
tection at the FC is provided by . This
can be achieved only when there are perfect data transmissions
from the sensors to the FC, i.e., the FC receives with no error.

Recall that our goal is to optimize the detection performance
at the FC. This now translates into maximization of the J-diver-
gence between the two densities of the received signals , with
respect to the underlying hypotheses. The optimal power alloca-
tion is thus the solution to the following optimization problem:

s.t.

(17)

where the J-divergence is given by

(18)

The density functions , are given by
(7)–(8).

It can be seen that the conditional density functions
are Gaussian mixtures. Unfortunately, the J-divergence be-
tween two Gaussian mixture densities does not have a general
closed-form expression [22], [29]. In order to present the
objective function in (17) in closed form, approximations must
be made. An upper bound has been suggested in [29] based on
the log-sum inequality [11]. However, this upper bound is not
suitable for the study here, since the dependence on the power
of transmitted signals is lost in the bound.

In this paper, the J-divergence of two Gaussian mixture
densities is approximated by the J-divergence of two
Gaussian densities . The parameters
of the Gaussian densities are provided by moment matching,
i.e.,

(19)

and

(20)

for . That is, a Gaussian mixture density is approxi-
mated by a Gaussian density with the same mean and variance
as the Gaussian mixture density.

Obviously the quality of this approximation will directly af-
fect the analysis in this paper and the difference between the op-
timal scheme and the proposed scheme, which is optimal for the
approximated cases. It can be seen from (7) and (8) that when

, the Gaussian mixture density in
(8) approaches a Gaussian distribution. So, we can predict the
approximation will work well for the low SNR cases, and sim-
ulations in Section V show that it still works well even with re-
ceived SNR as high as 10–12 dB.

We next calculate the means and covariance matrices of the
Gaussian densities . From (8), (19), and
the Markov property of the system

(21)

Recall that is a Gaussian density with mean , as
shown in (7), so

(22)

By applying (4) and (5), we have

(23)

for

(24)

and

(25)

Similarly, from (20) and the Markov property of the system, we
have

(26)
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The last step follows because is a Gaussian density with
mean and covariance matrix . Applying (4) and (5), we
obtain

(27)

where

(28)

and

(29)

We next derive the J-divergence between the Gaussian densi-
ties, . From the definition of the J-di-
vergence and the KL distance in (11) and (12), we have

(30)

Using the fact that are Gaussian densities
, after some algebra, we obtain

(31)

where is the dimension of the received signal vector at the
FC. Applying the means and covariance matrices in (23)
and (27), we have

(32)

where .
The approximated optimal power allocation is the solution to

the following optimization problem:

s.t.

(33)

For the objective function given in (32), the optimization is over
the amplitude matrix , or equivalently the power allocation
among the sensors. The optimization problem can be solved by
various constrained optimization techniques, and in the simula-
tions we use the interior point method [2], [4].

Fig. 2. Distributed detection system with orthogonal channels.

IV. SPECIAL CASE WITH ORTHOGONAL CHANNELS

A special case of the distributed detection system depicted
in Fig. 1, is that in which all of the sensors have orthogonal
channels for communication with the FC. A system diagram for
this case is shown in Fig. 2.

Compared to the system in Fig. 1, this special case has

(34)

(35)

where is a identity matrix, and the noises in all the
channels are independent and have the same variance . Here,

is the channel power gain for sensor . By substituting the
above two matrices into the optimization problem in (32) and
(33), the power allocation for this special case reduces to the
solution to the following optimization problem:

s.t.

(36)

where

(37)

(38)

(39)

and

(40)

Note that is the power allocated to sensor for trans-
mitting its findings to the FC. The objective function is fully
decoupled, a direct result of the orthogonal channels between
the sensors and the FC.

The first order partial derivative of with re-
spect to is given by

(41)

It has an interesting property as stated by the following lemma.
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Lemma 2: The first order derivative of the objective function
with respect to is always nonnegative at any

valid power allocation point . That is

(42)

Proof: See Appendix I.
Lemma 2 tells us that the objective function in (36) is non-

decreasing with increasing power budget . Since we are
maximizing a nondecreasing function, the optimal point is al-
ways at the constraint boundary, i.e., , or

. This result is intuitively plausible since
it makes full use of the power budget.

Practical sensors should always have , since, if
, the sensors do not provide useful information. With

this condition, we can easily prove the following corollary.
Corollary 2: If , then the first order deriva-

tive of the objective function with respect to
is always strictly positive at any valid power allocation point

.
Corollary 2 tells us that there is no stationary point inside the

constraint boundary, so gradient based optimization techniques
will not get stuck.

The second order partial derivative of with
respect to is given by

(43)

where

(44)

(45)

(46)

and

(47)

The second-order partial derivative in (43) is not always non-
positive, which means the objective function is
not always concave. However, the following lemma specifies the
region in terms of local sensor observation quality, where the
second order derivative of the objective function is indeed non-
positive. We again assume that practical sensors have .

Lemma 3: The second order partial derivative of the objective
function, , for any allocated

Fig. 3. Illustration of region SSS .

power , if and only if , where is
defined by

(48)

Proof: See Appendix II.
Region is depicted in Fig. 3, in which

and
. We will show that, if

all the sensors operate in region , the power allocation can be
solved by a weighted waterfilling algorithm.

To derive the algorithm, we will use the technique of La-
grange multipliers [2], [4]. The Lagrangian associated with the
constrained optimization problem in (36) is

(49)

where , and are Lagrange multipliers. The
Karush–Kuhn–Tucker necessary conditions for optimality [4]
are

(50)

if (51)
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if (52)

if (53)

if (54)

and

if (55)

if (56)

All variables with superscript “ ” are at their optimal values.
Since the optimal solution is always on the total power con-
straint boundary as indicated by Lemma 2, (52) is inapplicable
except in the trivial case when and all the
sensors just transmit at full power. So, in other words, we con-
sider that the total power constraint is always active (meaning

) and is always positive. Similarly, (or
) is positive only when the constraint (or

) is active.
(50) is the key equation to solve. For each fixed value of ,

we can solve (50) to obtain the corresponding , and .
We can then calculate the corresponding . The goal

here is to find a such that .
Substituting (41) into (50), we have

(57)

Let us define

(58)

and

(59)

For sensor operating at , we can see that,
when , we have , and .
Sensor starts to get positive power allocation when

, and in this case the constraint
is inactive . is monotonically decreasing with
increasing , as long as . This can be easily
verified using Lemma 3 since is
always nonpositive for . When

is now “clamped” at , so we have and
.

This case is depicted as the dashed line in Fig. 4. Regardless
of the value of , we can easily verify that there is always a
one-to-one mapping [through (50) or (57)] between and ,
and is nondecreasing with decreasing .

We have the following observations based on the above anal-
ysis. (1) If all the sensors operate at

Fig. 4. � as a function of P for sensors operating in or not in region SSS .

Fig. 5. Power allocation as a function of � when all the sensors are operating
in region SSS .

, there is a one-to-one mapping between

and , and is nondecreasing with decreasing . (2)
The sensors get positive power allocation with increasing power
budget (hence decreasing ) in a sequential fashion, and it is
determined by .

The above observations with a two-sensor case are illustrated
in Fig. 5. Based on the observations, the solution can be found
through a “weighted waterfilling” procedure, specified by the
following algorithm. Initially the sensors send their local detec-
tion quality to the FC, and then the algo-
rithm is executed at the FC.

Algorithm 1:
1) The FC estimates the channel power gain of the

sensors and the noise variance .
2) The FC calculates using (58) and ranks them

such that . The FC also solves for
using (59). Then the FC calculates the power allocations

with for each using (57).
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Fig. 6. Power allocation as a function of � when one or more sensors are not
operating in region SSS .

3) The FC finds the largest such that
, and assigns and . If

, the FC sets . The rest of the algorithm conducts
a simple line search on between and such that

.

4) If , where is a small
positive number, the algorithm goes to (5). Otherwise, the
FC stops the algorithm and broadcasts the desired power
allocations to the sensors.

5) The FC sets , following bisection rule.
If , the FC sets . Otherwise,
the FC sets . The algorithm goes to (4).

Algorithm 1 can be easily seen to converge because of the
monotonicity between total power budget and . And the
simple line search of between and should converge
very quickly [2].

If sensor operates at is monotoni-
cally increasing with when is small and is monotonically
decreasing with when grows larger. This is because
is negative and , and are nonnegative in (43). Thus,

is positive, and will even-
tually become negative with sufficiently large. Therefore,

has a single local maximum at some
, and it is possible that (57) has two solutions for for

a single . This case is also shown in Fig. 4.
If one or more sensors operate at ,

the monotonicity and one-to-one mapping between and
may be invalid, as shown in Fig. 6. Therefore, the

computationally efficient Algorithm 1 does not work for this
case. The solution can still be obtained from general constrained
optimization techniques, such as the interior point method [2],
[4].

V. SIMULATIONS

In this section, numerical results are provided to illustrate the
power allocation scheme developed in this paper. In the simula-
tions, we consider the following settings. There are sensors
scattered around an FC and the distances from the sensors to the

FC are . The pathloss of signal power at the FC from
sensor follows the Motley–Keenan pathloss model (expressed
in decibels) without the wall and floor attenuation factor [23]:

(60)

where is a constant set to 55 dB, and is also a constant
set to 1 m in the simulations. Here, is the pathloss exponent,
which is set to 2 for free space propagation. The channel power
gain for sensor is in dB. The noise variance at
the FC is 70 dBm, and we assume the noise covariance
matrix is . The maximum transmitting power of each
sensor is 2 mW (3 dBm). The total power budget in
the simulations is below or equal to mW, otherwise each
sensor just uses maximum transmitting power (a trivial case).
All the sensors perform Neyman-Pearson detection with false
alarm probabilities set to . The
detection probabilities may vary according to their local obser-
vation qualities. The FC also uses a Neyman–Pearson detector
targeting the same false alarm probability as the local sensors,3

i.e., .
We will investigate three scenarios: 1) two sensors with or-

thogonal MIMO channels; 2) two sensors with nonorthogonal
MIMO channels; and 3) ten sensors with orthogonal MIMO
channels.

A. Two Sensors With Orthogonal Channels

Two sensors are located m and m away
from the FC, and communicate with the FC through orthogonal
channels. Channel gains and are calculated by (60), and
are 61 and 69 dB, respectively.

We will consider four cases with various local detection
quality combinations.

Case V-A1: .
Case V-A2: .
Case V-A3: .
Case V-A4: .

In Case V-A1 one sensor does not operate in region , so the in-
terior point optimization algorithm is used in this case. In Case
V-A2, Case V-A3, and Case V-A4, both sensors operate in re-
gion , thus Algorithm 1 is used. The total power budget
varies from 14 to 6 dBm (when each sensor transmits at full
power 2 mW).

In addition to the proposed power allocation, we also include
an equal power allocation and an equal received SNR power
allocation for comparison. The equal power allocation simply
distributes power equally among the sensors, without consid-
ering channel or local detection quality. The equal received SNR
power allocation considers channel quality only and distributes
power among sensors in such a way that the received signals
from the sensors have the same SNR.

3The operating points in terms of targeted false alarm probabilities of the
detectors at the sensors and the FC can be designed to be different from one
another, and the analysis in this paper does not require the false alarm probabil-
ities to be the same. The optimal design of the operating points of the detectors
is beyond the scope of this paper, and we use the same false alarm probability
for the sake of simplicity.
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Fig. 7. Equal power allocation, equal received SNR allocation, and the
proposed power allocation for the four cases in Section V-A. (Note that
the curves for ; , and overlay in this graph.)

Fig. 7 shows the proposed power allocation as well as the
equal power allocation and the equal received SNR power
allocation, we can see that for Case V-A1 the proposed power
allocationdistributes all thepower tosensor2,until themaximum
output power is reached for sensor 2, and then sensor 1 starts
to get positive power allocation. This is because, although
sensor 1 is closer to the FC (hence it has a better channel),
its detection quality is much worse than that of sensor 2. For
Case V-A2, the detection quality of sensor 1 is still worse
than that of sensor 2, but the gap is small enough for sensor
1’s better communication channel to show difference. The
proposed allocation distributes all the power to sensor 1, until
the maximum output power is reached for sensor 1, and then
sensor 2 starts to get power allocation. For Case V-A3 and
Case V-A4, sensor 1 has a better communication channel and
equal or better local detection quality, so it is not surprising
to see that the proposed allocation distributes power to sensor
1 as much as possible, and these two cases have the same
power allocation as Case V-A2. The waterfilling effect of the
proposed power allocation is obvious in this scenario. The
equal power allocation and the equal received SNR allocation
do not change between the four cases because they are not
affected by the local detection quality.

Recall that the proposed power allocation scheme is based
on the J-divergence instead of detection probability and false
alarm probability. Furthermore, the J-divergence between two
Gaussian mixture distributions, i.e., that of the received signals
at the FC under the two hypotheses, is approximated in this
optimization by the J-divergence between two Gaussian distri-
butions, with the same means and covariance matrices as the
Gaussian mixtures. We next show the quality of this approxi-
mation.

Fig. 8 shows the optimal power allocation found by simu-
lations. The FC uses a Neyman-Pearson detector based on the
likelihood ratio of the received signal . The optimal power
allocation is the one that produces the highest for a
given total power budget. The optimal power allocation is

Fig. 8. Equal power allocation, equal received SNR allocation, and the simu-
lated optimal power allocation for the four cases in Section V-A. (Note that the
curves for ; , and overlay in this graph.)

found by a brute-force grid search in a two dimensional space
of all possible power allocations. For each possible power
allocation point, Monte Carlo runs are used to provide
the corresponding .

We can see that the simulated optimal power allocations in
Fig. 8 perfectly match the proposed power allocations in Fig. 7.

The contours of the approximated J-divergence (used as the
objective function to develop the proposed power allocation)
and the simulated for Case V-A3 are plotted in Figs. 9
and 10. The contours for the other cases are similar and
are omitted due to limited space. We can see from Figs. 9
and 10 that the two contours match each other well at any
power allocation point in this scenario, including the case
in which either sensor transmits at full power (2 mW or
equivalently 3 dBm). When sensor 1 transmits at full power
(3 dBm), the corresponding received SNR is about 12 dB.
So we can see the approximation works well in this scenario
even with received SNR as high as 12 dB. This is the reason
for the perfect match between the proposed allocation and
the simulated optimal allocation.

In Figs. 11–14, we plot the detection probability at the FC
as a function of the total power budget for the

four cases. The performance of the proposed power allocation
matches that of the simulated optimal power allocation very
well in all four cases (the two curves overlay in the four figures),
and it can save almost 3 dB in compared to the equal power
allocation to achieve the same . The equal received SNR
power allocation considers only the channel quality, so it per-
forms even worse than the equal power allocation in Case V-A2
through Case V-A4, where optimally sensor 1 should get more
power than sensor 2. The equal received SNR power allocation
happens to be similar to the proposed power allocation only in
Case V-A1.

B. Two Sensors With Nonorthogonal MIMO Channels

The setting here is similar to the setting in Section V-A,
but the data transmission is over nonorthogonal channels. The
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Fig. 9. Contour of the approximated J-divergence objective function for
Case V-A3.

Fig. 10. Contour of the simulated P for Case V-A3.

channel matrix is given by

(61)

and are the same as those in Section V-A. is the
interference coefficient. We consider four cases, Case V-B1
through Case V-B4, with exactly the same local detection
quality combinations as those of Case V-A1 through Case
V-A4. The interior point optimization algorithm is used to
solve the proposed power allocation for all four cases.

Fig. 15 shows the proposed power allocation as well as the
equal power allocation and the equal received SNR allocation.
The major difference between Figs. 15 and 7 in Section V-A is
that the waterfilling effect in Case V-B2 through Case V-B4 is
not as obvious as that in Case V-A2 through Case V-A4. The
nonorthogonal channel makes the contribution from the sensors

Fig. 11. FC detection probability P as a function of P of Case V-A1.

Fig. 12. FC detection probability P as a function of P of Case V-A2.

at the FC dependent. So the power allocation is less extreme in
the sense that the “better” sensors take all the power.

Fig. 16 shows the optimal power allocation found by sim-
ulations for the four cases. For Case V-B1 and Case V-B4, the
simulated optimal power allocation matches the proposed power
allocation in Fig. 15. For Case V-B2 and Case V-B3, the sim-
ulated optimal power allocation is different from the proposed
power allocation when the total power budget is high. For these
two cases, as a function of power allocation is quite “flat”
in the high total power region. This can be seen from the wider
gaps between contour lines in Fig. 18. So the difference between
the proposed power allocations and the simulated optimal power
allocation in the high total power region for Case V-B2 and Case
V-B3 is nothing but a pronounced artifact of Monte Carlo trials.
In Figs. 20 and 21, the performance of the proposed power allo-
cation is still very close to that of the simulated power allocation.

The contours of the approximated J-divergence and the sim-
ulated for Case V-B2 are plotted in Figs. 17 and 18. The
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Fig. 13. FC detection probability P as a function of P of Case V-A3.

Fig. 14. FC detection probability P as a function of P of Case V-A4.

two contours match each other well, but the artifact of Monte
Carlo trials in Fig. 18 is obvious, as discussed above.

In Figs. 19–22, we plot the detection probability at the FC
as a function of the total power budget , for the

four cases. The performance of the proposed power allocation
matches that of the simulated optimal power allocation very
well in all four cases (the two curves overlay in the four fig-
ures). Compared to Figs. 11–14 in Section V-A, the perfor-
mance gap between the proposed power allocation and the equal
power allocation (as well as the equal received SNR allocation)
is slightly narrower.

C. Ten Sensors With Orthogonal MIMO Channels

Here we consider ten sensors scattered around an FC. We will
investigate five cases, according to various sensor distance and
detection probability combinations. In Case V-C1, Case V-C2,
and Case V-C4, some of the sensors do not operate in region ,
so the interior point optimization algorithm is used in these three
cases. In Case V-C3 and Case V-C5, all the sensors operate in

Fig. 15. Equal power allocation, equal received SNR allocation, and the pro-
posed power allocation for the four cases in Section V-B.

Fig. 16. Equal power allocation, equal received SNR allocation, and the simu-
lated optimal power allocation for the four cases in Section V-B.

region , thus Algorithm 1 is used. The total power budget
varies from 7 dBm to 13 dBm (when each sensor transmits at
full power 2 mW).

1) Case V-C1: The distance between sensor and the FC is
m, e.g., 2 m and 7.4 m. Sensor

has detection probability of , e.g.,
and . In this case, sensors closer

to the FC have worse detection probability.
The percentage of the total power budget allocated to

each sensor is shown in Table I. When is low, more power
is distributed to sensors farther away from the FC. Intuitively
this is because even though sensors closer to the FC have good
channel gain, their local detection qualities are much worse than
those of the farther sensors. As increases, power is dis-
tributed more evenly among the sensors, because some sen-
sors have already reached their maximum output power. Eventu-
ally, when the total power budget reaches 13 dBm, every sensor
transmits at 3 dBm.
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Fig. 17. Contour of the approximated J-divergence objective function for Case
V-B2.

Fig. 18. Contour of the simulated P for Case V-B2.

Fig. 19. FC detection probability P as a function of P of Case V-B1.

Fig. 23 shows that the approximated and actual (by Monte
Carlo simulation) J-divergences are very close even when every

Fig. 20. FC detection probability P as a function of P of Case V-B2.

Fig. 21. FC detection probability P as a function of P of Case V-B3.

sensor is transmitting at full power. The maximum received
SNR of the closest sensor at the FC is about 12 dB. Similar to
Section V-A, we can see that the approximation in J-divergence
works well with SNR as high as 12 dB.

Fig. 24 shows the simulated detection probability at the FC
of the proposed power allocation and the equal power

allocation.4 In this case, the proposed power allocation can use
about 1 dB less power than equal power allocation to reach the
same detection performance at the FC.

2) Case V-C2: The distance between sensor and the FC
is m. Sensor has detection proba-
bility of , e.g., and

. In this case, sensors closer to the FC still have
worse detection probability, but the gap in local detection qual-
ities is not as large as that in case 1.

4For this scenario with ten sensors, the complexity is too high to find the
optimal power allocation by brute-force search and simulations in a ten-dimen-
sional space of all possible power allocations. So in this scenario, we will not
include the optimal power allocation found by simulation that gives the highest
P .
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Fig. 22. FC detection probability P as a function of P of Case V-B4.

TABLE I
PERCENTAGE OF THE TOTAL POWER ALLOCATED TO

EACH SENSOR FOR CASE V-C1

TABLE II
PERCENTAGE OF TOTAL POWER ALLOCATED TO EACH SENSOR FOR CASE V-C2

In this case, Table II shows that when is low, more
power is distributed to sensors closer to the FC. The advantage
in channel gain of sensors closer to the FC has offset their
disadvantage in detection quality. The water filling effect is
obvious here, and the sensors get positive power allocation in a
sequential fashion.

In Fig. 25, the approximated and actual J-divergences are still
very close. Fig. 26 shows the proposed power allocation has a
maximum power saving of 4 dB (more than 50%) compared
with equal power allocation.

3) Case V-C3: m, and . In
Table III power allocation is even more biased toward sensors
closer to the FC compared to Case V-C2. All the sensors now
have the same detection quality, but the sensors closer to the FC
have the advantage in channel gain.

In Fig. 27, the approximated and actual J-divergences start
to show some difference. Fig. 28 shows the proposed power
allocation has a maximum power saving of more than 5 dB.

Fig. 23. Approximated and simulated J-divergence as a function of P for
the proposed power allocation of case V-C1.

Fig. 24. Simulated P as a function of P for the proposed power allo-
cation and equal power allocation of case V-C1.

4) Case V-C4: m, and
. In this case, the sensors closer to the FC have

advantage in both channel gain and local detection quality. So
Table IV power allocation is even more biased toward sensors
closer to the FC compared with Case V-C3.

In Fig. 29, the approximated and actual J-divergences have
more difference than the previous three cases, but their shapes
are still quite similar. Fig. 30 shows that the proposed power
allocation consumes only less than 25% (has more than 6-dB
savings) of the total power used by the equal power allocation
to achieve the same detection performance at the FC.

5) Case V-C5: 4 m, and . In this case, all
sensors have the same detection probability and distance from
the FC. This case serves as a sanity check because intuitively
the sensors should always have equal power allocation in this
case. Table V and Fig. 31 verify this intuition.
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Fig. 25. Approximated and simulated J-divergence as a function of P for
the proposed power allocation of case V-C2.

Fig. 26. Simulated P as a function of P for the proposed power allo-
cation and equal power allocation of case V-C2.

TABLE III
PERCENTAGE OF TOTAL POWER ALLOCATED TO EACH SENSOR FOR CASE V-C3

VI. CONCLUSION

In this paper we have studied the problem of optimal power
allocation for distributed detection over MIMO channels in
wireless sensor networks. Our contribution is novel com-
pared to the pervious work in the following aspects: 1) we
have considered a distributed detection system with a MIMO
channel to account for nonideal communications between
the sensors and the FC; 2) we have assumed that there are

Fig. 27. Approximated and simulated J-divergence as a function of P for
the proposed power allocation of case V-C3.

Fig. 28. Simulated P as a function of P for the proposed power allo-
cation and equal power allocation of case V-C3.

TABLE IV
PERCENTAGE OF TOTAL POWER ALLOCATED TO EACH SENSOR FOR CASE V-C4

a finite number of sensors and the sensors have independent
but nonidentically distributed observations; 3) We also have
assumed both individual and joint constraints on the power
that the sensors can expend to transmit their local decisions to
the FC; 4) we have developed a power allocation scheme to
distribute the total power budget among the sensors so that the
detection performance at the FC is optimized in terms of the
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Fig. 29. Approximated and simulated J-divergence as a function of P for
the proposed power allocation of case V-C4.

Fig. 30. Simulated P as a function of P for the proposed power allo-
cation and equal power allocation of case V-C4.

TABLE V
PERCENTAGE OF TOTAL POWER ALLOCATED TO EACH SENSOR FOR CASE V-C5

J-divergence; and 5) the proposed power allocation quantifies
the tradeoff between the quality of the local decisions of the
sensors and the quality of the communication channels between
the sensors and the FC. Simulations show that, to achieve the
same detection performance at the FC, the proposed power
allocation can use as little as 25% of the total power used by
equal power allocation.

Fig. 31. Simulated P as a function of P for the proposed power allo-
cation and equal power allocation of case V-C5. (Note that the curves for � and

overlay in this graph.).

APPENDIX I
PROOF OF LEMMA 2

Proof: Taking the derivative of in (36) with
respect to , we have

(62)

where

(63)

(64)

(65)

and

(66)

Substituting into (37)–(40), and
after lengthy algebra, we have

(67)

(68)

and

(69)
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Since and are also nonnegative, we conclude that

(70)

APPENDIX II
PROOF OF LEMMA 3

Proof: From (43), we can easily see that
if and only if

. From the Proof of Lemma 2, we know that
, so if

and only if .
We have

(71)

Substituting , and into (37)–(40)
and after some algebra, we have

(72)

Now, if and only if

(73)

Solving the above quadratic inequality leads to Lemma 3.
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