A SAT-based Decision Procedure for the Boolean Combination of
Difference Constraints

Alessandro Armando, Claudio Castellini,
Enrico Giunchiglia, and Marco Maratea

MRG-DIST, University of Genova
viale Francesco Causa, 13 — 16145 Genova (Italy)
{armando, drwho, enrico, marg@mrg.dist.unige.it

Abstract. The problem of solving boolean combinations of difference constrainas fke core of
many important techniques such as planning, scheduling, and mastgkich of real-time systems.
Efficient decision procedures for this class of formulas are, thexe&irongly needed. In this paper
we presenfTSAT++, a SAT-based open reasoning platform able to decide boolean comhmafio
difference constraints. Experimental results indicate Ti®AT++ outperforms its competitors both on
randomly-generated, hand-made and real world problems.

1 Introduction

Decision procedures for the boolean combination of difieeeconstraints, i.e. constraints of the form
x —y < ¢ wherez andy are variables ranging over a fixed numeric domain (typictdly integers or
the reals) and is a constant in the same domain, play a pivotal role in mamoitant techniques such
as planning, scheduling, and model-checking of real-tiggtesns. In the last 5 years, at least 6 systems
have been proposed that are able to deal with disjunctiod#ffefence constraints, 4 of which in the Al
literature and 2 in the formal verification literature, miegnthat the topic is hot and interdisciplinary.
Of these 6 systems, 5 are SAT-based or CSP-based. This niedrtbd satisfiability of a problers is
determined by

1. generating a set of propositional atoms and differenostcaints “propositionally satisfyingp, using
SAT or CSP techniques, and

2. testing the consistency of each generated set usingesthtethniques (such as, e.g., the Bellman-Ford
procedure).

As we will see, of fundamental importance is the generatiep,sand thus the specific SAT/CSP techniques
being used. Despite of this, none of these 5 systems takatdyaof the recent developments in the SAT
field.

In this paper we presefiSAT++, an open reasoning platform able to deal with propositiatains and
arbitrary conjunctions, disjunctions, and negations fiedénce constraintSLSAT++ integrates the latest
techniques proposed in the SAT field (and, in particulars¢éhproposed in [10]) and proposes new ideas
designed to take maximum advantage from the techniquesinigbd generation phase. Because of these
new methods and their fruitful integratioMSAT++ has a clear edge over its competitors: An extensive
comparative analysis, involving all the above mentionegsiesns, on randomly generated, hand-made and
real world problems, shows th&8AT++ (i) on randomly generated problems, in the hard region is at leas
2 orders of magnitude (resp. a factor of 6) faster if varialslnge over the reals (resp. the intege(&);
on instances coming from real world problems, is on averafgaat a factor of 4 faster; aridiz) on hand-
made problems, is up to 3 orders of magnitude fatan its fastest competitor in each categofhese
results are significant, especially if one considers thattrarily to some of its competitor§ SAT++ is not
tuned nor customized on any particular class of problems.

The paper is structured as follows. First, we give the défimét necessary for the rest of the paper. Then
we present the ideas implementedliBAT++ and the experimental results. Lastly, some conclusions are
drawn.

A SAT-based Decision Procedure for the Boolean Combinatfddifference Constraints 167

2 Preliminaries

Let V and P be two disjoint sets of symbols, calledriablesand propositional atomgespectively. A
difference constrainis an expression of the form— y < ¢ wherez, y € V andcis a numeric constant. An
atomis either a difference constraint or a propositional atotiteaal is either an atom or its negation.df
is an atom, them abbreviates.a and=a stands fora. Lastly, aTemporal Reasoning Proble(@RP) is a
Boolean combination of atoms. Thus, our logic is as expvesss Separation Logic [14], which allows also
for <, >, >, =, and##, but which can be easily expressed in our formalism. Anotredk-known formalism
in this area is the Disjunctive Temporal Logic, which alloardy for formulas in CNF whose literals are
restricted to be difference constraints. Formulas of Disfive Temporal Logic are called Simple Temporal
Problems. In order to define the semantics of a TRP we needdifista domainD (of interpretation) for
the variables: The possible candidates are the set of reabens or the set of integers.

An assignmenis a function mapping each variable to an elemenbpand each propositional atom to
the truth valueq L, T}. An assignment is extended to map a TRP {a_, T} by defining

—o(x—y<c¢)=Tifandonlyifo(z) —o(y) < ¢, and
— o(¢) = T (with ¢ being a TRP) according to the truth tables of propositioogid.

Let ¢ be a TRP. We say that an assignmesatisfiesp if and only if o (¢) = T. ¢ is satisfiable (consistent)
(in D) if and only if there exists an assignment (61 which satisfies it. A finite set of literals is satisfi-
able (consistent) (irD) if and only if their conjunction, as a TRP, is. Here, we deéhwhe problem of
determining whether a TRP is satisfiable or not in the fixedalarof interpretation. Clearly the problem is
NP-complete, independently from whetherepresents the integers or the reals. In the following, we wi
use the ternvaluationto mean a mapping from atoms {d_, T}, extended to arbitrary TRPs according to
the truth tables of propositional logic. We will representduation as the set of literals assigned to true. We
will refer to a satisfying assignment also as TRP-modelthaurr we restrict our attention to TRPs in CNF.
This is not a limitation since any TRP can be efficiently restlito an equi-satisfiable formula in CNF. With
this assumption, we represent a TRP as a set of clauses,laash being a set of literals.

TSAT++ is able to deal with any such TRP. The system presented ir{fi&]we will callSK), Tsat [1],
CSPi [11], andEpilitis [15] are restricted to problems in Disjunctive Temporal loo@TPs). TSAT++ is
as expressive &EP [14], and not comparable tdathSAT [2]: while MathSAT allows for arbitrary linear
constraints as atoms, it does not allow to consider the éntegis domain of interpretation.

3 SAT and CSP-based procedures

With the exception oSEP, all the other 5 systems are quite similar from an algorithpaint of view. In
fact, given a DTRp, all such systems work by

1. (generation phase) generating all the valuatjomgich satisfyp,
2. (consistency checking) for eaphtesting whether the STP corresponding:tis satisfiable.

The generation phase can be done as search in a Constragia@ain Problem (CSP) associated to the
basic temporal reasoning proble®K, CSPi, Epilitis) or by solving the corresponding propositional sat-
isfiability problem (SAT) [sat, MathSAT, TSAT++). In the first approach, search is performed in a meta-
search space in which a new variable is associated with dagke; its domain being the set of disjuncts
in the clause. In the SAT-based approach, the given TRP isaahsd into a propositional formula obtained
by substituting each distinct binary constraint with a neintroduced propositional atom.

SAT and CSP-based approaches are tightly connected, amndhieriefore not surprising that in their
basic versions and starting fronsat, all the systems perform the following steps:

1. assign to true the literals in unit clauses (a clausmisif it has cardinality 1)

2. if there are no more literals to assign according to theipus step, they branch on a litera(i.e.,
assign true td), and—upon the failure of the subsequent search—add theioegdt to the current
state and continue the search, till either a satisfyinggassént is found, or backtrack has to occur.

The similarity to the search performed by SAT solvers is appa Despite of this, none of SAT and CSP-
based systems incorporates the last advancements domeSAthfield.

YIn CSPi, Epilitis, the fact that unit clauses are assigned first is “hidden” in the heurissies for selecting the
literal to branch on. Further, these systems also emfgloyard checkingwhich removes binary constraints whose
negation is entailed by the current valuation.

168 Alessandro Armando et al.

4 TSAT++

In this section, we describe the main ideas behiSAT++, and in particular(i) the computation done
before the search starigré-processiny (i:) the way the search space is pruned after each branching node
(look-aheag, (iii) the way recovery from failures happemsak-bacR; (iv) the heuristics used for picking
the literal on which to branctbtanching rulg, and(v) the procedure used for checking the satisfiability of
a set of literals¢onsistency checking

TSAT++ employs an API-like modified version 8IMO [7] for the generating phase.

4.1 Pre-processing

One drawback of the generate-and-test approach is thadriergially) many trivially inconsistent valua-
tions can be generated and then discarded. This may hapgemi®AT and CSP-based approaches given
that, in the generation phase, there is no constraintngl#tie truth values of, e.ge,—y < 3andx—y < 5.
Thus, many trivially inconsistent valuations (e.g., with- y < 3 assigned to true and— y < 5 to false)
can be generated.

To reduce the generation of unfruitful valuations, TIBAT++ for each pairc, co of difference con-
straints in the same variables and occurring in the inpuhéda, the consistency of all possible pairs of
literals built out of them, i.e{c1,ca}, {—c1, 2}, {1, e}, @and{—cy1, —ca}, is checked, and, assuming,
e.g.,{c1, c2} is inconsistent, the claude-c;, —co } is added to the input formula before the search starts. In
our example, we would add the clauser — y < 3,z — y < 5}. This dramatically speeds-up the search,
especially on randomly generated problems. In fact, esgspan asg —y < 3 is assigned to true;,—y < 5
gets also assigned to true by unit propagation.

4.2 Look-ahead

Consider a TRR» and letS be the set of literals assigned to true so far. The idea bdbinitahead
techniques is to try to detect new literalthat areentailedby ¢ and.S, i.e., such that is satisfied by each
assignment satisfying and S. If [is one of such literal, we cafi) add! to S and (i¢) simplify ¢ on the
basis that is true. This has the beneficial effect of postponing the ¢itang phase and in doing so it may
lead to huge savings.

The basic look-ahead techniqgue common to all solvers ispmjpagation. A simple profiling of the
code of TSAT++ on real-world problems reveals that most of the CPU time énsm the generation phase
(often more than 80%, sometime close to 100%), within whidstof the time is spent by unit-propagation
(> 90% in most cases). Therefore, the choice of a good data-steuftitiunit-propagation is capital.

Two-literal watchingis an efficient data-structure for unit-propagation (seg,, ¢10]). With it, each
clause maintains two fields meant to store two “watched” ofpen not assigned) literals. Assigning an
atom and detecting new units, causes the visit of a subrlifiedhe number of occurrences of the atom)
number of clauses. Further, following [10], when backtiagkoccurs, nothing needs to be undone, and
thus backtracking takes constant time.

Notice that by using standaotunters structuress in, e.g.Tsat andMathSAT, assigning an atom and
detecting new units has a cost which is at least linear intmeber of occurrences of the atom. Furthermore
when backtracking occurs and an atom is de-assigned, eacatimm done has to be undone and this again
has a cost which is linear in the number of occurrences ofttiva.a

4.3 Look-back

If recovery from a failure is performed by simple chronolmjibacktracking, it is not infrequent to keep
exploring a possibly large subtree whose leaves are all-dedd, especially if the failure is due to some
choices performed way up in the search tree. The solutidmsgtoblem is to jump back over the choices
that do not belong to the reason for the failure. Intuitivélys is a set of literals such th& U ¢ (where¢

is the input CNF formula) is unsatisfiable, thereasonR for S is a subset ob such thay U R is unsatis-
fiable. Reasons are initialized as soon as an inconsistergtécted, and updated while backtracking. The
corresponding technique is known(@onflict-Directed) Back-jumpin@CBJ) [12]. Withlearning[3], each
reasonk computed while back-jumping is turned into the clafisgl € R} that may be added to the input
formula. Learnt clauses will prune the subsequent searabespthus avoiding the repetition of the same

A SAT-based Decision Procedure for the Boolean Combinatfddifference Constraints 169

mistakes. On the other hand, exponentially many reasonbedearnt, and each learnt clause causes an
overhead when assigning literals. In practice it is neeggsantroduce criterid:) for limiting the clauses
that have to be learnt @¥:) for removing some of them.

TSAT++ featuresl-UIP learning[10]. This technique ensures that at each decision leveddi branch
at most one clause is added to the input formula. Still, aroegptial blow-up may happen. To prevent
this in TSAT++, each added clauses is analyzed with a given periodicity(possibly) deleted. Standard
alternatives to 1-UIP learning are [3]

1. relevance-bounded learnirgf ordern (used inMathSAT with n = 3,4) and
2. size-bounded learningf ordern (used inEpilitis with n = 10).

Compared to the 1-UIP learning implemented BAT++, bothMathSAT andEpilitis may store more than
one clause per level.

4.4 Branching rule

TSAT++ uses a conflict-based heuristic, whose basic idea is tot¢kéeliteral mostly occurring in the most
recently learnt clauses. The rationale behind it is thankeelauses represent conflicts among the literals
that have emerged during the search. By satisfying theasetave avoid the repetition of the same mistake.
However, not all the learnt clauses are equally importardeéd, some of them, e.g., those discovered at
the beginning of the search, may become obsolete for guiti@gearch in the current branch. Thus, the
score associated with each literal is periodically divibg®, giving more relevance to the atoms that will
occur in the newly discovered conflicts.

Of course, such conflict-based heuristics make sense angpfeers with learningEpilitis uses a sim-
ilar heuristics. The main difference is that, Hpilitis, all conflicts are equally important, i.e., it does not
focus on the atoms in the most recently learnt claugeshSAT employs a wide variety of heuristics, some
of which specifically designed for solving a specific claspafblems. However, even thoudathSAT
uses learning and thus could employ a conflict-based hey@gtits heuristics are MOMS-based (Maxi-
mum Occurrences in clauses of Minimal Size): They give higlceres to literals in shorter clauses. These
heuristics have been mutuated from the SAT literature, aadised also bifsat. In the CSP-based sys-
tems, MOMS-based heuristics correspond to the Minimum RentValue (MRV) heuristics, used i8K
andCSPi.

4.5 Consistency checking

Consider a seb of literals. For all the procedures here considered, arceéffe method for checking the
consistency of' is needed. Moreover, whehis unsatisfiable, it is important to be able to extract a reaso
of its unsatisfiability, i.e., an unsatisfiable subSebf S. Of course, a very fast selection of such aSkeis
the setS itself. However applying this selection is seldom a goodidimces’ is to be used by the look-
back mechanisms, e.g., to backjump over irrelevant notlestHus of fundamental importance to keg&p
as “small” as possible in order to try to maximize the benefithe look-back.

We now describe how we compute such a small$etFor the time being, let us assume tltats
just a set of difference constraints, i.e., that we are fpar5TP. We will see later how to generalize the
discussion to arbitrary literals. The standard method txkhhe consistency of a STR is the Bellman-
Ford procedure (BF), see, e.g., [4]. The basic idea is tocéasowith S a constraint graphwhose nodes
are the variables it¥, and which has an edge frognto = with weightc, for each constraint — y < cin
S. Then, an extra node (the “source”) connected to all the other nodes with weipistadded, and BF is
used to compute the “single source shortest-paths” pralifethis consistent, there are no negative cycles
in the graph, and BF returns true. Otherwise, it is easy toifp&F to return a minimal (under a given set
property) subse$’ of S which is inconsistent.

The first observation is that the constraint graptbahay have several different negative cycles, each
corresponding to a minimal inconsistent subset of he standard approach amounts to stopping the search
as soon as one such negative cycle is deted®AT++ instead continues the search in order to determine
a negative cycle involving the smallest possible numberarfes (corresponding to an inconsistent set
with minimal cardinality). This modification does not altitwe overall complexity of BF, which remains
O(n x m), wheren andm are the numbers of variables and constraint$ irespectively. The second
observation is that, whefi is a valuation satisfying the input TRF, it may be the case that some of the

170 Alessandro Armando et al.

literals inS may be not necessary to satigfyln other words, there may be a litefah .S such that, for each
clauseC € ¢ with [€ C, there is another literal in S N C. If this is the case, alsgs \ {I}) U {I} satisfies
¢, and we can safely check the consistencg §f(} instead ofS. TSAT++ may recursively eliminate such
literals! from S, assuming is a difference constraint or the negation thereofSIfC S is the resulting
set, it will then check the satisfiability ¢f’. We call the above procedureduction and it may be useful
because

— if S'is satisfiable, so i$’, and we are done;

— if S is unsatisfiable, it may nevertheless be the caseShiat satisfiable, and we can still interrupt the
search and exit with a satisfying assignment;

— if S andS’ are both unsatisfiable, checking the consistency ofstead ofS’ can cause exponentially
many more consistency checks. In fact, any valuation extgngf also satisfie®, and each could be
generated and then rejected BSAT++.

The last two cases are of particular relevanc& 8AT++. In fact, because of the two-literal watching
data structure, the generated valuations satisfyiage always total. Thus, it is very often the case that huge
portions of the difference constraints$hare irrelevant for satisfying and, by removing them, we end-up
in a setS’ with many less difference constraints. Notice that the c&dn procedure is not to be applied
when early pruning is enabled. With early pruning, the hapehatS is unsatisfiable in order to stop the
search. IfS’ turns out to be satisfiable, we cannot conclude alSoaind we have to go on expandifg

So far, we have been using the assumption shista set of difference constraints. The problem is how
to deal with the negation of difference constraints. Asswaéiave—z — y < cin S. Then, such a literal
is equivalent tay — x < —c¢, and we can replace every such constrain§ iwith a constrainty — x < d,
whered is

— the maximum integer strictly smaller thatr, if variables range over the integers; and

- —c— m, otherwise. In the expression,s the number of variables ifi, andp is the maximum
number of digits appearing to the right of the decimal pagsisQiming that there are no usele®y,“in
any of the constants of the input TRP. If all the constantsraegersp = 0.

The resulting set does not contain any negation of differemmmstraint, and it is satisfiable if and only
if the initial set is (this follows from Theorem 3 in [6]).

5 Experimental Analysis

5.1 Experimental setting

In order to thoroughly comparESAT++, we have considered a wide variety of publicly availabledam,
handmade, and real-world TRPs (the classification has baesfdllowing what is standard practice in the
SAT competition [8]). As for the solvers, we have initiallprisidered all the publicly available systems,
namelySK, CSPi, Epilitis, MathSAT, SEP, and Tsat plus—of course-—FSAT++. After a first run, we
have discarde®K, because clearly non competitive with respect to the ottigash solver has been run
on all the benchmarks it can deal with, not only on the bencksnthe solver was analyzed on by the
authors. In particulaEpilitis can only handle DTPs with binary clauses and integer valaedi®es CSPi
andTsat can only handle DTPs with real valued variable&thSAT can handle arbitrary TRPs with real
valued variablesSEP andTSAT++ can handle arbitrary TRPs. Each solver has been run usirsgttiegs
or the version of the solver suggested by the authors fospleeificproblem instances. When not publicly
available, we directly asked the authors for the “bestiisgtiT SAT++ has many possibilities, also beyond
those described in this paper. Of the features describddspaper, only preprocessing, early pruning and
reduction of satisfying assignments can be enabled antldat the command line. All the experiments
were run on a Pentium IV 2.4GHz processor with 1GB of RAM. CRhktis given in seconds; timeout
was set to 1,000 seconds.

5.2 Comparative evaluation on random DTPs

We start our analysis considering randomly generated D$Rstiduced in [13] and since then used as a
benchmark in [1,11, 2, 15]. DTPs are randomly generated lygfithe numbett of disjuncts per clause,

A SAT-based Decision Procedure for the Boolean Combinatfddifference Constraints 171

DTP: 35 variables on real domain
— t

‘ T

DTP: 35 variables on integer domain

t q © = © G G - o > =)
—— TSAT++ —— TSAT++
—¥— MathSAT —— Epilits

—5- CSPi -S- SEP

— — — Tsat
|+ sEp

L L L L L L L L L L
2 4 6 8 10 12 14 2 4 6 8 10 12 14
ratio ratio

@ (b)

Fig. 1. Performances on (a) randomly generated DTPs, with 35 real vakgbles (b) randomly generated DTPs,
with 35 integer valued variables. Systems are stopped after 1000 se¢a))tb) back: satisfiability percentage.

5 Real-life benchmarks

10 oo T
—— TSAT++
—— MathSAT
—o- SEP

107 b

—
<.

ordered cpu time
%
&\3
¥
*K\’\
\3 \
I |

=
%
o8

10%°lesedy 4)
0 5 10 15 20 25 30 35 40 45 50
benchmarks

Fig. 2. Performances on real-world problems. Systems are stopped afi@is@6onds.

the numbem of arithmetic variables, a positive integBrsuch that all the constants are taken-L, L].
Then,(z) the number of clauses is increased in order to range from satisfiable to unsatisfialstances,
(1) for each tuple of values of the parameters, 100 instancegearerated and then given to the solvers,
and (i) the median of the CPU time is plotted against thén ratio. The results fok = 2, L = 100
andn = 35 are given in Figure 1: Plots (a) and (b) show the performande=n the variables are real and
integer valued respectively.

Whenm/n > 6, TSAT++ clearly outperforms the other systems: In the peak reglom sblver that
is closer toTSAT++ in this domain, namel¥pilitis, is a factor of 6 slower on 35 variables (cf. plot (b)).
This is a very positive result, taking into account tEaflitis only works on DTP withk = 2, and it has
been thoroughly tested and optimized on this type of problé&ae [15]). All the other systems are about
2 orders of magnitude slower thdiSAT++ in the peak regionTSAT++ has been run with early pruning
and pre-processing enabled, and these are fundamenttd ferformances on this test set: Without early
pruning or pre-processin@SAT++ on the peak is slower of 2, 1 order of magnitude respectivdig. fact
that these two techniques are important comes at no surpriseconfirm previous results in [1]. The new
look-ahead, heuristics and look-back mechanisms us&@®f ++ explain the 2 orders gap with respect to
Tsat. Finally, we also considered problems with= 30, 40, 45, 50: As the number of variables increases,
the performance gap betwe&8AT++ and the other systems also increases.

172 Alessandro Armando et al.

5.3 Comparative evaluation on real world problems
In this paragraph we consider

1. the 40 post-office benchmarks introduced in [2], coming iseries (consisting of 7, 9, 11, and 13
instances respectively) of increasing difficulty, and

2. the 16 hardware verification problems from [14], 9 (regmfTvhich are with real (resp. integer) valued
variables.

The post-office benchmarks represent bounded model cligfikitimed automata; the hardware verifica-
tion suite include scheduling, cache coherence protooal}-store unit and out-of-order execution prob-
lems. By looking at the results dMathSAT, SEP and TSAT++ on the post-office problems, our first
observation is thaSEP is not competitive on these problems: On 13 of the hardetrices SEP had a
segmentation fault in 11 cases, and on the other 2 hardéshoesSEP is outperformed by different orders
of magnitude byl SAT++ andMathSAT. Our second observation is tHESAT++ (with pre-processing and
assignment reduction) performs better tihdathSAT, up to a factor of 6, omach single instancé his is
particularly remarkable given that the authors have cugtedna version oMathSAT explicitly for this
kind of problems. Considering the hardware verificationbpems, all of them are easy to solve (less than
3s) for all the three solvers, except 8EP that timeouts on one instance. Of the 9 (resp. 16) rumdaih-
SAT (resp.SEP andTSAT++), only 3 take more than 0.1s. These observations are comfiop&igure 2,
which gives the overall picture of the results MathSAT, SEP andTSAT++ on the 49 instances with real
valued variables: The-axis is the number of instances solved by each solver witi@iCPU time specified
on they-axis.

| D [S|uniqug|TSAT++| SEP [SEP (no c.mMathSAT|

504 N 0 0.03 0.12 0.05
504 Y 0.01 | 0.84 0.07 TIME
1005/ N 0.01 | 0.13 1.18 0.61
1005| Y 0.04 |10.20 0.17 TIME
2505/ N 0.08 | 0.95 52.20 5.4

2505 Y 0.21 |288.3(0.77 TIME
5005/ N 0.29 | 5.92 742.99 21.22
5005/ Y 1.05 |TIME 4.85 TIME

Table 1. Diamonds problems.

5.4 Comparative evaluation on hand-made problems

Finally, we consider the “hand-made” diamonds problemmffp4]. Given a parametdp, these problems
are characterized by an exponentially larg€) number of Boolean models, some of which correspond to
TRP-models; hard instances with a unigue TRP-model canergied. A second parametgr,is used to
make TRP-models larger, further increasing the difficifgriables range over the reals.

Table 1 shows comparative results on the diamonds probl€hesthird column denotes whether the
problem has a unique TRP-model; the remaining columns sHe\¥ fBnes forTSAT++ with reduction of
assignment enabled, SEP with and without conjunction matrd MathSAT TSAT++ clearly performs
best, often by orders of magnitude; instances with a uniglgien are more difficult than non-unique ones,
as expected, except for SEP without conjunction matrix.

For this test set, of fundamental importance is the goodptag betweermT SAT++ look-back and con-
sistency checking engines. In particular, the reductiassfgnment step is fundamental: Without reduction,
TSAT++ performances are significantly worse, up to the point thablegms that are solved in 1 second,
are not solved without reduction within the time limit.

2 The configurations employed were suggested by the authors of SERahSAT.

A SAT-based Decision Procedure for the Boolean Combinatfddifference Constraints 173

6 Conclusions

In this paper we have presenfeE8AT++, an effective system for temporal reasoning that impravestate-
of-the-art both on randomly generated, real world and haade problems. This is particularly remarkable
given that some of SAT++ competitors are optimized or even customized for solvirecsjt classes of
problems.

The good performances exhibited B$AT++are due tq7) the use of new techniques, some of which
coming from the SAT literature, and:) their effective interplay.

References

1. A. Armando, C. Castellini and E. Giunchiglia. 1999. SAT-based guaces for temporal reasoning. lecture
Notes in Computer Scienceolume 1809, 97-108.

2. G. Audemard, P. Bertoli, A. Cimatti A. Kornilowicz and R. Sebastiani020A SAT based approach for solving
formulas over boolean and linear mathematical propositionBrdn. CADE

3. R.J. Bayardo, Jr. and D. P. Miranker. 1996. A complexity analysgpace-bounded learning algorithms for the
constraint satisfaction problem. Rroc. AAA| 298-304.

4. T.H. Cormen, C. E. Leiserson and R. R. Rivest. 19880oduction to AlgorithmsMIT Press.

5. R. Dechter, I. Meiri and J. Pearl. 1991. Temporal constraintordsvAtrtificial Intelligence49(1-3):61-95.

6. A. Gerevini and M. Cristani. 1997. On finding a solution in temporalst@int satisfaction problems. Rroc.
IJCAL.

7. E. Giunchiglia, M. Maratea and A. Tacchella. 2003. Look-aheatbe&-back techniques in a modern SAT solver.
Accepted to SAT.

8. D. Le Berre and L. Simon. 2003. The essentials of the SAT'03 ctitigre In Proc. SATLNCS 2919.

9. C. M .Liand Anbulagan. 1997. Heuristics based on unit propagétiosatisfiability problems. IProc. IJCAL

10. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang and S. MalikO2. Chaff: Engineering an Efficient SAT
Solver. InProc DAC

11. A. Oddi and A. Cesta. 2000. Incremental forward checkingHferdisjunctive temporal problem. Rroc. ECAI

12. P. Prosser. 1993. Hybrid algorithms for the constraint satisfagtaviem. Computational Intelligenc(3):268—
299.

13. K. Stergiou and M. Koubarakis. 1998. Backtracking algorithmsdfsjunctions of temporal constraints. In
Proc. AAAI Also Artificial Intelligence120(1):81-117.

14. O. Strichman, S. A. Seshia and R. E. Bryant. 2002. Deciding agpaformulas with SAT. IrProc. CAV LNCS.

15. I. Tsamardinos and M. Pollack,. 2003. Efficient solution techrsdoiedisjunctive temporal reasoning problems.
Artificial Intelligence 151(1-2):43-89.

