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Abstract. The finite model generation problem in the first-order logic is a generalization of
the propositional satisfiability (SAT) problem. An essential algorithm for solving the problem
is backtracking search. In this paper, we show how to improve such a search procedure by
lemma learning. For efficiency reasons, we represent the lemmas by propositional formulas
and use a SAT solver to perform the necessary reasoning. We have extended the first-order
model generator SEM, combining it with the SAT solver SATO. Experimental results show
that the search time may be reduced significantly on many problems.

1 Introduction

The satisfiability (SAT) problem in the propositional logic has been studied by many researchers
in the past 40 years. A number of efficient algorithms and data structures have been proposed,
which lead to powerful SAT solvers like GRASP [11], SATO [16], Chaff [9], BerkMin [4], Siege [10],
to name a few. In contrast, the satisfiability problem in the first-order logic has not received much
attention. One reason is that the problem is undecidable in general.

Since the early 1990’s, several researchers have made serious attempts to solving the finite do-
main version of the problem. More specifically, the problem becomes deciding whether the formula
is satisfiable in a given finite domain. Several model generation programs have been constructed.
Some of them are based on first-order reasoning (e.g., SATCHMO [7] and MGTP [3]); some of
them are based on constraint satisfaction (e.g., FINDER [12], FALCON [17] and SEM [18]); some
of them are based on the propositional logic (e.g., ModGen [6] and MACE [8]). These tools have
been used to solve quite a number of challenging problems in discrete mathematics [13, 8, 17].
Despite such successes, the efficiency of such tools is still not so satisfactory [13].

One proven technique in the development of SAT solvers is the intelligent backtracking with
conflict-driven learning (also called lemma learning or conflict analysis) [11, 20]. In this paper, we
study how to use lemma learning to improve the performance of first-order finite model genera-
tors. We shall discuss the related issues (e.g., how to generate and use lemmas), and report our
experiences with a prototype tool which combines SATO with SEM.

2 Background

The model generation problem studied in this paper is stated as follows. Given a set of first order
clauses and a non-empty domain, find an interpretation of all the function symbols and predicate
symbols appearing in the clauses such that all the clauses are true under this interpretation. Such
an interpretation is called a model. Note that we assume that the input formulas are all clauses.
Every variable in a clause is (implicitly) universally quantified.

Without loss of generality, an n-element domain is assumed to be Dn = { 0, 1, . . . , n−1 }. The
Boolean domain is { FALSE, TRUE }. When the involved domain is finite and the arity of each
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function/predicate is at most 2, a model can be conveniently represented by a set of multiplication
tables, one for each function/predicate. For example, a 3-element model of the clause f(x, x) = x
is like the following:

f 0 1 2
0 0 1 0
1 1 1 0
2 0 1 2

Here f is a binary function symbol and its interpretation is given by the above 2-dimensional
matrix. Each entry in the matrix is called a cell.

A model can also be represented by a set of formulas, with each formula describing a cell’s value.
To represent the main diagonal of the above matrix, we can use the following three formulas:

f(0, 0) = 0; f(1, 1) = 1; f(2, 2) = 2.

From them, we know that the clause f(x, x) = x is true and the matrix is indeed a model.
When the size of the model is fixed, we usually instantiate the input clauses and get a set of

ground clauses (i.e., clauses containing no variables). For example, if the input formula is f(x, y) =
f(y, x) and the size of the model is 2, then we get the following ground clauses:

f(0, 0) = f(0, 0); f(0, 1) = f(1, 0); f(1, 0) = f(0, 1); f(1, 1) = f(1, 1).

Let us denote such a set of ground clauses by Ψ .

3 Finite Model Searching Methods

Currently, there are essentially two classes of approaches for finding finite models of given first-
order formulas: the complete approaches and incomplete approaches. The complete approaches
often use backtrack search methods which exhaust a search space, and can show that a set of
clauses do not have models. The incomplete approaches apply local search methods and are very
attractive when the search space of the problem is too large for a backtracking based procedure and
the solution set to the problem is very dense (the n-queen problems and the randomly generated
SAT problems are such problems). Although there is no guarantee that any solution will be found
by the incomplete approaches, they can indeed solve some large scale problems which are beyond
the reach of complete search methods. However, this class of approaches is less successful for some
structured problems whose solution set is sparse. For instance, several backtracking based programs
have been reported to solve open quasigroup problems [12, 8]. However, incomplete methods have
difficulty in solving these problems.

There are two complete approaches to finding finite models of given first-order formulas. The
first approach translates the problem into a SAT problem and then uses a SAT solver to solve it.
For details about this approach, see for example, [6, 8, 5]. A model can be represented by a set
of assignments to propositional variables. Suppose there are m cells (c0, c1, . . . , cm−1) and the
domain size is n. We introduce mn propositional variables: pij (0 ≤ i < m, 0 ≤ j < n), where pij is
true if the i’th cell has the value j. While there are many high-performance SAT solvers available,
the major problem with this approach is that the translated SAT clauses for many real problems
are long and huge in numbers. In recent years, some researchers proposed the lazy translation
approaches (see for example, [2]). These methods abstract each atom of the first-order formula as
a propositional variable, use a SAT solver to find a propositional model and then check the model
against the theory. One benefit of the lazy approaches is that the number of generated propositional
formulas is reduced.

The second approach to finding first-order models is searching for the values of the cells directly.
The finite model generation problem may be viewed as a constraint satisfaction problem (CSP).
The variables of the CSP are the cell terms (i.e., ground terms like f(0, 0), f(0, 1), etc.). The
domain of each variable is Dn, and the constraints are the set of ground instances of the clauses,
namely, Ψ . The goal is to find a set of assignments to the cells (e.g., f(0, 1) = 2) such that all the
ground clauses hold.
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To solve the above problem, we can use backtracking search. We assume that, in this paper, the
procedure stops when one model is found. That is, we do not try to find all models, even though
the procedure can find all the models. The basic idea of the search procedure is roughly like the
following: Repeatedly extend a partial model (denoted by Pmod) until it becomes a complete
model (in which every cell gets a value). Initially Pmod is empty. Pmod is extended by selecting
an unassigned cell and trying to find a value for it. Of course, when no value is appropriate for the
cell, backtracking is needed and Pmod becomes smaller.

Similar to the DPLL procedure for solving SAT, the above procedure may also be depicted as
a search tree, but the tree may not be binary. Each edge of the tree corresponds to choosing a
value for some cell: ci = v. As we discussed previously, this is equivalent to assigning TRUE to the
propositional variable piv. Such a cell assignment usually results a set of further cell assignments,
e.g., assigning FALSE to piu for every u (0 ≤ u < n, u 6= v). For convenience, we call the assignment
of FALSE to piu a negative cell assignment, and the assignment of TRUE to piv a positive cell
assignment. The former excludes a value from the cell’s domain, while the latter assigns a specific
value to the cell. In the sequel, c = v represents a positive cell assignment, while c 6= v represents
a negative cell assignment.

We define the level of a rooted tree as usual: The level of the root is 0 and the level of the
children of a level n node is n + 1. The level of a cell assignment such as ci = v whose truth values
are decided at level n is n; and undefined if the truth value of this cell assignment is not decided.
That is, the level of a cell assignment is the depth of the search tree at which its truth value is
decided. For instance, if a cell is the first chosen one to be assigned, the level of that cell assignment
is 1. If, as a result of the propagation of that cell assignment, another cell cj cannot have value k,
then the level of the cell assignment cj 6= k will also be 1.

Each node of the search tree corresponds to a partial model, in which the truth values of
some cell assignments are decided. Among the truth values of these cell assignments, some are
decided by heuristic selection, while others are decided by propagation (or deduction). In the
former case, the reason for the cell assignment is defined to be the empty set. In the latter case, the
reason of that cell assignment is defined to be the set of all the cell assignments sharing a ground
input clause and it is that ground clause which forces the truth value of the cell assignment. For
instance, suppose f(g(0, 1), 2) 6= 3 is a ground clause (instantiated from some input clause) and
g(0, 1) = 2 becomes true at level 2, then the level of the cell assignment f(2, 2) 6= 3 is also 2 and
reason(f(2, 2) 6= 3) = {g(0, 1) = 2}.

4 Lemma Learning

Lemma learning has been quite successful in improving SAT algorithms [11, 16, 19]. In this paper,
we study how to incorporate such a mechanism into first-order model generators. As we know, the
leaves of the search tree can be SUCCESS (denoting that a model is found) or FAILURE (denoting
that a contradiction is encountered).

One problem with the current first-oder model searchers like SEM [18] is that, they may fail
for the same reason in more than one branches of the search tree. To avoid this problem, we add
lemma learning to the search procedure. Specifically, suppose at the leaf node L, when we evaluate
the clause ϕ1 ∈ Ψ , we find that its value is FALSE. Then we try to find a set of cell assignments
that contribute to the falsity of ϕ1. This set is denoted by FAS(L, ϕ1), where FAS stands for False
Assignment Set.

The set FAS is decided in the following way. At node L, all (sub)terms and literals in ϕ1 should
get specific values. Suppose there are l literals in ϕ1. Then FAS = FAS1 ∪ FAS2 ∪ . . . ∪ FASl,
where each FASi is the false assignment set of literal li. For each i (1 ≤ i ≤ l), the i’th literal is
a tree structure. We visit all its internal nodes recursively, recording all the cell assignments. For
example, suppose one internal node corresponds to the function symbol ‘f ’, and the node has two
children. If the current values of the three nodes are 1, 0, 2, respectively, we add the cell assignment
f(0, 2) = 1 to the set FAS.

Let us look at a slightly more complex example. Suppose the clause ϕ1 is f(f(0, 1), f(1, 1)) =
f(f(1, 0), f(0, 0)), as depicted below. Every internal node is associated with the function symbol
‘f ’, and thus it is omitted in the picture. Instead, the current value at each node is shown. From
these values, we obtain that FAS = { f(0, 1) = 1, f(1, 1) = 0, f(1, 0) = 0, f(0, 0) = 1 }.
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Suppose FAS = { x1 6= e1, x2 = e2, . . . , xk = ek }. Then we may generate the following lemma

x1 = e1 ∨ x2 6= e2 ∨ . . . ∨ xk 6= ek.

In many cases, there are more than one cell assignment of FAS whose level is at the bottom
level. To produce a high quality lemma which is more likely to eliminate futile assignments and
reduce the size of the remaining search space, we may use the following procedure to change FAS
and thus produce a different lemma from FAS.

FAS enhancement(FAS)
while TRUE do

pick ca in FAS whose truth value is decided last
if reason(ca) is empty return FAS
FAS = FAS − {ca} ∪ reason(ca)

end while

Theorem 1. (a) FAS enhancement(FAS) will terminate for any set FAS of cell assignments;
(b) Let FAS′ = FAS enhancement(FAS), where the lemma created from FAS is a valid consequence
of the input, so is the lemma created from FAS′.

5 The Modified Procedure

The lemmas are quite simple syntactically. Thus we choose to use propositional reasoning to deduce
useful information from them.

We keep two sets of clauses, one is the original input, namely Ψ , and the other is a set of
propositional clauses, denoted by Lma. The latter is a set of lemmas learned during the search.

Initially, the set Lma consists of the domain closure axioms for each cell ce:

ce = 0 ∨ ce = 1 ∨ . . . ∨ ce = n− 1

Now we modify the basic backtracking procedure. The modification lies mainly in the following
two points:

– Adding a lemma when a failure is encountered, as described previously.
– Performing propositional reasoning on Lma, and add the deduced assignments to Pmod, if no

contradiction occurs.

The above two steps involve translating certain first-order clauses to propositional clauses and vice
versa. This is straightforward as the form of the lemmas is a propositional clause.

6 Implementation and Experimental Results

Based on the above ideas, we have extended the tool SEM [18], using the SAT solver SATO [16]
to perform propositional reasoning. Table 1 compares the performances of SEM with (new) and
without (old) lemma learning on some mathematical problems, along with the experimental results
of two versions of Mace [8]. All of the problems come from TPTP [14], except for LatinZ which is
a problem in combinatorics. The experiments were carried out on a SUN UltraSparc workstation



Improving First-order Model Searching by Propositional Reasoning and Lemma Learning 297

Table 1. Performance comparison on TPTP problems

Problem Size New SEM Old SEM MACE2 MACE4

Round Time Round Time Time Time

ALG 8-1 5 22 11.34 21 12.31 12.33 27.65

BOO 8-3 5 65 5.69 65 6.10 2.50 15.76

BOO19-1 5 41 0.07 41 0.05 12.02 0.13

BOO020 12 3694 84.26 3458 75.88 140.49 >1800

BOO30-1 5 25 0.01 25 0.00 0.18 0.02

BOO32-1 8 56 0.04 56 0.07 6.03 0.09

CAT19-4 20 420 0.43 420 0.28 166.79 0.04

COL73-1 10 69 0.04 69 0.05 >600 1.23

LatinZ 6 25372 7.71 48446 10.32 559.38 12.28

LCL137-1 6 2205 0.21 608 0.06 75.42 0.08

NUM14-1 15 204 0.84 212 0.80 5.40 2.08

RNG25-8 5 857 0.32 867 0.30 31.72 0.87

RNG31-6 6 2960 1.12 3578 1.63 >1200 0.80

ROB12-1 3 32916 1.45 123458 24.64 12.03 9.01

ROB12-2 3 36762 2.26 1202834 33.77 19.02 9.96

SYN305-1 12 838 0.02 1630 0.02 >600 0.02

(ENTERPRISC 450, two 400MHz CPUs, 1GB Memory). In the table, the running time is given
in seconds, and “size” refers to the domain size. For SEM, a “round” refers to the number of times
when we try to find an appropriate value for a selected cell.

The experimental results show that introducing lemma learning increases the performance of
SEM on many problems, such as ROB (Robbins Algebra), and LatinZ. It appears that the lemma
learning rule is not so effective on easy problems (which are not the focus of this research).

For some problems like GRP and RNG, the new version of SEM can reduce the number of
branches in the search tree, but not necessarily the overall running time. There are probably
two reasons: one is the effectiveness of the current lemma learning method, and the other is the
efficiency of the implementation. In the future, we need to study the best way to find and use the
lemmas, and to use more advanced implementation techniques.

On some satisfiable problems, the new version of SEM takes longer to find a solution than the
older version. The first solution found by the new SEM may be different from the first solution
found by the old SEM.

We also tried to solve the problems by translating them into propositional clauses and then
using zChaff [9]. For some problems like COL73-1, LCL137-1 and RNG 31-6, there are too many
propositional clauses and the memory is not enough. The other problems can be solved within a
few seconds. For instance, the LatinZ problem is translated by SAGE [5] in 1.35 seconds, and then
the propositional clauses are solved by zChaff [9] in 4.65 seconds.

7 Concluding Remarks

The finite model generation problem for the first-order logic can be solved either directly (by
searching for the cells’ values) or indirectly (by translating to SAT). For some problems, the
translation approach may result in too many clauses. For the other problems, a SAT solver is
usually quite efficient. The benefits of the direct search method include that the structure (in
particular the symmetries) of the problem description can be used to reduce the search space, and
the reasoning can be performed in larger steps.

The conflict-directed lemma learning is a way of generating new valid clauses (called lemmas)
in response to a contradictory set of assignments. The new clauses eliminate futile assignments and
reduce the size of the remaining search space. This is a proven technique for the success of today’s
high performance SAT solvers. We showed in this paper that the same technique can be used for
finite model generation in first-order logic.
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We have implemented the lemma learning in the first-order model searcher SEM and used the
SAT solver SATO to handle propositional clauses produced by lemma learning. We conducted some
preliminary experiments and showed that the performance has been improved for some problems.
We observed in our experiments that the lemma learning rule may interfere with the variable
choosing heuristic [18]. We shall look into the issue in the future. We also plan to conduct more
experiments in order to have a better understanding of the new system and further improve its
performance.

In the recent years, there are many attempts to combine a SAT solver with another system, for
instance [1, 20]. The work presented in this paper is one of such examples. A systematic approach
for combining SAT solvers with other theories has been proposed in [15]. However, the proposed
approach does not address the issue of reusing existing SAT solvers for these theories. As a direction
for further research, we will study a modular interface for the required operations of a SAT solver
in such applications.
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