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Code becomes slower as more boxed arrays are allocated

4. Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might be really obvious. It seems that the time
taken for many operations (creating a new MutableArray , reading or modifying an
I0Ref )increases in proportion to the number of arrays in memory.

Here's the first example:

module Main
where

import Control.Monad

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)
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Computer Programming: Edit
Why are Haskell 'green threads’ more efficient/ performant
than native threads? =

Related to this paper: Page on Yale = (Mio: A High-Performance
Multicore 10 Manager for GHC)

Specifically quoting the introduction:

A naive implementation, using one

native thread (i.e. OS thread) per request would lead to the
use of a large number

of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In
contrast, Haskell threads are lightweight

threads, which can be context switched without incurring an OS
context switch and with much lower overhead.

I've heard the anecdote that Ruby threading was so slow because
Ruby used "green threads" instead of native threads e.g. like Java.
So what makes Haskell "green threads” different from Ruby "green
threads?"
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mk exit()
entry:
Hp = Hp + 16;

(if (Hp > HpLim) goto gc;)

v::164 = I64[R1] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::164;

R1 = Hp;

Sp = Sp + 8;

jump (I64[Sp + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();
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Code becomes slower as more boxed arrays are allocated

4. Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might &€ really obvidss. It seems that the time
taken for many operations (creating a new|MutableArray )reading or modifying an
I0Ref )increases in proportion to the numder of arrays ipiemory.

Here's the first example:

module Main
where

import Control.Monad

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)
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Haskell threads

+ Haskell implements user-level threads in control.Concurrent

o Threads are lightweight (in both time and space)

o Use threads where in other langquages would use cheaper constructs
o Runtime emulates blocking OS calls in terms of non-blocking ones

o Thread-switch can happen any time GC could be invoked

» forkio call creates a new thread:
forkI0 :: I0 () -= IO ThreadId -- creates a new thread
¢ A few other very useful thread functions:
throwTo :: Exception e => ThreadId -> e -= ID ()
killThread :: ThreadId -= I0 () -- = flip throwTo Threadkilled

threadDelay :: Int -> I0 () -- sleeps for # of usec
myThreadId :: I0 ThreadId
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mk exit()

set 1o zeto

entry:
Hp = Hp + 16:
if (Hp > goto gc;

v::164 = I64[R1] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::164;

R1 = Hp;

Sp = Sp + 8;

jump (I64[Sp + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();
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The Glasgow Haskell Compiler
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GHC Trac H ] .
e ;“RESQ;_E GHC Commentary: The Runtime System

GHC Home GHC's runtime system is a slightly scary beast: 50,000 lines of C and C--

seems at first glance to be completely obscure. What on earth does the

Joining In - :

Working on GHC highlights:

Mailing Lists & IRC

The GHC Team ¢ It includes all the bits required to execute Haskell code that aren't
itself. For example, the RTS contains the code that knows how to

Documentation call error , code to allocate Array# objects, and code to implerr

Status Reports

Repositories It includes a sophisticated storage manager, including a multi-gene

Building Guide with copying and compacting strategies.

Commentary

Sk e It includes a user-space scheduler for Haskell threads, together wit

— HaSkE"I_'th[r)?ja;? ac:juss multiple CPUs, and allowing Haskell threads

All Bugs separate reads.

£ Tosics here'sa b de i f i, and a dynamic linker for |

All Feature Req's T ere's a y_rte—cu e interpreter for GHCI, and a dynamic linker for

All Proposals a GHCI session.

My Tickets . . ) ) )

Tickets T Created * Heap-profiling (of various kinds), time-profiling and code coverage

By Milestone included.



Related. Work

Harris, Tim, Marlow, Simon, & Jones, Simon Peyton. (2005). Haskell on a shared-memory
multiprocessor.  Pages 49-61 of Proceedings of the 2005 acm sigplan workshop on haskell,
Haskell "05. New York, NY, USA: ACM.

Jones, Richard. (2008). Tail recursion without space leaks. Jowrnal of functional programming,
2(01), 73

Marlow, Simon. (2013). GHC commentary: The garbage collector.  Available online at
http: //hackage. haskell. org/trac/ghe /viki /Commentary/Rts/Storage /GC.

Marlow, Simon, & Jones, Simon Peyton. (2004). Extending the haskell foreign function interface
with concurrency. Pages 57-68 af: In proceedings of the acm sigplan workshop on haskell.

Marlow, Simon, Jones, Simon Peyvton, Moran, Andrew, & Reppy, John, (2001). Asynchronous
exceptions in haskell. Fages 274-285 oft Proceedings of the acm sigplan 2001 conference on
programming language design and implementation. PLDI "01. New York, NY, USA: ACM.

Marlow, Simon, Yakushev, Alexey Rodriguez, & Jones, Simon Peyton. (2007). Faster laziness using
dynamic pointer tagging. Acm sigplan notices, 42(9), 277,

Marlow, Simon, Harris, Tim, James, Roshan P, & Peyton Jones, Simon. (2008). Parallel
generational-copying garbage collection with a block-structured heap.  Pages 11-20 aof:
Proceedings of the 7th international symposium on memory management. ISMM 08, New York,
NY, USA: ACM.

Marlow, Simon, Peyton Jones, Simon, & Singh, Samam. (2009). Buntime support for multicore
Haskell. Acm sigplan notices, 449), 65.

Peyton Jones, Simon, Gordon, Andrew, & Finne, Sighjorn. (1996). Concurrent haskell. Fages 295
308 af Proceedings of the 23rd acm sigplan-sigact symposium on principles of programming
languages. POPL "96. New York, NY, USA: ACM.

Peyton Jones, Simon L., Marlow, Simon, & Elliott, Conal. (2000). Stretching the storage manager:
Weak pointers and stable names in haskell. Pages 37-58 of Selected papers from the 1t
international workshop on implementation of functional languages. IFL "99. London, UK, UK:
Springer-Verlag.

Reid, Alastair. (1999).  Putting the spine back in the Spineless Tagless G-Machine: An
implementation of resumable black-holes. Implementation of functional languages, 186199,



http://ezyang.com/jfp-ghc-rts-draft.pdf

&



