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Probabilistic Principal Component Subspaces:
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Visualization
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Abstract—Visual exploration has proven to be a powerful tool
for multivariate data mining and knowledge discovery. Most visu-
alization algorithms aim to find a projection from the data space
down to a visually perceivable rendering space. To reveal all of
the interesting aspects of multimodal data sets living in a high-di-
mensional space, a hierarchical visualization algorithm is intro-
duced which allows the complete data set to be visualized at the
top level, with clusters and subclusters of data points visualized
at deeper levels. The methods involve hierarchical use of standard
finite normal mixtures and probabilistic principal component pro-
jections, whose parameters are estimated using the expectation-
maximization and principal component neural networks under the
information theoretic criteria. We demonstrate the principle of the
approach on several multimodal numerical data sets, and we then
apply the method to the visual explanation in computer-aided di-
agnosis for breast cancer detection from digital mammograms.

Index Terms—Computer-aided diagnosis, data visualization,
hierarchical mixture distribution, information theoretic criteria,
principal component neural network, soft clustering.

I. INTRODUCTION

A S A STEP toward understanding multivariate data sets,
cluster information reveals insight that may prove useful

in knowledge discovery since the growing volume of complex
data are often high dimensional, multimodal, and lacking in
prior knowledge [1]–[3], [6]. Several new visualization methods
have been progressively developed to model and display the
contents of the data sets [1], [3]–[6], [8], [11]. However, al-
though such algorithms can usefully characterize the content of
simple data sets, little comprehensive study has been reported
that proves adequate in the face of multimodal and high dimen-
sional data sets [1], [6], [11]. For example, a single projection
of the data onto a visualization space may not be able to capture
all of the interesting aspects of the data set. This motivates the
consideration of a hierarchical visualization paradigm involving
hierarchical statistical models and visualization spaces.
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Once we explore the possibility of using many complemen-
tary visualization subspaces, cluster decomposition and dimen-
sionality reduction are the two natural strategies. Cluster de-
composition permits the use of relatively simple models for
each of the local structures, offering greater ease of interpre-
tation as well as the benefits of analytical and computational
simplification. This philosophy for modeling complexity is sim-
ilar in spirit to thedivide-and-conquerprinciple [4], [7], [12].
On the other hand, dimensionality reduction allows better vi-
sual interpretation and less computational demand. Many re-
searchers have recently proposed various methods to improve
data visualization [3], [6]. The work most closely related to our
methodology was reported by Bishop and Tipping in [1] and
[9]. They introduce a hierarchical modeling and visualization
algorithm based on a two-dimensional (2-D) hierarchical mix-
ture of latent variable models, whose parameters are estimated
using the expectation-maximization (EM) algorithm [1], [16].
The construction of the hierarchical tree proceeds top down in
which the cluster decomposition is driven interactively by the
user, and optimal projection is determined by maximum likeli-
hood principle. There are three major potential limitations as-
sociated with the present approach [1], [11]. First, although a
probability density is defined in the data space through a latent
variable model, thepriori and order of the mixture model are
heuristically selected and an isotropic Gaussian conditional dis-
tribution is undesirably restricted, which may misrepresent the
true data structures [4], [11], [19]. The second important limi-
tation is that the parameters, including optimal projections, are
determined by maximum likelihood, and this criterion need not
always lead to the most interesting or interpretable visualization
plots. For example, alternative models may be those that opti-
mize other criteria such as the separation of clusters [1], [13].
An additional limitation of the solely user-driven scheme is its
subjective nature, which may be highly influenced by the quality
of visual interpretability. For example, alternative methods may
be those which involve both information theoretic criteria and
human input [4], [11], [22].

In this paper, we propose using standard finite normal mix-
tures (SFNM) and hierarchical visualization spaces for an ef-
fective data modeling and visualization. The strategy is that the
top-level model and projection should explain the entire data set,
best revealing the presence of clusters and relationships, while
lower level models and projections should display internal struc-
ture within individual clusters, such as the presence of subclus-
ters, which might not be apparent in the higher level models
and projections. With many complementary mixture models and
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visualization projections, each level will be relatively simple
while the complete hierarchy maintains overall flexibility yet
still conveys considerable cluster information. Based on the con-
cept of combining finite mixture modeling [16] and principal
component projection [1], [11] to guide cluster decomposition
and dimensionality reduction, the particular advantages of our
algorithm are as follows.

1) At each level, a probabilistic principle component extrac-
tion is performed to project the softly partitioned data set
down to a 2-D visualization space, leading to an effec-
tive dimensionality reduction, allowing effective separa-
tion and visualization of local clusters [1], [5], [12].

2) Learning from the data directly, information theoretic cri-
teria are used to select model structures and estimate its
parameter values, where the soft partitioning of the data
set results in a standard finite normal mixture distribution
best fitted to the data [4], [18]–[22].

3) By alternatively performing principal component projec-
tion and finite mixture modeling, a complete hierarchy
of complementary projections and refined models can
be generated automatically, allowing a new paradigm of
knowledge discovery [1]–[3], [6].

There are several major differences between our work and
the previous most related research [1], [8]–[10]. First, we con-
sider cluster decomposition and dimensionality reduction as two
separated but complementary operations, in which the criterion
used to effective dimensionality reduction is the separation of
clusters rather than maximum likelihood. The resulting projec-
tions in turn enhance the performance of cluster decomposition
at the next level [1], [13]. Second, we impose a model selection
procedure to determine the number of subclusters inside each
cluster at each level using information theoretic criteria. This al-
lows the algorithm to automatically determine whether a further
split of a subspace should continue or terminate in completing
the whole hierarchy [1], [22]. Furthermore, we develop a prob-
abilistic adaptive principal components extraction (PAPEX) al-
gorithm to estimate the top two or three principal axes [5], [12].
When the dimensionality of raw data is high, this approach is
computationally very efficient [11]. Finally, our model defines
a probability distribution in data space which naturally induces a
corresponding distribution in projection space through a Radon
transform [15]. This permits an independent procedure in de-
termining values of model parameters without concurrent es-
timation of projection matrix. In Section II, we introduce the
theory and method, and in Section III, we discuss the algorithm
to generation of such subspaces. This is further extended to im-
plement an interactive visualization environment in Section IV,
where we first illustrate the operation of the algorithm using rep-
resentative multimodal numerical data sets, and then apply the
algorithm to the visual explanation of decision making process
in computer-aided diagnosis for breast cancer detection. Finally,
extensions to the applications, and the relationships to other ap-
proaches, are discussed in Section V.

II. THEORY AND METHOD

One of the difficulties inherent in data visualization is the
problem of visualizing multidimensionality [1], [3], [6]. When

there are more than three variables, it stretches the imagina-
tion to visualize their relationships. Fortunately, in data set with
many variables, groups of variables often form clusters [10],
[12], [13]. Thus, our approach includes two major complemen-
tary components: 1) dimensionality reduction by probabilistic
principal component projection and 2) cluster decomposition by
adaptive soft data clustering.

Assume the data points in the data space come from
clusters , where is the Gaussian
kernel parameter vector of clusterin the model. Recently there
has been considerable success in using the SFNM to model the
distribution of a multimodal data set [1], [4], [7], [16], [23],
[24], such that the data distribution takes a sum of the following
general form:

(1)

where is the corresponding mixing proportion, with
and , and is the Gaussian kernel. The

problem of SFNM modeling addresses the combined estima-
tion of regional parameters and detection of structural
parameter in (1) based on the observations. One natural cri-
terion used for estimating the parameter values is to minimize
the distance between the SFNM distribution and the data
histogram . Suggested by information theory [16], [17], rela-
tive entropy (Kullback–Leibler distance) is a suitable measure,
given by

(2)

We have previously shown that distance minimization based on
(2) is equivalent to the maximum likelihood (ML) estimation
under a data independency approximation [4], and whenis
given, the ML estimate of the regional parameters can be ob-
tained using the EM algorithm [12], [16], [23].

There are three major problems associated with the current
approach. First, when the dimensionality of the data space is
high, the computational complexity of implementing the EM al-
gorithm in -space is very high. Second, the initialization of the
EM algorithm is often heuristically chosen, which may lead to
both local optima and computational complexity. Finally, since
the number of the local clusters in a particular data set is gener-
ally unknown, model selection is a prerequisite. A natural way,
with greater practical applicability, to tackle these problems is to
introduce user interaction with the system [1], [6]. Data mining
and knowledge discovery are not processes that can be orches-
trateda priori. Training algorithms and expected behavior can
be specified, but the actual learning must follow for insight and
spontaneous inspiration [6]. For example, by examining plots of
principal component space, researchers often develop a deeper
understanding of the driving forces that generated the original
data, and effortlessly grasp the general characteristics of the data
and propose an initial solution [1], [3], [6].

Principal component analysis (PCA) is an effective method
for achieving dimensionality reduction [8], [9]. For a set of ob-
served -dimensional data vectors , , the

principal axes , , are those orthogonal
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Fig. 1. Results of a demonstrative hierarchical cluster decomposition and dimensionality reduction with a simulated data set. The user initializesthe centers of
local clusters at the second level and the algorithm then completes the whole three-level hierarchy automatically.

axes onto which the retained variance under projection is max-
imal. It can be shown that the principal axes are given by
the dominant eigenvectors (i.e., maximal eigenvalues) of the
sample covariance matrix
such that and where is the eigenvalue
and is the sample mean. The vector ,
where , is thus a -dimensional re-
duced representation of the observed vector. The advantage
of PCA is twofold: the projection onto the principal subspace:
1) minimizes the squared reconstruction error [9], [12] and 2)
maximizes the separation of data clusters [13]. Although the
effectiveness of applying PCA in an unsupervised manner is
highly data dependent, our approach has a simple optimal ap-
peal in that if the local clusters are linearly separable in a 2-D
or three-dimensional (3-D) space, the principal component pro-
jections allow best separation of the clusters [13].

Suppose the data space is-dimensional. Now consider a 2-D
projection space together with a linear transfor-
mation, that maps the data space to the projection space by

where is a matrix. For a normal distribution
over the data space, using the rules of probability, a similar

reduced dimension probability distribution of the new variables
in the projection space is obtained from the convolution of

the projection model with the true distribution over data space
in the form of [1], [9], [14]. Since the
conditional distribution , where

is the delta function that and , it can

be shown that is simply defined by the Radon transform
of , i.e., [15]. Ac-
cording to the linear superposition property of Radon transform
and the projection invariant property of normal distribution, if

is a SFNM distribution, the data distribution in the projec-
tion space has a similar reduced dimension form as (1)

(3)

However, because of its global linearity, the application of
PCA is necessarily somewhat limited [9], [10]. For example, the
inherent multimodal nature of the data set may be completely
obscured when it is projected onto the lower dimensional prin-
cipal subspace. Thus, it is important to note that although the
cluster structure of the data set may be evident from the higher
dimensional plot of the raw data, it is quite conceivable to have
the intrinsic cluster structure of the data concealed after a pro-
jection in the more general case of high-dimensional data sets
[12]. An alternative paradigm is to model multimodal data set
with a collection of local linear subspaces through probabilistic
principal component analysis as shown in Fig. 1 [9]–[11]. The
method is a two-stage procedure: a soft partitioning of the data
space followed by estimation of the principal subspace within
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each partition. For the sake of computational simplicity, it is
reasonable to consider the model parameter values being esti-
mated first in the projection space and then further fine tuned in
the data space [11].

The association of a SFNM distribution with PCA offers the
possibility of being able to visualize complex data structures
through a mixture of probabilistic principal component sub-
spaces. By a simple extension of the maximum a posterior for
data classification in the standard -ary Bayes hypothesis
testing [12], [17], we can obtain a principal component pro-
jection along the desired axes onto which a particular portion
of the data set is highlighted, by weighting all of the data
points in the whole data set with their posterior probabilities
belonging to that portion. This involves a soft clustering of
the data points in which instead of any given data point being
assigned exclusively to one principal component subspace,
the responsibility for its generation is shared among all of the
subspaces.

Under the SFNM model defined by (1), the posterior
Bayesian probability of a given data point belonging to
cluster is

(4)

where and . These posterior
probabilities, together with the computational simplicity of per-
forming PCA (involving no more than finding the topeigen-
vectors of the covariance matrix of the data points) make it a
good candidate for the linear subspace in the mixture. The
principal components define the local subspace assumed for the
multimodal. The contributions of the input to thesubspace are
the activities of the weighted data points for input cluster

. This can be obtained by , where is the
weighted sample mean of cluster

(5)

The subspaces for the focused clusters are generated by a lo-
calized linear PCA such that . It is impor-
tant to understand that each component in (1) now corresponds
to an independent subspace model with parametersand ,
where . More precisely, consider
the vector to be a -dimensional re-
duced representation of-cluster focused vector , the corre-
sponding probability distribution is defined by

(6)

where the data mapping by leads to an independent Radon
transform. To interpret the corresponding set of visualization
subspaces, it may be useful to plot all of the data points on every

plot. For this, we may create a-cluster focused projection in
-subspace by plotting the vector , or display the density of

“gray-level” in proportion to the contribution which each point
has for -subspace with .

An important issue concerning unsupervised cluster decom-
position is the detection of the structural parameter, called
model selection [4], [11], [12], [16], [22]. This is indeed particu-
larly critical in real-world applications where the structure of the
data patterns may be arbitrarily complex [2]. We propose to use
two information theoretic criteria, i.e., the Akaike information
criterion (AIC) [18] and minimum description length (MDL)
[19], to guide model selection. The major thrust of this approach
has been the formulation of a model fitting procedure in which
an optimal model is selected from the several competing can-
didates such that the selected model best fits the observed data,
under Jaynes’ minimax entropy principle stated as “the param-
eters in a model which determine the value of the maximum en-
tropy should be assigned values which minimize the maximum
entropy” [20], [21]. For example, AIC tries to reformulate the
problem explicitly as anapproximationof the true structure by
the model, implying that AIC will select the model that gives
the minimum value defined by

AIC (7)

where is the maximum likelihood of the model and
is the number of free adjustable parameters in the model. From
a quite different point of view, MDL reformulates the problem
explicitly as an information coding problem in which the best
model fit is measured such that it assigns high probabilities to
the observed data while at the same time the model itself is not
too complex to describe [19]. A model is selected by minimizing
the total description length defined by

MDL (8)

where the penalty term in MDL takes into account the number
of observations. It should be pointed out that when the cluster
separability is poor, the performance of these two information
theoretic criteria may not be reliable [18], [22].

As discussed above, the SFNM model identification is first
performed over -space. However, a mapping from-space
to -space may have the intrinsic cluster structure concealed,
leading to an incorrect correspondence between (1) and (3).
We now extend the mixture representation of (1) to form a
hierarchical mixture model generally enough to be applicable
to mixtures of any parametric density model. Based on the
discussion of a two-level system consisting of a single Radon
transform at the top level and a mixture of normal distribu-
tions at the second level, we can reformulate the hierarchy to
a third level by associating a group of SFNM models with
each model in the second level, given by

(9)

where again correspond to a set of mixing proportions, one
for each , with . The formation of the hierarchy
is guided by the model selection over-subspaces, where each
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level of the hierarchy corresponds to a generic model, with lower
levels giving more focused and interpretable representations.
Once again each component in (9) now corresponds to an inde-
pendent subspace model with Radon transform

.

III. A LGORITHMS

Based on the theory behind hierarchical mixtures of prob-
abilistic principal component subspaces we have discussed
above, we now present the description of our algorithm
involving major steps of the visual hierarchy construction.
Although the tree structure of the hierarchy may be empirically
defined [1], [9], a more interesting effort is to build the tree
automatically and interactively. Guided by the two information
theoretic criteria, our algorithm progressively proceeds by
fitting a series of submodels to the clusters of the data set, in
which model order is selected automatically and algorithm
initialization is driven interactively. A schematic summary of
the algorithm is as follows.

1) Project the data set onto a single
-space, in which is determined from

the sample covariance matrix by fit-
ting a single Gaussian model to the data
set over -space.

2) Learn for , in
which the values of and are ini-
tialized by the user and estimated by
the EM algorithm over -space.

3) Calculate the values of AIC and MDL for
, and select a model

with which corresponds to the minimum
of AIC and MDL. The model parameters
obtained in -space will be used to ini-
tialize the model parameters in -space
for the learning in step 4.

4) Learn with , in which the values
of , , , and , are fine tuned
by the EM algorithm over -space.

5) Determine from or , and plot
or onto -subspaces at

the second level for visual evaluation,
for .

6) Learn by repeating steps 2–4 and
construct -subspaces at the third level
by repeating step 5, for .

7) Complete the whole hierarchy under the
information theoretic criteria, and plot
all -subspaces for visual exploration
and explanation.

Our algorithm begins by determining for the top level pro-
jection. For low dimensional data sets, we directly evaluate the
covariance matrix to find [10], [12]. For high dimensional
cases, since only the top two eigenvectors of the covariance ma-
trix of the data points are of the interest, it may be computa-
tionally more efficient to apply our previously developed APEX

neural networks [5] to find directly from the data points
(Step 1). On the basis of this single-space, given a fixed ,
the user then selects and points on the plot
corresponding to the centers of apparent clusters. The EM algo-
rithm can be applied to allow a SFNM [see (3)] to be fitted to the
projected data through the following two-stage [16], [23], [24]
form:

E-Step

(10)

M-Step

(11)

(12)

(13)

where at each complete cycle of the algorithm, we first use an
“old” set of parameter values to determine the posterior prob-
abilities using (10). These posterior probabilities are then
used to obtain “new” values , , and using
(11)–(13). The algorithm cycles back and forth until the value
of relative entropy [see (2)] reaches its minimum (Step 2). It
can be shown that, at each stage of the EM algorithm, the rel-
ative entropy decreases unless it is already at a local minimum
[16]. The model selection procedure will then determine the op-
timal number of models to fit at the next level down using
the two information theoretic criteria, where
including means, variances, correlation coeffi-
cients, and mixing factors (Step 3). The resulting points

in data space, obtained by , are then
used as the initial means of the respective submodels. Since the
mixing proportions are projection-invariant, we simply as-
sign a 2 2 unit matrix to the remaining parameters of the
covariance matrix . Once again the EM algorithm can be
applied to allow a SFNM [see (1)] with submodels to be
fitted to the data over-space. In order to obviate the need to
store all the incoming observations, and change the parameters
immediately after each data point, it may be computationally
more efficient to apply our previously developed probabilistic
self-organizing map (PSOM), an incremental EM algorithm [4],
to estimate .
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With a soft partitioning of the data set using the PSOM,
data points will now effectively belong to more than one
cluster at any given level. Thus, the effective input values are

for an independent visualization subspace
in the hierarchy. We then extend our APEX algorithm to a

probabilistic version, i.e., PAPEX [5], [25], to determine ,
summarized as follows (Step 4).

1) Initialize the feedforward weight
vector for , and the feedback
weight vector to small random values
at time . Assign a small positive
value to the learning rate parameter .

2) Set , and for compute

(14)

(15)

For large we have , where
is the eigenvector associated with

the largest eigenvalue of the covariance
matrix .

3) Set , and for compute

(16)

(17)

(18)

For large we have , where
is the eigenvector associated with

the second largest eigenvalue of the co-
variance matrix .

Having determined principal axes of the mixture model
at the second level, we will construct the visualization subspaces
by plotting each data point at the corresponding . Thus, if
one particular point takes most of the contribution for a partic-
ular component, then that point will effectively be visible only
on the corresponding subspace (Step 5).

Determination of the parameters of the models at the third
level can again be viewed as a two-step estimation problem, in
which further split of the models at the second level is deter-
mined within each of the subspaces over-space, and then the
parameters of the selected models are fine tuned over-space.
Similarly, the resulting model estimated over-space are then
used to initialize the means of the respective submodels over
-space. The corresponding can again be estimated using

the EM or PSOM algorithm [4], [16], [23] to allow a SFNM
distribution with submodels to be fitted to the data. In the
E-step, the posterior probability that data pointbelongs to sub-
model is given by

(19)

where are constants estimated from the second level of the
hierarchy. The corresponding -step includes

(20)

(21)

(22)

With the resulting in -space, we can apply the PAPEX
algorithm to estimate , in which the effective input values
are expressed by . The next level
visualization subspace is generated by plotting each data point

at the corresponding in
-subspace (Step 6).

The construction of the entire tree structure hierarchy is auto-
matically completed when no further data split is recommended
by the information theoretic criteria in all of the parent sub-
spaces (Step 7).

IV. I LLUSTRATION AND APPLICATION

We first illustrate the application of our algorithm to a simple
synthetic data set. Fig. 1(a) shows a data set consisting of 450
data points generated from a mixture of three Gaussians in 3-D
space. Each Gaussian is relatively flat (has small variance) in
one dimension. Two of these pancake-like clusters are closely
spaced, while the third is well separated from the first two. The
dimensionality of this data set has been chosen to illustrate the
basic principle of the approach. The global view of the raw data
over -space clearly suggests the presence of three distinct clus-
ters within the data.

To explore the data characteristics, we first perform a single
global PCA to project each data point onto a single-space
(top level), shown in Fig. 1(b). Both the user inspection and
the two information theoretic criteria have clearly suggested the
presence of two distinct clusters within the projected data set.
Based on a soft clustering of the data points, we then apply
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Fig. 2. Summary of final data visualization from a data set with three closely spaced clusters in the 3-D space. Both global and probabilistic principal axes are
estimated. Each of the three subspaces is plotted with weighted data inputs. The plots of “data graphics” and “data images” are also generated.

PAPEX to both clusters and generate the two corresponding in-
dependent cluster-focused subspaces (second level), as shown
in Fig. 1(c). Not to our surprise, the two information theoretic
criteria have suggested a further split of cluster 2, but not of
cluster 1. Once again by performing three independent PAPEX,
the final cluster decomposition through the cluster-focused sub-
spaces (third level) is completed shown in Fig. 1(d).

With this three-level hierarchical data exploration, the ca-
pable nature of the approach is evident as the interim two sub-
spaces (second level) only attempt to highlight the data points
which have already been modeled by their immediate ancestor
(top level). Indeed, the model fitting procedure has successfully
discovered all three data clusters. The original data clusters have
been individually colored, and it can be seen that the red, yellow,
and blue data points have been well separated and highlighted
in the third-level subspaces.

As an example of a more complex problem, we consider a
data set arising from a mixture of three closely spaced Gaus-
sians consisting of 300 data points, shown in Fig. 2(a). Once
again the original data clusters have been individually colored.
We first apply APEX to extract the global principal axis, indi-
cated by the black line in Fig. 2(a). The two information theo-
retic criteria have suggested the presence of three distinct clus-
ters, where the user then selects three initial cluster centers and
the EM/PSOM algorithm is applied to perform a soft clustering

of the data points. This leads to a mixture of three indepen-
dent probabilistic principal component subspaces whose prin-
cipal axes are separately extracted, indicated by the yellow lines
in Fig. 2(a). The contributions of each data point to these sub-
spaces, in terms of its “gray-level” , are displayed
over -space in Fig. 2(b).

Since the model selection and algorithm initialization are
performed over -space with user’s interaction, it may be
helpful to investigate the visual effectiveness of dimension-
ality reduction using the probabilistic principal component
projections [1], [6]. Based on the estimated , we have
constructed each of the cluster-focused subspaces using both
“data graphics” [e.g., in terms of ]
and “data image” [e.g., in terms of ]
techniques. As a more overlapped case, Fig. 2(c) and (d)
presents the plots of “data graphics” and “data image” from the
data set, where “data graphics” emphasizes the contribution of
a particular data point to that particular subspace concerning
its geometric distance to the center of the cluster, while “data
image” emphasizes the effectiveness of a data point reflecting
its global appearance. It can be seen that the plot of each cluster
is clean and well-shaped.

In order to quantitatively evaluate the effectiveness of our ap-
proach with user interactions [6], we apply our algorithm to a
synthesized testing data set given in Fig. 3 (upper left). Using
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Fig. 3. Summary of a demonstrative interactive user interface for model selection and principal component projections for completing the mixtures of the
subspaces.

the APEX algorithm we accurately estimate the top global prin-
cipal axis, indicated by the back line. By projecting the data
points onto a 2-D -space, all three data clusters are visible.
This plot indicates that although the second advantage of PCA
aforementioned is highly data dependent, when the data clusters
are linearly separable in a projection space, the principal compo-
nent projections allow effective separation of the clusters [13].
We then apply the two information theoretic criteria to examine
this plots. In this case, we set and .
The minima of both AIC and MDL have clearly suggested a
three-cluster data structure, as given by the curve in Fig. 3 (third
block in the second row). Thus, a two-level SFNM model may
be sufficient. We then conduct two experiments to assess the
performance of our algorithm. Since all the model parameters
are known in this case, the true top principal axes of the data
clusters have been individually calculated. First, we compare the
estimated top principal axes of the data clusters using our algo-
rithm with the corresponding true top principal axes. From the
lower right block in Fig. 3, it can be seen that the two sets of the
top principal axes are perfectly matched (blue lines). Second,
we use the global relative entropy (GRE) between the data his-
togram and the estimated SFNM model to measure the goodness
of model fitting. The numerical result through our experiments
indicates a very good performance with a GRE value of 0.008
nats.

User interaction with the algorithm is an important issue.
We have developed a user-friendly graphical interface to facil-
itate the data visualization purpose, as shown in Fig. 3. By al-
lowing the user to select the initial centers of the data clusters
demonstrated in Fig. 3, our experience has convincingly indi-
cated a great reduction of both computational complexity and
local optimum likelihood. For example, compared to the results
of model selection reported by Akaike [18] and Wax [22], the
curves of the AIC and MDL generated by our algorithm are
much more consistent and smooth, and user-initialized compu-

tation is five times (in average) faster than the random trials. It
should be pointed out that although the final SFNM model can
be estimated, the pathways of achieving cluster decomposition
may be multiple. For example, in this case the user has the flex-
ibility to select only two clusters in the second level and to fur-
ther split the “right” cluster, thus to adopt a three-level hierarchy.
We believe that this user-driven nature of the current algorithm
is also highly appropriate for the visualization context [1], [11].

Since a more convincing example should involve more clus-
ters with multiple levels, we have also applied our algorithm
to the same data set used by Bishop and Tipping [1], shown in
Fig. 4(a). This data set arises from a noninvasive monitoring
system used to determine the quantity of oil in a multiphase
pipeline containing a mixture of oil, water, and gas [1]. The ex-
periment gives 12 diagnostic measurements in total. Our interim
goal is to visualize the structure of the data in the original 12-di-
mensional (12-D) space. A data set consisting of 1000 points
is obtained synthetically and the data is expected to have an in-
trinsic dimensionality of two corresponding to the two dominant
components (e.g., oil and water). However, the presence of dif-
ferent flow configurations leads to numerous distinct clusters.
We then apply our algorithm to perform a cluster discovery. Re-
sults from partially fitting the oil flow data using a three-level
hierarchical model are given in Fig. 4. It should be pointed out
that since the “right” answer to this real-world data set is not
available, we are not able to validate this new result. However,
we believe that this example has clearly been highly successful,
note how the selected single cluster (number 2) in the upper
level plot, is discovered to be two quite separated clusters at the
second level.

As a final example, we consider the visual explanation in
computer-aided diagnosis (CAD) for breast cancer detection.
As a step toward improving the performance of CAD system,
we have put considerable efforts to conduct various studies and
develop reliable image enhancement and lesion segmentation
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Fig. 4. Summary of the interim results from the oil flow data set. The data set is living in a 12-D space with numerous local clusters. A multiple level model is
adopted with a hierarchical visual exploration for cluster discovery.

techniques [4]. More precisely, we try to make both the hidden
data patterns and the neural network “black box” to be as trans-
parent as possible to the user (e.g., radiologists and patients)
through interactive visual explanation. The clinical goal is to
eliminate the false positive sites that correspond to normal dense
tissues with mass-like appearances through featured discrimi-
nation. We adopt a mathematical feature extraction procedure
to construct our database from all the suspicious mass sites lo-
calized by the enhanced segmentation [4]. The optimal map-
ping of the data points is then obtained by learning the gener-
alized normal mixtures and decision boundaries, where a prob-
abilistic modular neural network is developed to carry out both
soft and hard clustering [4]. The joint histogram of the featured
database extracted from true and false mass regions are investi-
gated and the features that can better separate the true and false
mass sites are selected [4]. Our experience has suggested that
three imagery features, i.e., site area, compactness, and differ-
ence entropy, were having good discrimination and reliability
properties.

We then use our previously developed algorithm [4] to dis-
tinguish the true masses from false masses based on the fea-
tures extracted from the suspected regions. 150 mammograms
were selected from the mammogram database. Each mammo-
gram contained at least one mass case of varying size and loca-
tion. The areas of suspicious masses were identified following
the proposed procedure with biopsy proven results. In a typical
experiment, we have selected a 3-D feature space consisting of
compactness I, compactness II, and difference entropy. It should
be noticed that the feature vector can easily extend to higher di-
mensionality. A training feature vector set was constructed from
50 true mass ROI’s and 50 false mass ROI’s, where ROI stands
for region of the interest. In addition to the decision boundaries
recommended by the computer algorithms, a visual explanation
interface has also been integrated with hierarchical projections.
Fig. 5(a) shows the database map selection with compactness
definition I and difference entropy. Fig. 5(b) shows the database
map selection with compactness definition II and difference en-
tropy. Our experience has suggested that the recognition rate
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(a)

(b)

Fig. 5. Selected feature maps of the database in computer-aided diagnosis for breast cancer detection.

with compactness I are more reliable than that with compact-
ness II.

We have conducted a preliminary study to evaluate the per-
formance of the algorithms in real case detection, in which 6–15
suspected masses per mammogram were detected and required
further clinical decision making. We found that the proposed vi-
sual explanation approach, together with CAD system, can re-
duce the number of suspicious masses with a sensitivity of 84%
at a specificity of 82% (1.6 false positive findings per mammo-

gram) based on the database containing 46 mammograms (23 of
them have biopsy proven masses). Fig. 6 shows a representative
mass detection result on one mammogram with a stellate mass,
indicated by the arrow in Fig. 6(a). After appropriate feature ex-
traction, ten sites with brightest intensity were selected, shown
in Fig. 6(b). The featured vectors of these candidates were sub-
mitted against the estimated “probability cloud” for visual ex-
planation as a decision support, together with the opinion rec-
ommended by our CAD system. The final results indicated that
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(a) (b)

(c)

Fig. 6. Summary of the results of mass detection from a typical clinical case.

the stellate mass lesion was correctly detected and confirmed
by our experienced radiologists, shown in Fig. 6(c). It should
be pointed out that in this real-world application, a higher
recognition rate may be controlled by the domain experts in
balancing the tradeoff between thefalse positiveand false
negativerates [4].

V. DISCUSSION

We have presented a novel approach to visual explanation
for data mining and knowledge discovery, which is both sta-

tistically principled and visually effective. This method, as il-
lustrated by the well-planned simulations and pilot applications
in computer-aided diagnosis, can be very capable of revealing
hidden structure within data. It is important to emphasize that
in relation to previous work [1], [8]–[10], one interesting con-
sideration with the present algorithm is that the models are de-
termined by the information theoretic criteria, and this criterion
will not only select the most appropriate model structure, but
also allow a user-driven portfolio as a double check. This ap-
proach promotes a self-consistent fitting of the whole tree, so
that an automated procedure for generating the hierarchy be-
comes reality [1]. In addition, since we perform model selec-
tion and parameter initialization first over the projection space,
the computational complexity is greatly reduced in compared
to the maximum likelihood estimation in full dimension. Our
case study of a seven-dimensional (7-D) data set has indicated
at least a 50% reduction of the computational time. Other pos-
sible advantages include the determination of data projection
by maximum the separation of clusters which in turn optimizes
the other crucial operations such as model selection and pa-
rameter initialization [13] and data rendering algorithms which
permit user or hypothesis driven nature of the data projection
[11].

Another important consideration with the present approach
is the measure of quality in visual explanation [3]. This is not a
glamorous area, but progress in this area is eminently critical to
the future success of visual exploration [6]. What is the correct
matrix for a direct projection of a particular multimodal data
set? How effective was a particular visualization tool? Did the
user come to the correct conclusion? It may be agreeable that
the benchmark criteria in visual exploration are very different
and difficult [6]. As shared by Bishop and Tipping [1], we be-
lieve that in data visualization there is no objective measure of
quality, and so it is difficult to quantify the merit of a partic-
ular data visualization technique, and the effectiveness of such
a techniques is often highly data dependent. The possible alter-
native is to perform a rigorous psychological evaluation using a
simple and controlled environment, or to invite domain experts
to directly evaluate the efficacy of the algorithm for a specified
task. For example, we can compare the domain expert’s perfor-
mances with and without the system aid. In that case, the re-
ceiver operating characteristic (ROC) method may be used to
evaluate the performance of our algorithm when used by the ra-
diologists. While the optimality of these new techniques is often
highly data dependent, we would expect the hierarchical visu-
alization model to be a very effective tool for the data visual-
ization and exploration in many applications. We are currently
investigating further applications to the molecular classification
of cancer based on gene array data sets.
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