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Abstract—In this paper, an algorithm is developed for collabora-
tively training networks of kernel-linear least-squares regression
estimators. The algorithm is shown to distributively solve a relax-
ation of the classical centralized least-squares regression problem.
A statistical analysis shows that the generalization error afforded
agents by the collaborative training algorithm can be bounded
in terms of the relationship between the network topology and
the representational capacity of the relevant reproducing kernel
Hilbert space. Numerical experiments suggest that the algorithm
is effective at reducing noise. The algorithm is relevant to the
problem of distributed learning in wireless sensor networks by
virtue of its exploitation of local communication. Several new
questions for statistical learning theory are proposed.

Index Terms—Collaboration, distributed learning, empirical
risk minimization, kernel methods, learning, nonparametric,
sensor networks.

I. INTRODUCTION

N this paper, we address the problem of distributed learning
I under communication constraints, motivated primarily by
distributed signal processing in wireless sensor networks
(WSNs). WSNs are a fortiori designed to make inferences
from the environments they are sensing; however, they are typ-
ically characterized by constraints on energy and bandwidth,
which limit the sensors’ ability to communicate data with each
other or with a centralized fusion center for centralized signal
processing. Nonparametric methods studied within machine
learning have demonstrated widespread empirical success in
many centralized (i.e., communication unconstrained) signal
processing applications. Thus, a natural question arises: can
the power of machine learning methods be tapped for nonpara-
metric inference in distributed learning under communication
constraints?
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Many classical learning rules are infeasible in wireless
sensor networks, because constraints on energy and bandwidth
constraints preclude one from accessing the entire training
set. One approach to extending classical learning rules to
distributed learning, and in particular to wireless sensor net-
works, focuses on developing communication-efficient training
algorithms (several specific approaches are discussed below).
While recognizing the strong theoretical foundation on which
existing learning rules are designed, this approach interprets
communication constraints as imposing computational limits
on training, and assumes there is a methodology for assessing
the efficiency of training algorithms from an energy and band-
width perspective.

The importance of local communication transcends many
analyses and implementations of wireless networks. Loosely
speaking, local communication is that which occurs between
neighboring sensors in a communication network. In wireless
networks, the topology of the network is in correspondence
with the topology of the environment, which is to say that a
sensor’s network neighborhood is roughly similar to its physical
neighborhood. By an inverse square law, the energy required
for two sensors to (wirelessly) communicate decreases with
the distance between them; by the same law, multiple-access
interference decreases with the distance between pairs of com-
municating nodes. Thus, by minimizing energy expenditure
and by enabling spectral reuse, local communications are often
an efficient mode of information transport in wireless networks.

The foregoing observation has motivated the development
and analysis of many so-called local message-passing algo-
rithms for distributed inference in wireless sensor networks.
Roughly speaking, message-passing algorithms are those that
use only local communication to achieve the same end (or
approximately the same end) as “global” (i.e., centralized)
algorithms that require sending “raw” data to a central pro-
cessing facility. Message-passing algorithms are thought to be
efficient by virtue of their exploitation of local communication.
In practice, such intuitions must be formally justified. In theory,
application-layer abstractions of local communication consti-
tute a reasonable framework for studying distributed inference
in general, and for developing communication-efficient training
algorithms for distributed learning in particular.

In this paper, we develop a local message-passing algo-
rithm for collaboratively training networks of kernel-linear
least-squares regression estimators. The algorithm is con-
structed to solve a relaxation of the classical centralized
kernel-linear least-squares regression problem. A statistical
analysis shows that the generalization error afforded agents by
the collaborative training algorithm can be bounded in terms of
the relationship between the network topology and the repre-
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sentational capacity of the relevant reproducing kernel Hilbert
space; this is in contrast to related approaches which relate
the similarity structure encoded in the kernel and the network
topology. Numerical experiments suggest that the algorithm
is effective at reducing noise. As above, the algorithm is rele-
vant to the problem of distributed learning in wireless sensor
networks by virtue of its exploitation of local communication.

A. Organization

The remainder of this paper is organized as follows. In Sec-
tion II, we review the supervised learning model for nonpara-
metric least-squares regression, reproducing kernel methods,
and alternating projection algorithms (the tool from mathemat-
ical programming on which our analysis relies). In Section III,
we introduce a general model for distributed learning, and
discuss related work on developing communication-efficient
training algorithms for distributed learning. In Section IV, we
develop a novel local message-passing algorithm that admits an
interpretation as a collaborative training algorithm. A statistical
analysis of generalization error is presented in Section V, and
numerical experiments are summarized in Section VI. We
conclude in Section VII. The proofs of main results are left to
the Appendix.

II. PRELIMINARIES

In this section, we briefly review the supervised learning
model for nonparametric least-squares regression, reproducing
kernel methods, and alternating projection algorithms. Since a
thorough introduction to these models and methods is beyond
the scope of this paper, we refer the reader to standard refer-
ences on the topics; see, for example, [11], [21], [22], [49] and
references therein.

A. Nonparametric Least-Squares Regression

Let X and Y be X and )-valued random variables, respec-
tively. X is known as the feature, input, or observation space;
Y is known as the label, output, or target space. For now, we
allow X to be arbitrary, but take )) = R. In the least-squares
estimation problem, we seek a decision rule mapping inputs to
outputs that minimizes the expected squared error. In particular,
we seek a function g : X — ) that minimizes

E{jg(X) - Y[*}.

It is well-known that n(z) = E{Y | X = z} is the loss min-
imizing rule. However, without prior knowledge of the joint
distribution of (X,Y"), this regression function cannot be com-
puted. In the supervised learning model, one is instead pro-
vided a database S = {(z;,y;)}"_; of training examples with
(zi,y:) € X x Y Vi € {1,...,n}; the learning task is to use S
to estimate 7(x).

B. Regularized Kernel Methods

Regularized kernel methods [3], [49] offer one approach to
nonparametric regression. In particular, let Hx denote the re-
producing kernel Hilbert space (RKHS) induced by a positive
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semi-definite kernel K(-,-) : X x X — R;let|| - ||3, denote
the norm associated with H . In practice, the kernel K is a de-
sign parameter, chosen as a similarity measure between inputs
to reflect prior application-specific domain knowledge. The reg-
ularized kernel least-squares estimate is defined as the solution
f) € Hi of the following optimization problem:

. 1 - 2 2
— E i) —Yi) + A
flénn n - 1(f( ) Y ) ||f||H1<

ey

The statistical behavior of this estimator is well understood
under various assumptions on the stochastic process that gen-
erates the examples {(z;,y;)}7"_; [49], [52]. In this paper, we
focus primarily on algorithmic aspects of computing a solution
to (1) (or an approximation thereof) in distributed environments.
To this end, consider the following “Representer Theorem” es-
tablished by [4], [24].

Theorem 1 ([24]): Let g, € Hx be the minimizer of (1).
Then, there exists ¢,, € R" such that

)= 3 e, K1),

From a computational perspective, the result is significant be-
cause it states that while the objective function (1) is defined
over a potentially infinite-dimensional Hilbert space, its mini-
mizer must lie in a finite-dimensional subspace.!

C. Alternating Projections Algorithms

Let H be a Hilbert space with a norm denoted by || - ||. Let
Ci,...,C,, be closed convex subsets of H whose intersection
C = N,C; is nonempty. Let Po(#) denote the orthogonal
projection of & € H onto C, i.e.,

Po(i) 2 in ||z — 2|
c(#) = argmin |l — 2|

Define Pc, (&) analogously.

Successive orthogonal projection (SOP) algorithms [11] pro-
vide a natural way to compute Pc( -) given {P¢,(-)}™,. For
example, the (unrelaxed) SOP algorithm is defined as follows:

A

To =8 Tn = Po, o mHl(a:n_l). 2)

In words, the algorithm first projects z onto Cy, and then
projects Pc, (&) onto Co; it continues successively and itera-
tively projecting the image of the previous projection onto the
next subset in sequence. In the case where C; is a linear sub-
space forall 7 € {1,...,m}, this algorithm was first studied by
von Neumann [51]. Often examined in the context of the convex
feasibility problem, SOP has been generalized in various ways
[11], to address more general convex sets and nonorthogonal
(e.g., Bregman) projections; accordingly, the algorithm often
takes on other names (e.g., the von Neumann—Halperin algo-
rithm, Bregman’s algorithm). Much of the behavior of this al-
gorithm can be understood through Theorem 2; the proof of this
fundamental result can be found in [7].

Note that the minimizer g,, of (1) depends on A. To simplify exposition, we
omit this dependency from the notation.
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Fig. 1. A bipartite graph model for distributed learning.

Theorem 2: Let {C;}7, be a set of closed, convex subsets
of H whose intersection C' = N, C; is nonempty. Let z,, be
defined as in (2). Then, for every + € C' and every n > 1

[en — || < [len-1 — 2|

Moreoever, lim,,_,o z, € N¥;C;. If C; are affine for all 7 €
{1,...,m}, then lim,,_, ||z, — Pc(&)|| = 0.

III. DISTRIBUTED LEARNING

To motivate our model for distributed learning and to contrast
related work, it is helpful to consider the following toy example.

Suppose that the feature space & models a set of observables
measured by sensors in a wireless network. For example, the
components of an element z € X = R* may model coordi-
nates in a (planar) environment and time. )) = R may represent
the space of temperature measurements. A decision maker may
wish to know the temperature at some point in space—time; to
reflect that these coordinates and the corresponding tempera-
ture are unknown, let us model them with the random variable
(X,Y). A joint distribution Pxy may model the spatio-tem-
poral correlation structure of a temperature field. If the field’s
structure is well understood, i.e., if Pxy can be assumed known
a priori, then an estimate may be designed within the Bayesian
inference framework [42]. However, if such prior information is
unavailable, an alternative approach is necessary.

Suppose that sensors are randomly deployed about the
environment, and collectively acquire a set S,, C X X ) of
temperature measurements at various points in space—time.2
The set S,, is akin to the training data described in Section II,
and thus reproducing kernel methods (and indeed, many other
supervised learning algorithms) seem naturally applicable to
this field-estimation problem. However, the supervised learning
model has abstracted away the process of data acquisition,
and generally does not incorporate communication constraints
that may limit a learning algorithm’s access to data. Indeed,
classical supervising learning algorithms depend critically
on the assumption that the training data is entirely available
to a single processor. However, in wireless sensor networks,
the energy and bandwidth required to collect the sensors’
raw measurements may be prohibitively large. Thus, training
centralized learning rules may limit the sensors’ battery life,

2A host of localization algorithms have been developed to enable sensors to
measure their location; see, for example, [17], [33], [39].

may waste bandwidth, and may ultimately preclude one from
realizing the potential of wireless sensor networks.

Sensors in WSNs are equipped with on-board processing
capabilities, and thus have the ability to locally process
information. Can this processing be exploited to develop
communication-efficient learning algorithms that respect con-
straints on energy and bandwidth?

For another example, individuals in social networks (e.g.,
Facebook) have privileged access to data that they may be un-
willing to share with people they do not trust. For example, an
individual may have access to their annotated home photos and
to the annotated photos shared by their friends. Each individual
may want to train a classifier to support automated image an-
notation, but such a classifier may generalize poorly with the
limited data available. Can individual data, together with local-
ized processing, be exploited in privacy-sensitive learning algo-
rithms in social networks?

A. A Model for Distributed Learning

As a starting point to studying the aforementioned questions,
consider a more general model for distributed learning. Suppose
that each member of a collection of m learning agents (e.g.,
sensors in a wireless network) has limited access to the training
database S, = {(z;, y;)}7_;. In particular, assume that learning
agent j has access only to the training examples in a subset
SJ C S,,. We shall henceforth refer to { S L, as an ensemble.

A bipartite graph is a convenient way to represent an en-
semble in this model for distributed learning. As depicted in
Fig. 1, nodes on the top level of the graph represent learning
agents; nodes on the bottom level represent training examples.
An edge between a learning agent 7 and a training sample %
posits the existence of a communication channel over which
agent j can retrieve information about example ¢. For now, we
make no additional assumptions on the structural relationship
between the agents’ locally accessible training sets; for ex-
ample, we do not require the ensemble {S} ., to partition
Sy, nor do we require the corresponding bipartite graph to be
connected in any way.

The generality of this model is reflected in a few examples.
The centralized model for supervised learning can be repre-
sented by the graph in Fig. 2, where each of the m learning
agents has access to all exemplars in the training database. Fig. 3
illustrates an ensemble where a publicly available database is
available to all the learning agents, each of which retains a pri-
vate training set. Fig. 4 illustrates agents who access training ex-
amples that are “nearby” with respect to an underlying topology.
This latter example may reflect what intuitively corresponds to
a wireless sensor network, where a sensor (agent) has access to
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Fig. 2. A “centralized” ensemble.
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Fig. 3. An ensemble with a public database.

Fig. 4. A sensor network: an ensemble with topology dependent structure.

the data it measures but also to the data its neighbors measure.
The general case depicted in Fig. 1 may model learning agents
employed by individuals who have access to the data made ac-
cessible by trusted friends in a social network.

Much of the work in distributed learning differs in the way
that the capacity of the links is modeled. Given that learning is
already a complex problem, simple application-layer abstrac-
tions are typically preferred over detailed physical-layer models.
The links are often assumed to support the exchange of “simple”
real-valued messages, where simplicity is assessed relative to
the application (e.g., sensors share summary statistics rather
than entire data sets). Lacking a formal communication model,
quantifying the efficiency of various methods from an energy
and bandwidth perspective is not always straightforward.

As discussed in the Introduction, the importance of local com-
munication transcends many analyses and implementations of
wireless networks. Loosely speaking, local communication is

that which occurs between neighboring sensors in a communi-
cation network. In wireless networks, topology of the network is
in correspondence with the topology of the environment, which
is to say that a sensor’s network neighborhood is roughly equal
to its physical neighborhood. By an inverse square law, the en-
ergy required for two sensors to exchange one bit of information
decreases with the distance between them; by the same law, mul-
tiple-access interference decreases with the distance between
pairs of communicating nodes. Thus, by minimizing energy ex-
penditure and by enabling spectral reuse, local communication
are often an efficient mode of information transport in WSNs.3

The foregoing observation is the starting point for many
studies on distributed learning (and indeed, on distributed
inference more generally). Rather than formalize a detailed
physical-layer communication model, which may or may not be
relevant to any specific WSN application, studies of distributed
learning often posit a model for local communication and then
study how sensor-to-sensor (sensor-to-data) interactions can
improve learning by enabling collaboration. Ultimately, as-
sumptions about the efficiency of local communication must be
justified, perhaps by formalizing a physical model or through
scaling law analyses. However, application-layer abstractions
of local communication are nonetheless a reasonable starting
point to investigate the fundamental limits of distributed
learning.

B. Related Work

For learning rules motivated by the principle of empirical
risk minimization, a training algorithm often must solve an op-
timization problem, e.g., (1). As a result, distributed and par-
allel optimization, fields with rich histories in their own right
[8], [11], have an immediate bearing on distributed learning. In-
deed, many tools from distributed and parallel optimization have

3These tradeoffs are studied more formally, for example, in the literature on
scaling laws in WSNss; see, e.g., [20], [27] and references therein and thereto.
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been applied to develop tools for distributed inference; see, for
example, [13], [30], [43]-[46], [50].

One class of distributed training algorithms is constructed to
exploit an assumed relationship between the topology of the
wireless network and the correlation structure of sensors’ mea-
surements. In the toy example discussed above, for example,
the temperature field may be slowly varying in space—time and
thus it may be reasonable to assume that physically nearby sen-
sors have similar temperature measurements. Since the sensors
“exist” in the space—time feature space X', the network topology
is intimately related to the topology of feature space, and hence
the correlation structure of the temperature field.

To see how such a relationship may be exploited in devel-
oping a distributed training algorithm, note that in least-squares
estimation, the Representer Theorem shows that the minimizer
gn of (1) is implied by the solution to a system of linear
equations

(K +A)e, =y 3)

where K = (Kj;) is the kernel matrix with K;; = K(z;,z;).
If each sensor acquires a single training datum so that there
is a one-to-one correspondence between training examples
and sensors, then K is a matrix of sensor-to-sensor similarity
measurements. For many kernels, K can have a sparsity struc-
ture4 that admits distributed message-passing implementations
of algorithms to solve the linear systems [18], [37]. When
the sparsity structure of K is in appropriate correspondence
with the topology of the network, the messages are passed
between neighboring nodes in the network, and the result is a
training algorithm that implements a classical learning rule in a
distributed way.

For example, [19] adopts such an approach, and develops
a training algorithm based on a distributed Gaussian elimina-
tion algorithm executed on a cleverly engineered junction tree.
Developed within a very general framework for distributed in-
ference in sensor networks [38], the approach is applicable in
many applications, including some where the correspondence
between the network topology and the correlation structure of
the sensors’ observations may not be intuitive. We refer the
reader to [19] for additional detail and a description of several
interesting experiments.

Assumptions that couple the network and the correlation
structure of the sensors’ observations are powerful, but may be
of limited use, since it is easy to envision examples where those
assumptions break down. For example, sensors deployed about
a city may observe correlated measurements of traffic flow, de-
spite being unable to communicate due to a signal-obstructing
skyscraper; and data available to learning agents employed by
individuals on Facebook may be unrelated to structure of the
social network. In general, there is no fundamental, applica-
tion-independent reason to assume a correspondence between
the topology of the feature space X and the topology of the
network.

4Generally speaking, sparse matrices are those with a large number of zero
elements that allow for specialized processing techniques [1]. A discussion of
sparse matrices and related computational methodsis outside the scope of this
paper.
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The training algorithm developed in this paper avoids such
assumptions, and treats the network and the signal as distinct
objects. The algorithm is constructed to solve a relaxation of
the classical least-squares problem; the relaxation is motivated
by the topological structure of the communication network, and
is independent of the kernel, which retains its interpretation
as a similarity measure on inputs. A statistical analysis shows
that the generalization error afforded agents by the collabora-
tive training algorithm depends on the relationship between the
topology of the network and the the representational capacity
of H , the reproducing kernel Hilbert space induced by K.

Another approach to developing distributed training al-
gorithms exploits the additive structure of the regularized
empirical loss functional. To illustrate, suppose that agent
(sensor) ¢ has access to a single training datum (z;,y;) € Sy,
and for reasons that will soon become clear, let us rewrite (1) as

n

Z(f(:v1)—y1)2+z)\l||f||gm : @
i=1

i=1

min
feEHK

When % Z?zl Ai = A, the (unique) minimizer of (4) is clearly
equivalent to the minimizer of (1).

Gradient and subgradient methods (e.g., gradient descent)
are popular iterative algorithms for solving optimization prob-
lems. In a centralized setting, the gradient descent algorithm for
solving (4) defines a sequences of estimates

. A OF /
(k+1) — f(k) _ _( (k)) 5
f f Py / 5
where F(f) = >0 (f(X:),Yi) + Al f]I3,, is the objective
function, and 3—5 denotes its functional derivative. Note that

‘?9—}; (f)) factors due to its additive structure. Incremental sub-
gradient methods exploit this additivity and define an alternative
set of update equations

jx = k mod m 6)
oD = f0) - ak% (/@) ™

where G; = (f(X;),Y:)+X]1 I3, - Inother words, the update
equations iterate over the n terms in F'.

Incremental subgradient algorithms have been studied in de-
tail in [31], [32]. Under reasonable regularity (e.g., bounded
I aa—cjj||), one can show that if oy, — 0, then || f*+) —g, ||, —
0; with a constant step size (i.e., o = «), one can bound the
number of iterations required to make || f*) — g, ||x, < e.

These ideas were exploited in [45], [46] to develop a message-
passing algorithm that may be applied as a distributed training
algorithm. After noting that the update equation at iteration k de-
pends only on the data observed by sensor k mod m, a two-step
process is proposed. First, a path is established that visits every
sensor. Then, the incremental subgradient updates are executed
by iteratively visiting each sensor along the path. For example,
sensor one may initialize f(o) = 0 € Hg and then compute
f1 according to the update equations (which depend on sensor
one’s only training datum). Once finished, sensor one passes
f ! on to the second sensor in the path, which performs a sim-
ilar update before passing its estimate onto the third sensor.
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The process continues over multiple passes through the net-
work, at each stage, data is not exchanged—only the current
estimates. By the comments above, only a finite number of it-
erations are required for each sensor to arrive at an estimate f
with ”f - gnHHK <e

Notably, this idea is slightly different than the one origi-
nally conceived in [45], [46]. Whereas here we are interested
in learning a function, there the focus was on estimating a
real-valued parameter. From a theoretical perspective, this dif-
ference is primarily technical. However, practically speaking,
the difference is important. The incremental subgradient
method requires sensors to exchange a description of the pa-
rameter (i.e., the function), which by the Representer Theorem
requires a description whose size is of the same order as the
training set. Thus, the subgradient approach to training may not
in general be more efficient than naive strategies which require
sending “raw” data to a centralized processing facility. How-
ever, if F admits a lower dimensional parameterization—for
example, if F is the reproducing kernel Hilbert space for the
linear kernel—then messages may be communicated more
efficiently to the tune of considerable energy savings. Note that
[50] addressed a generalization of this incremental subgradient
message-passing methodology by considering a clustered
network topology.

The algorithm developed in this paper posits the exchange
of simple real-valued messages, which may be significantly
smaller than descriptions of functions. Specifically, sensors
iteratively communicate real-valued “labels” of training data.
Though a formal model is required to rigorously assess commu-
nication efficiency, this promises to make the present approach
more broadly applicable.

Note that there are other approaches to distributed learning
that similarly focus on developing distributed training al-
gorithms. For example, in a data-mining context, [16], [28]
developed a distributed extension of Adaboost [15]. In the
context of boundary estimation in wireless sensor networks,
[35] derived a hierarchical processing strategy through which
sensors collaboratively prune a regression tree. The algorithm
exploits additivity in the objective function of the complexity
penalized estimator (i.e., an optimization similar in structure
to (1)), and permits an interesting energy-accuracy analysis.
Reference [36] derives a distributed expectation—maximization
(EM) algorithm for density estimation in sensor networks.
Though formally parametric, EM is popular for clustering
problems and thus the approach may be broadly applicable.
Reference [47] considered the existence of consistent learning
algorithms in several models for distributed learning under
communication constraints.

C. Other Work

Within the context of wireless sensor networks, [34] develops
a nonparametric kernel-based methodology for decentralized
detection. As in centralized learning, a training set is assumed
available offline to a single processor. The data is used to train
a learning rule that solves an optimization problem similar to
(1), with the additional constraint that the resulting decision rule
lies within a restricted class which is deployable across a sensor
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network; the powerful notion of a marginal kernel is exploited
in the process. This setting is fundamentally different from the
present context in that the data is centralized. Thus, one might
distinguish the former topic of centralized learning for decen-
tralized inference from the present topic of distributed learning
for decentralized inference.

Reference [33] considered a clustered approach to distributed
learning with a fusion center5 to address sensor network local-
ization. There, the feature space X = R? models points in a
planar terrain, and the output space ) = {0, 1} models whether
or not a point belongs to (a specifically designed) convex region
within the terrain. Training data is acquired from a subset of
sensors (base stations) whose positions were estimated using
various physical measurements. The fusion center uses repro-
ducing kernel methods for learning, with a kernel designed
using signal-strength measurements. The output is a rule for
determining whether any sensor (i.e., non-base stations) lay
in the convex region using only a vector of signal-strength
measurements. We refer the reader to the paper for additional
details, and reports on several real-world experiments. How-
ever, we highlight this as an example of a clustered approach to
distributed learning in a parallel network with a fusion center, a
methodology which is broadly applicable.

Finally, message-passing algorithms are a hot topic in many
fields, wireless communications and machine learning notwith-
standing. This surge in popularity is inspired in part by the pow-
erful graphical model framework that has enabled many exciting
applications and inspired new theoretical tools [5], [23], [26],
[29], [37], [40], [41]. These tools are often applicable to signal
processing in wireless sensor networks, since often the correla-
tion structure of the phenomenon under observation (e.g., a tem-
perature field) can be represented using a graphical model (e.g.,
Markov networks) and since inter-sensor communications are
envisioned to occur over similar graphical structures. Indeed,
graphical models and their application to wireless sensor net-
works are broad topics in their own right (see, e.g., [12]).

IV. A COLLABORATIVE TRAINING ALGORITHM

In this section, we develop a local message-passing algorithm
that admits an interpretation as a collaborative training algo-
rithm. We rely on the model for distributed learning introduced
in Section III.

A. The Algorithm

_ For any ensemble {57 }72,, let the sets {57}, be such that
53 C€{1,...,n}, and that i € S}, if and only if (x;,y;) € S}.
In other words, S is the set of indices of training exemplars in

SJ as enumerated in S,,. Analogously, let S, = {1,...,n}.

’

Recall, as in (1), the classical kernel-linear least-squares re-
gression estimator, which is taken to solve the following opti-
mization problem:

n

min lZ(f(l}) —yi)2+)‘||f||g-£;<'

feEH K n “
1=1

®)

SDistributed clustering algorithms have been developed with such applica-
tions in mind; see [6] for example.
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Here, the optimization variable (function) is f, which is con-
strained to be in the reproducing kernel Hilbert space H i for a
positive semidefinite kernel K.

Let us introduce a decision rule f; € Hx for each agent j =

1,...,m, and consider the following constrained optimization
program:
min Y (z —yi)® + Z/\ 02, 9)
=1 7=1
S.t. Z,;:f]'(il?i) Vi € gn,j: -
fi € Hk j=1,...,m. (10)

In this program, the optimization variables are z € R" and
{fi}iy C Hi; Snand {A;}7L; C R are data. The constraints
in (10) couple the decision rules by requiring that agents agree
on the training data. More precisely, the coupling constraints
dictate that a vector (2, f1,..., fm) is feasible if and only if
fi(zi) = zi = fe(z;) fori=1,...,nandforj,k=1,...,m

One may think about this program as being an equivalent rep-
resentation of the centralized least-squares regression problem
(8) in the following sense.

Lemma 1: Suppose that (z,gL,...,g™) € R" x HR is the
solution of (9), that g} € H is the solution of (8), that A; >0
forj =1,...,m, and that A = + 2021 Aj. Then g,, = g, for
7=1....m

A proof of Lemma 1 appears in the Appendix.

This equivalence suggests an association between centralized
regression and global agreement, and motivates a similar as-
sociation between distributed regression and local agreement.
Consider the learning rule formulated by relaxing the coupling
constraints in a way that requires the agents to agree, but only
on training examples they share

min Z( — i)+ Z/\ I £ill3en (11)
i=1 j=1

S.t. Z,;:f]'(il?i) VZESJ j—l....,m
fi € Hk j=1,....m (12)

In this formulation, the coupling constraints dictate that a vector
(2, f1,-- ., fm) is feasible if and only if f;(z;) = z = fi(z:)
for (w;,y;) € S§ N S and for j,k = 1,...,m; that is, if and
only if every pair of sensor decision rules agree on exemplars
that the sensors share.

Constraining learning rules to satisfy local agreement con-
straints can be defended by the principle of empirical risk min-
imization. Note that by convexity

5 =02 g |

jeES jES

2

Z fi(z) —y

]ES

13)

foranyz € X,y € YV, and S C {1,...,m}, and that the in-
equality is strict whenever f;(z) # ﬁ > iy fi(x) for some
7 € S. In other words, the average sensor’s error on a given ex-
emplar can be lowered whenever there is local disagreement on
the label of the exemplar. Applying this argument to all exem-
plars in a training data set suggests that the average empirical
error of the ensemble can always be lowered if the sensors dis-
agree. This logic could be applied to defend global agreement:
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our assumption is that global agreement (i.e., centralized regres-
sion) is infeasible and propose local agreement as a goal given
communication constraints.

One may think about this formulation as defining a set of m
learning rules, one for each learning agent. In particular, sup-
pose that (2, gy, - - -, g;,') minimizes (11). Though the coupling
constraints suggest that gJ is a function of only the training ex-
amples in S, clearly, as part of a joint minimizer of (11), g/ in
general depends on all the data. Thus, with g7 : X' x (X' x))" —
R, {g7}2°, is a learning rule as typically conceived [14].

To emphasize, the fully coupled formulation (9) requires
global agreement, reduces to a centralized learning rule, and
intuitively models the centralized ensemble depicted in Fig. 2.
The relaxed formulation (11) requires local agreement, jointly
defines m learning rules, and reflects the more general structure
of distributed learning depicted in Fig. 1. We now show that
(11) can be solved distributively using an algorithm that admits
a natural interpretation as a collaborative training algorithm.

Let H = R" x Hp be the Hilbert space with norm
12 fro- - S IP = 11203+ 300 Aallfil13,,. - Note that (11)
can be interpreted as the orthogonal projection (in H) of the
vector (¥,0,...,0) € H onto the set C = NyL,C; C H, with

Cj = {(z7f17---7fm> : f]($L> =2z
Vi€ §,z€ W {1, C Hich CH.

This observation is significant because it highlights the fact that
this relaxation of the standard centralized kernel-linear least-
squares estimator can be interpreted as a projection onto the in-
tersection of m linear subspaces. As a result, successive orthog-
onal projection algorithms such as (2) can be used to solve the
relaxed problem (11).

Note that computing Pc, (v) = arg minyec, [[v — v'|| re-
quires agent j to gather only examples within its locally acces-

sible database. More precisely, for any v=(2, f1,..., fm) €H,
PCJ' (/U) = (2*7 ff/ ) f:;l), where
fi=fr VE#j
fj = arg min D (@) =z + Xl = filli,
sl
2f =z Vi ¢ S7
zf = fi(z;) VieS,.

In other words, computing Pc, (v) leaves z; unchanged for all
i ¢ SJ and leaves fy, unchanged for all £ # j. The function as-
sociated with agent j, ¥ can be computed using f;, {zi},. 50
and the “message variables” {z;},.5; (which have the role of
the training data labels in the classical formulation). Tying these
observations together, we are left with an algorithm for collabo-
ratively training networks of kernel-linear least-squares regres-
sion estimators. The algorithm is summarized in psuedocode in
Table I and depicted pictorially in Fig. 5. In words, the algo-
rithm iterates over the agents, having each locally train and then
update the messages variables which function as training data
labels in subsequent interations. Multiple passes over the agents
are made.

The asymptotic behavior of the collaborative training algo-
rithm is implied by the analysis of the SOP algorithm, and is
given by the following theorem.
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AN ALGORITHM FOR TRAINING COLLABORATIVELY

ght = argmingery | Dies, (F@0) = 2% + X11f = 65 I |

TABLE I
Input: Ensemble {S5}7%,
Initialize: z =y
90=0,j=1,...,m
Train: fort=1,...,T
forj=1,...,m
Compute:
Update:
2 — g5t (xi) Vie SY
end
end
Output:  {g;"}7 i, zr =2

[z ) ez ] | %25 | |

iz | [z ] |

XG"ZG | | X7:Z7 |

Fig. 5. A collaborative training algorithm.

Theorem 3: Suppose that (2, gL, ..., g™) € R™ x H7 is the
solution to (11) and let { g7 L1 be as defined in Table I. Then

(14)

; 5T _
lim ¢»" =g},
T—o0

fory =1,...,m.

Theorem 3 follows immediately from Theorem 2 and the
fact that convergence in norm implies pointwise convergence
in RKHSs.

Observe that Theorem 3 characterizes the output of collabo-
rative training algorithm relative to (11). This characterization
is useful insofar as it sheds light on the relationship between
the algorithm’s output and (1), the centralized least-squares es-
timator. The following generalization of the Representer The-
orem (Theorem 1) is a step toward further understanding this
important relationship.

Theorem 4: Let {ghT 71 be as defined in Table 1. Then, for
allj=1,...,mandall T > 1, g}" admits a representation of
the form

g ()= A K (),

ie€8d

15)

; g
for some ¢/, € RI%I.

The proof of this theorem follows immediately from The-
orem 4.2 and Remark 4.4 in [49]; we omit the details here.
Note that since H is closed, it follows from Theorem 4 that
g} = limp_, . g7 admits a similar representation.

The significance of Theorem 4 lies in the fact that an agent’s
locally accessible database fundamentally limits the accuracy
of that agent’s estimate. In particular, an agent having access
to only a few exemplars in an otherwise large training database
will still be limited to estimates that lie in the span of functions
determined by its locally observed data; in other words, local
connectivity influences an estimator’s bias. Intuitively, the mes-
sage passing through the training database may optimize the es-
timator within that limited span if the ensemble is “connected”
in some meaningful way. In the next subsection, we probe this
intuition by considering a simple notion of connectedness that
relates the topology of the network to the representational ca-
pacity of H.

B. Relevance to Wireless Sensor Networks

Let us make explicit the relevance of this algorithm to dis-
tributed learning in wireless sensor networks. In particular, sup-
pose that in the bipartite graph model for distributed learning,
each agent (sensor) is connected to the data it measures, and in
addition is connected to the data its neighbors measure. Here,
the agents’ neighborhoods are defined with respect to an arbi-
trary inter-agent graph, and is represented only implicitly in the
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bipartite graph model for distributed learning. The collabora-
tive training algorithm proceeds to iterate over each agent, at
each step having an agent compute a fit to its locally observed
data. Subsequently, the agent updates the labels in the training
database.

Inter-agent communication is assumed to occur at two
phases. First, in the initialization phase, neighboring sensors
must exchange training data. This exchange occurs once, and
can be viewed as a sunk cost. Secondly, communication occurs
in the update phase, wherein sensors update the message
variables. Since only the message variables (which function as
training data labels) are updated—not feature-level descriptions
of training data inputs—this is presumably less costly from
both an energy and bandwidth perspective than communication
in the initialization phase. Nevertheless, it occurs repeatedly.
Communication in both phases is local, the level of which can
be controlled by the number exemplars neighboring sensors
share, and by the number of iterations 7' through the collabo-
rative training algorithm.

Computationally, each agent is required to compute a local fit
at each step. As dictated by Theorem 4, this requires each agent
to solve a system of linear equations with dimensionality on the
order of the number locally observed examples. Implicitly, this
is related to the size of its neighborhood. So long as the number
of exemplars is kept low, the computational burden placed on
each agent is kept small.

Note that as described in Table I, the inner loop of the collab-
orative training algorithm iterates over agents in the ensemble
serially. The ordering is unimportant and parallelism may be in-
troduced. In fact, two agents can train simultaneously as long as
they do not share exemplars in their locally accessible training
databases. In practical settings, multiple-access algorithms (e.g.,
ALOHA) may be adapted to negotiate an ordering in a dis-
tributed fashion. Since successive orthogonal projection algo-
rithms and Theorem 2 have been generalized to a very general
class of (perhaps random) control orderings [7], Theorem 3 can
be extended in many cases.

V. GENERALIZATION ERROR ANALYSIS

In this section, we study the statistical behavior of the collabo-
rative training algorithm. Our analysis is in the limitas 7" — oo,
i.e., we assume that the network of agents have collaboratively
solved (11).

For any ensemble, kernel pair ({57}, K), let us construct
an auxiliary inter-agent graph as follows: let there be a node
in the graph for every learning agent, and let there be an edge
between node (i.e., agent) j and node k if and only if

span ({K (i) esy ) = span ({K (o0 bes: )
= span ({K('7$’i)}i€§£ﬂ:€,‘;) . (16)

In other words, by Theorem 4, an edge connects nodes j and
k if and only if g/ and g* admit representations in a span of
functions determined by their shared training examples. Let us
call the ensemble, kernel pair ({S;}™,, K) connected if and
only if the inter-agent graph so constructed is connected.

This notion of connectedness leads us to Theorem 5, which is
best viewed as a generalization of Lemma 1. The theorem fol-
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lows from the observation that the auxiliary inter-agent graph
for a connected ensemble, kernel pair ({S;}™,, K) is fully con-
nected (by the transitivity of equality). See the Appendix for a
proof.

Theorem 5: Suppose that ({S3}7-,, K) is connected, that
(z,9L,...,9™) € R™ x H is the solution to (11), and that g;}
denote the solution to (8) for A = % Z;-nzl A;. Then

9n =g} (17)

fory =1,...,m.

Theorem 5 is significant because it equates the centralized re-
gression formulation (8) and the distributed regression formu-
lation (11) under significantly sparser network topologies than
the fully connected network that corresponds to the fully cou-
pled formulation (9) that motivated our development. To illus-
trate, suppose that the learning agents employ the linear kernel.
In this case, (16) is satisfied if agents j and & share d + 1 linearly
independent training examples. One can easily envision exam-
ples of sparse ensembles which together with the linear kernel
are connected; consider, for example, the ensemble with a pub-
licly available database (Fig. 3).

With this correspondence, we may study the statistical be-
havior of the collaborative training algorithm using known re-
sults in statistical learning theory.

Theorem 6: Suppose that Y = [0, B], that K (x,z) < & for
all x € X, and that {(X;,Y;)}", is independent and identi-
cally distributed (i.i.d.) with (X;,Y;) ~ Pxy. Suppose fur-
ther that ({5}}7_,, K) is connected for all ». > 1, and that

(z,9L,...,9™) € R x H% is the solution to (11). Then, for
allj=1,....m
. 1 — ; 2
E{JX—Y2}<_ i(X;)-Y;
(97.(X) - Y) _n;(gn( ) —Yi)

In(1/6)

2n

n 4k% B? n 8k2 B2 128
E?=1 Aj % Z?=1 Aj

with probability greater than 1 — §.

Theorem 6 provides conditions on the network under which
the agents’ jointly defined learning rules generalize, that is,
when the empirical loss of their estimates is a good approxi-
mation for their expected loss with high probability. Note that
Theorem 6 bounds the generalization error of sensor j in terms
of the empirical error of sensor 7 on the entire data set, not
in terms of empirical error on the data to which sensor j has
access. This is an interesting feature of the bound because it
reveals cases where sensors that solve the relaxation generalize
as though they have solved the classical unrelaxed problem,
even though the collaborative training algorithm requires them
only to observe a small fraction of the data. Since sensors
cannot measure the empirical error on the entire set, the bound
is not practical in the same way that generalization error
bounds often are in classical (i.e., nondistributed) learning; in
classical learning, generalization errors analysis can support
things like parameter tuning by characterizing the uncertainty
in the empirical error. Given Theorem 5, the result follows
immediately from a known result in statistical learning theory;
see [9, Sec. 5.2.2] for a proof.
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Theorem 7: Suppose that the conditions of Theorem 6
hold, and that n(z) = E{Y |X = =z} € Hg.If {\}7,
are chosen to depend on n such that %Z;"Zl A;j — 0 and

1

n(; Z;'n:n1 /\j)S — 00 as n — oo, then

g2 =l — 0 (18)

in probability, forall j = 1,...,m.

Given Theorem 5, this result also follows immediately from
Theorem 1 in [48].

To illustrate the significance of this result, let us again recall
the example of an ensemble with a public database. Suppose that
such an ensemble, together with a linear kernel, is connected.
Assuming the regression function is also linear, Theorem 7 im-
plies that each agent can consistently estimate the regression
function in the limit of the number of agents in network, as long
each agent maintains at least one unique example outside the
publicly available database. Thus, consistent learning is possible
with collaboration, in the limit of the amount of information the
network observes, even in cases where each agent observes a fi-
nite training set.

The preceding results depend critically on a notion of con-
nectedness that couples the kernel K with the topology of the
sensor network. This coupling appears contrary to the discus-
sion in Section I, which advocated a decoupling of these objects.
To clarify, our notion of connectivity relates the topology of the
network with the representational capacity of the reproducing
kernel Hilbert space implied by K (i.e., Hx ), and not the cor-
relation structure encoded by the kernel. We also note that the
collaborative training is valid under arbitrary kernels and net-
work topologies; the notion of connectedness merely serves as
a means to analyze the generalization error.

The strongest precondition of Theorems 6 and 7 is the re-
quirement of connectedness. This condition will not be satis-
fied in many interesting cases; with the Gaussian kernel, for
example, only fully coupled ensembles are connected. An in-
teresting direction for future work is to understand the effect
that collaboration has on generalization under weaker notions
of connectivity and in more general network topologies. One
approach is to generalize Theorem 5 under relaxed conditions
relaxed conditions on the relation between the network and the
representational capacity of the RKHS.

Note the dependence in both theorems on Z;":l Aj. This
correctly suggests that the parameters {)\]-}}":1 must be tuned
jointly, and opens the door for research on distributed regular-
ization strategies. It is apparent that agent 5 should choose A; as
a function of the structure of the network in which it is collabo-
rating. However, extensions of Theorems 6 and 7 are necessary
to formalize regularization strategies that generalize, and algo-
rithmic development may be needed to facilitate implementa-
tion of such strategies in real networks.

VI. EXPERIMENTS

A. The Data

The data in these experiments is generated artificially. We
take ¥ = ROy = R, X ~ N(0,0%119%19) with 03 = 1,
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and Y = n(X) + N withn(z) = 2312 @i+ Land N ~
N (0, 0% ). There are two cases of interest. In Case #1, the noise
variance 012\, = 4; in Case #2, (7]2\, = 0. In both Cases #1 and
#2, the agents employ the linear kernel, so that H g is the set
of linear functions on X'. In all experiments, ensembles are ran-
domly constructed in the following two-step process: first, an
i.i.d. training S,, is assembled, and then, m learning agents are
randomly connected to k of the n training examples in .S,,.

B. The Method

When the collaborating training algorithm is employed,
learning agent j’s decision rule g7 is implicitly dependent
on n,m,k,T,{\;}7L; and the randomly generated ensemble

{57} . Thus
giT(X) = g5 (X mom, b (A}, S, ST, )
(19)
With .J uniformly distributed on {1,..., m}, we define
MSE = MSE (n,m, k, {};}1,, T) (20)
= E{|g!7(X) - n(0)|’} @1

where the expectation is taken with respect to J, X, S,,, and
the random ensemble {5}, }7 ;. In other words, MSE is the ex-
pected mean-squared error of the agents’ estimates.

C. Experiment #1: Centralized Regression

In this experiment, we explore the performance of the central-
ized regression estimator, which will subsequently be used as a
baseline. This corresponds to choosing m = 1 and S} = S,,;in
this setting, 7" = 1 is sufficient. For various A = )\, we plot the
MSE versus n. Fig. 6 depicts the result for Case #1, and Fig. 7
depicts the result for Case #2.

Note there there are 11 free parameters to be estimated when
using the linear kernel on X' = R0 Thus, in Case #2, the noise-
less case, MSE drops off sharply after n = 11. The decay is
more gradual in Case #1 since va = 4; we note, however, that
beyond n = 200, the rate at which MSE decreases is small. In
Case #1, the performance of the centralized estimator is insen-
sitive to the choice of \. In Case #2, a smaller \ leads to lower
MSE, as expected given the noise-free data.

D. Experiment #2: Convergence Rate

In this experiment, we explore the performance of the collab-
orative training algorithm as a function of T', the number of it-
erations through the network. We take m = 500, n = 200,k =
15, and select various A; = Ao for j = 1,...,m. We consider
how

m ) N
ll2100l15 + Z Aj ||g£;100“7-£1<
7j=1

2 N iT |2
lzrl3+> " A 1937 [, —
i=1
(22)
varies with T € {1,..., 100}. Equation (22) is expected to be

’ ’

monotonically decreasing in I" by Theorem 2, and allows us
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Fig. 8. Distributed, Case 1: MSE versus 7.

to assess the rate of convergence of the collaborative training
algorithm.

The result is depicted in Fig. 8, averaged over 200 realiza-
tions of .S, and { Sfl};-”:l. We notice an unexpectedly large vari-
ation in behavior as a function of \. In experiments not docu-
mented here, we notice similar behavior throughout the range of
n,m, k relevant to the remaining experiments, and in Case #2.
We henceforth fix 7" = 25, having observed that after 25 itera-
tions through the network, the algorithm typically converges.

We emphasize that Fig. 8 should not be interpreted as an abso-
lute measurement of execution time. In particular, the inner loop
of the collaborative training algorithm iterates over sensors, and
thus for fixed T, the execution time is expected to grow linearly
with m.

E. Experiment #3: Collaboration & Generalization

In this experiment, we explore the generalization error af-
forded agents by the collaborative training algorithm as a func-
tion of network connectivity. In Case #1, we take n = 200, k =
15,T = 25, and plot MSE versus m for various A; = Ao (j =
1...,m). As m increases, the network will become increas-
ingly connected; intuitively, the amount of information propa-
gating through the network increases with m via collaboration.
Since k£ > 11, the ensemble paired with the linear kernel is ex-
pected to be connected (in the sense discussed in Section V) for
sufficiently large m. Thus, as m increases, we expect the gener-
alization error to approach the performance the centralized rule

for A = % Z;n:l Aj; recall that Fig. 6 depicts the generaliza-
tion error of the centralized estimator. Since n is fixed and m
grows, A will grow with m, and thus, we expect that MSE will
increase for sufficiently large m, as the complexity term begins
to dominate.

These expectations are borne out in Fig. 9, where MSE is
plotted by averaging 200 random realizations of S,,, X, and
{57}, The horizontal lines in Fig. 9 depict the MSE of a
single learning agent trained on a randomly selected a training
set of k& = 15 exemplars. This is an interesting point of com-
parison, since it is exactly the collaborative training algorithm
without the update stage. In all cases, the collaborative training
algorithm provides a significant improvement in MSE over the
noncollaborating approach. This may be interpreted as illus-
trating the potential value of the collaborating training algorithm
in reducing noise.

In Case #2, we take n = 50,k = 7,T = 25, and similarly
plot MSE versus m for various \g. Since the training data labels
are noiseless in Case #2 and since ¥ < 11, we do not expect
collaboration to improve the error rate. Indeed, the update stage
of the algorithm can only introduce noise into the noiseless data,
and thus can only increase MSE. This expectation is borne out
in Fig. 10.

VII. SUMMARY, EXTENSIONS, AND FUTURE WORK

In this paper, we have developed an algorithm for collabo-
ratively training networks of kernel-linear least-squares regres-
sion estimators. The algorithm has been shown to distributively
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Fig. 9. Distributed, Case 1: MSE versus M.

solve a relaxation of the classical centralized kernel-linear least-
squares regression problem. A statistical analysis has shown
that the generalization error afforded agents by the collaborative
training algorithm can be bounded in terms of the relationship
between the network topology and the representational capacity
of the relevant reproducing kernel Hilbert space. Numerical ex-
periments have shown that the collaboration is effective at re-
ducing noise. The algorithm was argued to be relevant to the
problem of distributed learning in wireless sensor networks by
virtue of its exploitation of local communication.

This paper has focused exclusively on the problem of kernel-
linear least-squares regression. The collaborative training algo-
rithm and all related results can be extended to more general
convex loss functions and arbitrary convex function spaces. In
particular, note that the coupling agreement constraints intro-
duce a sparse set of linear constraints. In the least-squares con-
text, successive orthogonal projection algorithms happen to be
a useful tool for computing the estimators distributively. More
generally, row-action algorithms [11] are applicable to mini-
mizing convex functions over sparse sets of linear constraints. In
particular, Bregman’s algorithm [10] is expected to be relevant
to constructing a more general collaborative training algorithm.

The formulation of distributed least-squares regression as a
relaxation of the classical centralized least-squares under local
agreement constraints bears resemblance to the generalized con-
sensus formulation introduced in [2].6 In the context of kernel-
linear regression, the consensus formulation requires agents to
agree with neighbors about the entire learned function (which

6We thank any anonymous referee for pointing out this connection.

by Lemma 1 is equivalent to global agreement); whereas in the
present formulation, neighboring agents are merely required to
agree on how the learned function evaluates on shared exem-
plars (local agreement). Both the algorithms developed here and
in [2] require agents to communicate with neighbors in order to
satisfy agreement constraints, and as discussed, our assumption
is that the communication costs to meet global agreement con-
straints are infeasible in the context of learning with kernels.

Those familiar with the online learning framework may find
our collaborative training algorithm reminiscent of the equa-
tions for additive gradient updates [25]. Though both algorithms
may be interpreted in the context of successive orthogonal pro-
jection algorithms, it does not appear possible to specialize the
bipartite graph model for distributed learning in a way that re-
covers the online learning framework (or vice versa).

Finally, those familiar with low-density parity check (LDPC)
codes or Bayesian networks may find the current model and
algorithm reminiscent of message-passing algorithms, such
a belief propagation, which are frequently studied in those
fields; variational interpretations of kernel methods in the
context of Gaussian processes further suggests a relationship
between these works. Formalizing such a connection would
likely require one to interpret our relaxation in the context of
dependency structures in Gaussian processes, and to connect
alternating projection algorithms with the generalized distribu-
tive law [5].

The collaborative training algorithm developed in this paper
was developed via a somewhat ad hoc relaxation of the clas-
sical least-squares regression estimator. However, its geometric
interpretation and the statistical analysis support the algorithm
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as being reasonable. Nonetheless, the motivating association for j = 1,..., m. The solution to (23) is unique, and therefore
between distributed learning and local agreement inspires gl = --- = g™. After eliminating z from (9), we can rewrite

deeper questions for statistical learning theory. Classical sta-
tistical learning theory often considers the generalization error
of learning algorithms that minimize empirical risk over a
class of decision rules. The algorithm considered in this paper
essentially attempts a similar minimization, under additional
constraints on interagent agreement. Can generalization bounds
be derived for networks of empirical risk minimizers that
also strive for consensus? The statistical analysis in this paper
suggests that such bounds can be derived, though the results
rely on a strong notion of connectivity. Future work should
seek general principles for learning under agreement, and gen-
eralization bounds for learning algorithms so derived. These
directions are relevant to the study of distributed learning, since
the local message-passing algorithm developed in this paper
suggests that agreement can sometimes be achieved using only
local communication. A related and seemingly relevant body
of research concerns gossip or consensus algorithms.

APPENDIX

Proof of Lemma 1: 1f (z,g,,, . ..
clearly g/, also minimizes

, g7) minimizes (9), then

min || f]3,,
s.t. z;, = f(l’z)
f € Hg.

Vie S,
(23)

(9) with a much stronger set of coupling constraints

n

min Y (filw) =)+ > Al il
i=1 Jj=1

S.t. f1:~":fm€HK.

Now, it is clear that gJ = g, if nA = doimi A, for j =
1...,m. This completes the proof. O

Proof of Theorem 5: Suppose that (z,gl,...,¢™) mini-
mizes (9), and that learning agents j and k are neighbors in the
auxiliary graph constructed from ({57}, K).

m (197 j=1;
By the connectedness of ({S7,}72,, K') and Theorem 4, there

. . i ~ ok i~ ok
exists a ¢/, € RISl and ¢k € RIS2NSul such that

g =Y d K(x)
i€5insk
and
g = > kK (. m)
i€SinSk
Moreover

Ki*el = Kkeh = 5k (24)

: 3 k 3 k. . .
where K%k ¢ R1SaNSx1x1570S,1 {5 the restriction of the kernel

matrix K to the examples shared by agents j and k; 2% =



1870

(2i); €53 N5k i.e., the restriction of z to examples shared by
agents j and k. Since the kernel is positive definite, it follows
that ¢/ = ¢k = (K7%)~12/% and thus ¢/ = gk.

The preceding argument holds for any pair of neighboring
agents. Since the auxiliary graph is connected, it thereby follows
that gJ = g forall j,k = 1,...,m. Thus, after eliminating z
from (9), we can therefore rewrite (9) with a much stronger set
of coupling constraints

min Y (filwi) —v)” + Y Al il
i=1 j=1
st. fi=---=fm € Hk.
Now, it is clear that g} = g, if nA = YL, A, for j =
1...,m. The proof is complete. O
ACKNOWLEDGMENT

This research was completed while Joel B. Predd was a Ph.D.
candidate at Princeton University.

REFERENCES

[1] T. Davis, “Sparse Matrix. From MathWorld—A Wolfram Web
Resources,” Aug. 16, 2008 [Online]. Available: http://mathworld.wol-
fram.com/SparseMatrix.html, created by Eric W. Weisstien

[2] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized con-
sensus computation in networked systems with erasure links,” in Proc.
1IEEE Workshop on Signal Processing Advances in Wireless Communi-
cations, New York, Jun. 2005, pp. 1088-1092.

[3] T.Kailath, “An RKHS approach to detection and estimation problems.
Pt. I: Deterministic signals in Gaussian noice,” I[EEE Trans. Inf. Theory,
vol. IT-17, no. 5, pp. 530-549, Sep. 1971.

[4] N. Aronszajn, “Theory of reproducing kernels,” Trans. Amer. Math.
Soc., vol. 68, no. 3, pp. 337404, 1950.

[5] S.M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 325-343, Mar. 2000.

[6] S. Bandyopadhyay and E. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” in Proc. 22nd
Annu. Joint Conf. IEEE Computer and Communications Societies
(Infocom), San Francisco, CA, Mar./Apr. 2003, vol. 3, pp. 1713-1723.

[7]1 H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM Rev., vol. 38, no. 3, pp.
367-426, Sep. 1996.

[8] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Belmont, MA: Athena Scientific, 1997.

[9] O. Bousquet and A. Elisseeff, “Stability and generalization,” J. Mach.
Learning Res., vol. 2, pp. 499-526, 2002.

[10] L. M. Bregman, “The relaxation method of finding a common point
of convex sets andits application to the solution of problems in convex
programming,” U. S. S. R. Comput. Math. Math. Phys., vol. 78, no. 384,
pp. 200-217, 1967.

[11] Y. Censorand S. A. Zenios, Parallel Optimization: Theory, Algorithms,
and Applications. New York: Oxford Univ. Press, 1997.

[12] M. Cetin, L. Chen, J. W. Fisher III, A. T. Ihler, R. L. Moses, M. J.
Wainwright, and A. S. Willsky, “Distributed fusion in sensor networks:
A graphical models perspective,” IEEE Signal Process. Mag. (Special
Issue on Distributed Signal Processing in Wireless Sensor Networks),
vol. 23, no. 4, pp. 42-55, Jul. 2006.

[13] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust distributed es-
timation in sensor networks using the embedded polygons algorithm,”
in Proc. 3rd Int. Symp. Information Processing in Sensor Networks,
Berkeley, CA, Apr. 2004, pp. 405-413.

[14] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern
Recognition. New York: Springer-Verlag, 1996.

[15] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Comput. Syst. Scie.,
vol. 55, no. 1, pp. 119-139, 1997.

[16] S. Gambs, B. Kégl, and E. Aimeur, “Privacy-Preserving Boosting,”
2005, preprint.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 4, APRIL 2009

[17] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H.
V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios,”
IEEE Signal Process. Mag., vol. 22, no. 4, pp. 70-84, Jul. 2005.

[18] G. Golub and C. Van Loan, Matrix Computations. Baltimore, MD:
Johns Hopkins Univ. Press, 1989.

[19] C. Guestrin, P. Bodi, R. Thibau, M. Paskin, and S. Madde, “Distributed
regression: An efficient framework for modeling sensor network data,”
in Proc. 3rd Int. Symp. Information Processing in Sensor Networks,
Berkeley, CA, Apr. 2004, pp. 1-10.

[20] P. Gupta and P. R. Kumar, “Capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388—401, Mar. 2000.

[21] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. New York: Springer-Verlag,
2002.

[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York:
Springer-Verlag, 2001.

[23] , M. Jordan, Ed., Learning in Graphical Models.
MIT Press, 1999.

[24] G. Kimeldorf and G. Wahba, “Some results on Tchebycheffian spline
functions,” J. Math. Anal. Applic., vol. 33, no. 1, pp. 82-95, 1971.

[25] J. Kivinen and M. K. Warmuth, “Additive versus exponentiated gra-
dient updates for linear prediction,” Inf. Comput., vol. 132, no. 1, pp.
1-64, 1997.

[26] F.R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498-519, Feb. 2001.

[27] S. R. Kulkarni and P. Viswanath, “A deterministic approach to
throughput scaling in wireless networks,” IEEE Trans. Inf. Theory,
vol. 50, no. 6, pp. 1041-1049, Jun. 2004.

[28] A. Lazarevic and Z. Obradovic, “The distributed boosting algorithm,”
in Proc. 7th ACM SIGKDD Int. Conf. Knowledge Discovery and Data
Mining, San Francisco, CA, 2001, pp. 311-316, published by ACM
Press.

[29] H. A. Loeliger, “An introduction to factor graphs,” IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 28-41, Jan. 2004.

[30] C. C. Moallemi and B. Van Roy, “Distributed optimization in adap-
tive networks,” in Advances in Neural Information Processing Systems
16, S. Thrun, L. Saul, and B. Scholkopf, Eds. Cambridge, MA: MIT
Press, 2004.

[31] A.Nedic and D. Bertsekas, Incremental Subgradient Methods for Non-
differentiable Optimization MIT, Cambridge, MA, Tech. Rep. LIDS-P-
2460, 1999.

[32] A. Nedic and D. Bertsekas, “Convergence rate of incremental subgra-
dient algorithms,” in Stochastic Optimization: Algorithms and Appli-
cations, S. Uryasev and P. M. Pardalos, Eds. Dordrecht, The Nether-
lands: Kluwer, 2000, pp. 263-304.

[33] X. Nguyen, M. L Jordan, and B. Sinopoli, “A kernel-based learning
approach to ad hoc sensor network localization,” ACM Trans. Sensor
Networks, vol. 1, no. 1, pp. 134-152, 2005.

[34] X.Nguyen, M. J. Wainwright, and M. I. Jordan, “Nonparametric decen-
tralied detection using kernel methods,” IEEE Trans. Signal Process.,
vol. 53, no. 11, pp. 4053-4066, Nov. 2005.

[35] R. Nowak and U. Mitra, “Boundary estimation in sensor networks:
Theory and methods,” in Proc. 2nd Int. Workshop on Information Pro-
cessing in Sensor Networks, Palo Alto, CA, Apr. 22-23, 2003, pp.
80-95.

[36] R. D. Nowak, “Distributed EM algorithms for density estimation and
clustering in sensor networks,” IEEE Trans. Signal Process., vol. 51,
no. 8, pp. 2245-2253, Aug. 2003.

[37] M. A. Paskin and G. D. Lawrence, Junction Tree Algorithms
for Solving Sparse Linear Systems EECS Dep., Univ.California,
Berkeley, Tech. Rep. UCB/CSD-03-1271, 2003.

[38] M. A. Paskin, C. E. Guestrin, and J. McFadden, “A robust architecture
for inference in sensor networks,” in Proc. 4rth Int. Symp. Information
Processing in Sensor Networks, UCLA, Los Angeles, CA, Apr. 2005,
pp. 55-62.

[39] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wire-
less sensor networks,” IEEE Signal Process. Mag. , vol. 22, no. 4, pp.
54-69, Jul. 2005.

[40] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA: Morgan Kaufmann, 1988.

[41] K. Plarre and P. R. Kumar, “Extended message passing algorithm for
inference in loopy Gaussian graphical models,” Ad Hoc Networks, vol.
2, no. 2, pp. 153-169, 2004.

Cambridge, MA:



PREDD et al.: A COLLABORATIVE TRAINING ALGORITHM FOR DISTRIBUTED LEARNING

[42] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd
ed. New York: Springer-Verlag, 1994.

[43] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Regression in sensor
networks: Training distributively with alternating projections,” in
Proc. SPIE Conf. Advanced Signal Processing Algorithms, Architec-
tures, and Implementations XV, San Diego, CA, Jul./Aug. 2005, pp.
591006-1-591006-15, Invited Paper.

[44] J.B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed kernel regres-
sion: An algorithm for training collaboratively,” in Proc. 2006 IEEE
Information Theory Workshop, Punta del Este, Uruguay, Mar. 2006.

[45] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proc. 3rd Int. Symp. Information Processing in Sensor Net-
works, Berkeley, CA, Apr. 2004, pp. 20-27.

[46] M. G.Rabbat and R. D. Nowak, “Quantized incremental algorithms for
distributed optimization,” IEEE J. Sel. Areas Commun., vol. 23, no. 4,
pp. 798-808, Apr. 2005.

[47] J.B. Predd, S. R. Kulkarni, and H. V. Poor, “Consistency in models for
distributed learning under communication constraints,” /EEE Trans.
Inf. Theory, vol. 52, no. 1, pp. 52-53, Jan. 2006.

[48] C.Rudin, Stability Analysis for Regularized Least Squares Regression
2005, arXiv: ¢s.LG/0502016.

[49] B. Scholkopf and A. Smola, Learning with Kernels, 1st ed. Cam-
bridge, MA: MIT Press, 2002.

[50] S.-H. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz, “The value
of clustering in distributed estimation for sensor networks,” in Proc.
IEEE Int. Conf. Wireless Networks, Communications, and Mobile
Computing, Maui, HI, Jun. 2005, vol. 2, pp. 969-974.

[51] J. von Neumann, Function Operators II. Princeton, NJ: Princeton
Univ. Press, 1950.

[52] G. Wahba, Spline Models for Observational Data.
SIAM, 1990.

Philadelphia, PA:

Joel B. Predd (S’98-M’01-SM’02) received the B.S. degree in electrical engi-
neering from Purdue University, West Lafayette, IN, in 2001 and the M.A. and
Ph.D. degrees in electrical engineering from Princeton University, Princeton,
NJ, in 2004 and 2006, respectively.

He is a policy researcher at the RAND Corporation. His primary research
interests include information technology and information technology policy,
methodologies for combining and eliciting expert opinion, and machine
learning. Some of his recent projects at RAND have considered counter-IED
operational analysis, the relation between avionics system complexity and cost,
the implications of human decision-making for insider threats to information
systems, and new methodologies for eliciting expert opinion. He spent the
Summer of 2004 visiting National ICT Australia in Canberra.

1871

Sanjeev R. Kulkarni (M’91-SM’96-F’04) received the B.S. degree in mathe-
matics, the B.S. degree in electrical engineering, the M.S. degree in mathematics
from Clarkson University, Potsdam, NY, in 1983, 1984, and 1985, respectively,
the M.S. degree in electrical engineering from Stanford University, Stanford,
CA, in 1985, and the Ph.D. degree in electrical engineering from the Massachu-
setts Institute of Technology (MIT), Cambridge, in 1991.

From 1985 to 1991, he was a Member of the Technical Staff at MIT Lincoln
Laboratory, Lexington, MA. Since 1991, he has been with Princeton Univer-
sity, Princeton, NJ, where he is currently Professor of Electrical Engineering,
and an affiliated faculty member in the Department of Operations Research
and Financial Engineering and the Department of Philosophy. He spent Jan-
uary 1996 as a Research Fellow at the Australian National University, Canberra,
1998 with Susquehanna International Group, and Summer 2001 with Flarion
Technologies, Bridgewater, NJ. His research interests include statistical pattern
recognition, nonparametric statistics, learning and adaptive systems, informa-
tion theory, wireless networks, and image/video processing.

Prof. Kulkarni received an ARO Young Investigator Award in 1992, an NSF
Young Investigator Award in 1994, and several teaching awards at Princeton
University. He has served as an Associate Editor for the [IEEE TRANSACTIONS
ON INFORMATION THEORY.

H. Vincent Poor (S’72-M’77-SM’82-F’87) received the Ph.D. degree in elec-
trical engineering and computer science from Princeton University, Princeton,
NJ, in 1977.

From 1977 until 1990, he was on the faculty of the University of Illinois at
Urbana-Champaign, Urbana. Since 1990, he has been on the faculty at Princeton
University, where he is the Dean of Engineering and Applied Science, and the
Michael Henry Strater University Professor of Electrical Engineering. His re-
search interests are in the areas of stochastic analysis, statistical signal pro-
cessing and their applications in wireless networks, and related fields. Among
his publications in these areas are the recent books MIMO Wireless Commu-
nications (Cambridge University Press, 2007), coauthored with Ezio Biglieri,
et al., and Quickest Detection (Cambridge University Press, 2009), coauthored
with Olympia Hadjiliadis.

Dr. Poor is a member of the National Academy of Engineering, a Fellow of
the American Academy of Arts and Sciences, and a former Guggenheim Fellow.
He is also a Fellow of the Institute of Mathematical Statistics, the Optical So-
ciety of America, and other organizations. In 1990, he served as President of the
IEEE Information Theory Society, and in 2004-2007 as the Editor-in-Chief of
these TRANSACTIONS. He was the recipient of the 2005 IEEE Education Medal.
Recent recognition of his work includes the 2007 IEEE Marconi Prize Paper
Award, the 2007 Technical Achievement Award of the IEEE Signal Processing
Society, and the 2008 Aaron D. Wyner Distinguished Service Award of the IEEE
Information Theory Society.



