
IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010 355

Robust and Low Complexity Distributed Kernel
Least Squares Learning in Sensor Networks

Fernando Pérez-Cruz, Senior Member, IEEE, and Sanjeev R. Kulkarni, Fellow, IEEE

Abstract—We present a novel mechanism for consensus building
in sensor networks. The proposed algorithm has three main prop-
erties that make it suitable for sensor network learning. First, the
proposed algorithm is based on robust nonparametric statistics
and thereby needs little prior knowledge about the network and the
function that needs to be estimated. Second, the algorithm uses only
local information about the network and it communicates only with
nearby sensors. Third, the algorithm is completely asynchronous
and robust. It does not need to coordinate the sensors to estimate
the underlying function and it is not affected if other sensors in
the network stop working. Therefore, the proposed algorithm is an
ideal candidate for sensor networks deployed in remote and inac-
cessible areas, which might need to change their objective once they
have been set up.

Index Terms—Consensus, distributed learning, kernel methods,
sensor networks.

I. INTRODUCTION

S ENSORS networks are designed to infer in a decentral-
ized manner aspects of the environment in which they have

been deployed [2]. They are typically designed to solve a spe-
cific task under energy, communication, and computation con-
straints. Thereby, their communication, sensing, and inference
algorithms need to be simple and reliable. This has triggered
research in decentralized detection, estimation, and learning in
network settings. There is substantial literature in decentralized
detection for parametric models (e.g., see [3] and the references
therein). But nonparametric methods are preferred if good para-
metric models are not know and/or if conditions change over
time.

One promising approach for learning in sensor networks in-
volves message-passing algorithms [4]. Message-passing algo-
rithms were proposed for inference in graphical models, i.e.
they compute the desired conditional marginal distribution, and
they have been successfully applied in a number of applica-
tions [5], including channel coding [6]. On one hand, message-

Manuscript received November 30, 2009; revised January 07, 2010. First
published January 22, 2010; current version published February 17, 2010.
This work was supported in part by the U.S. Office of Naval Research
under Grant N00014-07-1-0555, the U.S. Army Research Office under Grant
W911NF-07-1-0185, the Spanish government (TEC2006-13514-C02-01/TCM,
TEC2009-14504-C02-01, and CSD2008-00010). The work of F. Pérez-Cruz
was supported by Marie Curie Fellowship 040883-AI-COM. This work was
presented in part at ISIT 2009 [1]. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Hsiao-Chun Wu.

F. Pérez-Cruz is with Universidad Carlos III de Madrid, Madrid, Spain
(e-mail: fernando@tsc.uc3m.es).

S. R. Kulkarni is with the Department of Electrical Engineering, Princeton
University, Princeton NJ 08540 USA (e-mail: kulkarni@princeton.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LSP.2010.2040926

passing algorithms utilize only local information and local com-
munication to produce global inference, making them ideal for
sensor network inference. On the other hand, each message has
to be particularized for each neighbor in the network, and if
the network has many cycles with low girth they usually fail
to return the correct inference [7]. Furthermore, each message
conveys information about a full probability density function
(pdf), which is a burdensome message to communicate to each
neighbor, and they need prior information about the joint pdf
with their neighboring sensors.

In this paper, we focus on nonparametric estimation, particu-
larly on kernel methods for regression [8]. Kernel methods are
universal classification and estimation algorithms. In [9], [10],
a distributed kernel least square regression algorithm was pro-
posed for inference in sensor networks. In this algorithm, each
node sends the same massage to all its neighbors, reducing the
communication burden from quadratic to linear in the number
of neighbors, and its performance increases with the connec-
tivity of the network. In this letter, we propose a variant of the
algorithm in [10] (see Section III), that makes the communica-
tion burden independent of the number of neighbors and allows
asynchronous updates. Thus, unlike the original algorithm, the
network does not need to be synchronized and each sensor can
train and transmit regardless of the status of other sensors.

II. KERNEL NONLINEAR REGRESSION

We introduce the basic concepts of nonlinear regression, be-
fore presenting the distributed nonlinear regression estimator
proposed in this paper. Given a training data set ,
where and , are drawn independently and identi-
cally distributed (i.i.d.) from , we compute the functional
relationship between the inputs, , and the output, , that min-
imizes the mean loss between the output and our predictions,

. Thereby, we minimize the risk functional:

(1)

where represents the loss that we incur when we predict
instead of . If is unknown, one approach to di-

rectly estimate the function from the data is to use the em-
pirical risk minimization principle [11]. Namely from a class of
functions, we select that minimizes the empirical risk:

(2)

which is the sampled version of (1) over our training set. If
the function class from which we choose has a finite VC
(Vapnik–Chervonenkis) dimension, as the number of samples
tends to infinity the minimum of (2) tends to the minimum of
(1) over the class of functions [11].

1070-9908/$26.00 © 2010 IEEE

356 IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010

TABLE I
DKLS ALGORITHM

Kernel methods were proposed in the 1990s to minimize (2)
using a generalized linear regressor [8]. Kernel methods replace

by , where is a nonlinear transformation to
a feature Hilbert space. They solve for as follows:

(3)

where we have added a term that penalizes large values of .
This penalty term is a Tikhonov regularizer [12] that prevents
the solution from overfitting the training data. The value of
trades off the minimization of the empirical risk and the smooth-
ness of the achieved solution.

If the loss function is convex in , the Representer
theorem [13] states that the optimal solution can be expressed
as a linear combination of the training samples:

(4)

Now replacing (4) into (3), we obtain the following optimiza-
tion problem:

(5)

where we have replaced by its inner product or
kernel and . When minimizing
(5) instead of (3), one typically selects the kernel of the non-
linear transformation without explicitly defining or computing

, which greatly simplifies obtaining nonlinear regressors.
Whether or not a given function is a valid kernel (i.e., cor-
responds to an appropriate nonlinear transformation) can be
determined using Mercer’s theorem [14].

III. DISTRIBUTED LEAST SQUARE REGRESSION

Predd et al. [10] proposed a distributed kernel least square
(DKLS) regressor for consensus building in sensor networks
with any topology and a single measurement. Their algorithm

communicates sample estimates between neighboring nodes in
the sensor network to yield a consensus about the field mea-
surements. The DKLS algorithm builds a nonlinear regression
model from the location of the nearby sensors and their mea-
surements. The algorithm iterates throughout the sensors in the
network until there is no further change in the function. Once
consensus among the sensors has been reached, it is used to es-
timate the field.

This scheme is advantageous in several ways. First, there is no
need to have a narrow parametric model for either the function to
be estimated or the noise, because the DKLS regressor employs
a robust kernel method for learning. Second, the prior knowl-
edge needed about the network is quite limited. Each sensor
only needs to know the location of its neighbors. Most of the
methods mentioned in the introduction need further information
about the network and its nodes, which make them less suitable
when such information is unavailable and cannot be gathered.
The DKLS algorithm solves a regularized least square func-
tional for each sensor:

(6)

where is the set of neighbors1 of the node , is the Re-
producing Kernel Hilbert Space to which we restrict to be a
member, are the locations of the neighboring sensors and
is the latest prediction for the field measurement at , is
the previous solution by the same sensor node. The regularizer

ensures that the new estimate for the function at sensor does
not overfit the data. Although throughout this paper we consider
only least square regression the proposed algorithm can be gen-
eralized to any other convex loss functions.

Once the algorithm obtains , it broadcasts for
and they become the new for the samples in . For

any sensor not in the values of remain unchanged for the
next iteration. Once sensor completes its training, we train a
different node and repeat the procedure until convergence.

We show the outline of the DKLS algorithm in Table I and
its convergence is analyzed in [10]. The number of iterations is
typically fixed a priori, although some criteria can be imposed
once does not change significantly from iteration to itera-
tion.

Although this algorithm is beneficial in many ways, as ex-
plained earlier and in [10], it presents a few drawbacks. After
each node completes its training, the node needs to commu-
nicate its predictions to all its neighbors. The communication
burden grows with the size of . For dense networks, com-
municating to all neighbors can be a significant load. Also,
as not all neighbors of are neighbors among themselves, the
nodes have to discard some of the received values and they need
to identify which ones.

We also need a synchronization procedure to train the nodes,
as we can only train one node at the time2. Otherwise a node
might received two or more updates for and it does not know
which one it needs to keep. Finally, if a sensor stops working the
learning procedure stops, as the next node does not receive new
predictions and it does not start its training phase until it does.

We propose a simple modification to the update rule in the
DKLS algorithm that solves most of these limitations and that

1The sensor � itself is contained in � .
2We can train several nodes at the same time, if the union of their set of neigh-

bors is the empty set. But this further complicates the synchronization proce-
dure.

PÉREZ-CRUZ AND KULKARNI: ROBUST AND LOW COMPLEXITY DISTRIBUTED KERNEL LEAST SQUARES 357

TABLE II
MODIFIED DKLS ALGORITHM

Fig. 1. In (a), we show MSE as a function of the number of iterations, and in
(b) the MSE as a function of the number of transmissions.

presents some additional advantages of its own. Instead of trans-
mitting for , we broadcast only , the pre-
diction for the current node. We show the algorithmic procedure
for the modified DKLS (m-DKSL) algorithm in Table II, where
we have placed in bold the two lines that contain the changes
with respect to the algorithm in Table I, and whose computa-
tional complexity are identical.

First, we reduce the communication burden from to 1 and
this burden does not depend on the connectivity of the network.
This reduction is significant, especially for highly connected
networks for which the transmission burden grows quadratically
with the number of sensors.

Since we broadcast only , there is no need to synchro-
nize the network. Each node decides when it wants to retrain
and it transmits when it finishes. We only need a communica-
tion protocol to avoid collisions (e.g., Aloha). Each sensor can
work with its own clock.

Finally, for our algorithm we do not need to have a prede-
fined neighborhood for each node. For far away nodes, we might
have a working connection in some instances and but not in
others. This does not require changes to the learning procedure.
The sensor has more information if it is available. Also, if a
sensor stops transmitting, its neighbors can simply stop using
that sensor’s output and this does not stop the learning proce-
dure from working.

IV. EXPERIMENTS

In this section, we empirically investigate the proposed mod-
ification for the DKLS algorithm and we compare it with the
KLS solution, which is the best solution we can expect for the
DKLS and m-DKLS regressors. We have carried out three dif-
ferent experiments. In all of them, we solve a 2-D problem in
which the nodes are randomly deployed between 1 and 1 in
both dimensions and the field measurements are give by

(7)

where is a zero-mean Gaussian variable with variance .
We have set the regularizer , as proposed in

[10], where denotes the cardinality of a set. We have used a
Gaussian nonlinear kernel:

(8)

This is a universal smooth kernel that can be used in learning
general nonlinear functions and that gives good results in many
situations. For further details about kernels and kernel design
refer to [8].

For all our experiments we have run 10 independent trials and
we have chosen the hyperparameters by cross validation [15].
We have selected from a range between and and
we have selected between 0.25 and 8 and we have set the
noise standard deviation to . In all of our experiments,
we have run the DKLS and the m-DKLS algorithms for 100
iterations and we have defined a spherical neighborhood with
the same radius for all the samples.

In Fig. 1(a), we have depicted the mean value of the mean
square error (MSE) for 400 test samples (independent from the
training set) for our ten independent trails as a function of the
iterations for the DKLS and the m-DKLS algorithms. We have
set the neighborhood radius to 0.4. We have drawn 400 training
examples and the mean number of neighbors per node is 42.78.

The DKLS algorithm seems to converge faster than the
m-DKLS algorithm, and it is slightly closer to the KLS solu-
tion when plotted as a function of the number of iterations.
However, the difference in performance (in MSE and number
of iterations) can be explained by the update rule proposed in
Section III. In these examples, the m-DKLS algorithm transmits
approximately 42 times less information between the nodes
per iteration. To provide a fairer comparison, in Fig. 1(b) we
show the MSE as a function of the number of transmissions
for both algorithms. In it we can see that for any given MSE
value the m-DKLS algorithm needs far fewer transmissions
than the DKLS algorithm. Furthermore, the m-DKLS regressor
can be trained in parallel and asynchronously, while the DKLS
algorithm needs a synchronization procedure and can only train
one node at the time. Therefore the m-DKLS algorithm can
achieve its solution in a shorter time and with less communica-
tion between nodes than the DKLS regressor. The price we pay
is a slightly increased MSE with respect to the results achieved
by the DKLS solution.

To understand the MSE gap between the DKLS and the
m-DKLS algorithms we have repeated the experiment with
different numbers of neighbors. In Fig. 2(a), we plot the results
for the experiment for 400 sensor nodes as a function of the
mean number of neighbors and in Fig. 2(b) we plot the mean
number of transmissions as a function of mean number of
neighbors.

358 IEEE SIGNAL PROCESSING LETTERS, VOL. 17, NO. 4, APRIL 2010

Fig. 2. MSE for the 100th iteration and mean number of transmissions per
node, respectively, in (a) and (b) as a function of the number of neighbors.

There is a range in which the DKLS algorithm performs
slightly better in terms of MSE than our proposed modification.
In this range, the updating rule that informs all the neighboring
nodes about its predictions works considerably better. We be-
lieve that in this range the updating rule of the DKLS algorithm,
which updates all from the same predictions instead of the
updates coming from different nodes, provides the subsequent
nodes with less noisy predictions. In any case, to get an accurate
prediction for both algorithms we need to increase the number
of nodes or the neighborhood sufficiently so both algorithms
perform equally well.

In Fig. 2(b), we can see that the number of mean transmis-
sions per node grows linearly with the number of neighbors for
the DKLS algorithm and it remains constant and equal to 1 for
the m-DKLS algorithm. In these plots we can understand the
main advantage of the m-DKLS algorithm. To get an accurate
prediction, we need a large neighborhood and a dense network.
In this case, the communication burden of the DKLS algorithm
is quite high as the communication burden grows quadratically
with the number of nodes in the network per iteration, while the
communication burden of the m-DKLS algorithm only grows
linearly with the number of nodes in the network.

Finally in the third experiment, we illustrate the robustness
of the proposed m-DKLS algorithm. We have repeated the first
experiment, but now, at iteration 50, % of the sensors fail and
the network has to adjust to this failure and continue learning
without them. If this were to happen in the original DKLS al-
gorithm, the algorithm would stop its learning procedure, once
one of the failed nodes needs to retrain.

In Fig. 3(a), we show the MSE as a function of the number of
transmission for , 3, 6, 9, and 12%. We can see that after
the node failures, we have a significant increase in the reported
MSE, but the networks recover from it and it is able to continue
learning and report performances similar to the full network.
Of course the results are not as good, because the network only
posses sensors, which limits the minimum reach-
able MSE. In Fig. 3(b), we show the degraded MSE at iteration
100, we can notice that when we lose 48 nodes, the performance
degrades less than 15%. The proposed algorithm is able not only
to learn in a completely decentralized manner, but it is able to
adjust to sensor failures.

V. CONCLUSIONS

We have presented a modification to the DKLS algorithm
from [10] that that achieves consensus with considerably less

Fig. 3. In (a), we show the MSE as a function of the number of iterations for
five different percentages (denoted by �) of nodes failing at iteration 50. In (b),
we show the MSE after 100 iterations as a function of the percentage of node
failures at iteration 50.

communication among the nodes without significantly compro-
mising error performance. The DKLS algorithm is based on ro-
bust nonlinear estimation and the m-DKLS algorithm inherits
the same characteristics. Moreover, while DKLS needs to syn-
chronize the training in the nodes to avoid inconsistencies, an
additional an ancillary advantage of the m-DKLS algorithm is
that it can operate asynchronously. The consequence is that we
can train the nodes independently at any time and they do not
need to wait for other nodes to communicate their predictions.
This advantage increases the tolerance to node failure for a net-
work that uses m-DKLS.

REFERENCES

[1] F. Perez-Cruz and S. R. Kulkarni, “Distributed least square for con-
sensus building in sensor networks,” in Int. Symp. Information Theory,
Seoul, Korea, Jul. 2009.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[3] J. Tsitsiklis, “Decentralized detection,” in Advances in Statistical
Signal Processing, H. Poor and J. Thomas, Eds. Greenwich, CT:
JAI, 1993, pp. 297–344.

[4] M. Çetin, L. Chen, J. W. Fisher, A. T. Ihler, R. L. Moses, M. J. Wain-
wright, and A. S. Willsky, “Distributed fusion in sensor networks,”
IEEE Signal Process. Mag., vol. 56, pp. 42–55, Jul. 2006.

[5] B. J. Frey, Graphical Models for Machine Learning and Digital Com-
munication. New York: MIT Press, 1998.

[6] D. J. C. MacKay, Information Theory, Inference and Learning Algo-
rithms. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[7] , M. I. Jordan, Ed., Learning in Graphical Models. Cambridge, MA:
MIT Press, 1999.

[8] B. Schölkopf and A. Smola, Learning With Kernels. Cambridge, MA:
MIT Press, 2002.

[9] J. Predd, S. Kulkarni, and H. Poor, “Regression in sensor networks:
Training distributively with alternating projections,” in SPIE Conf. Ad-
vanced Signal Processing Algorithms, Architectures, and Implementa-
tions XV, San Diego, Jul.–Aug. 2005 [Online]. Available: http://www.
tsc.uc3m.es/~fernando/Predd.pdf

[10] J. Predd, S. Kulkarni, and H. Poor, “A collaborative training algo-
rithm for distributed learning,” IEEE Trans. Inform. Theory, vol. 55,
pp. 1856–1871, Apr. 2009.

[11] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[12] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed Problems.

Washington, DC: Winston, 1977.
[13] G. S. Kimeldorf and G. Wahba, “Some results in tchebycheffian spline

functions,” J. Math. Anal. Applicat., vol. 33, pp. 82–95, 1971.
[14] J. Mercer, “Functions of positive and negative type, and their connec-

tion with the theory of integral equations,” Philos. Trans. Roy. Soc.
London, vol. 209, 1909.

[15] G. Wahba and S. Wold, “A completely automatic french curve: Fitting
spline functions by cross-validation,” Commun. Statist., ser. A4, no. 1,
pp. 257–263, 1975.

