The GHC Runtime Systen
Fdward Z. \/anj

| ast time

—Eﬂay

Y ur\(\a\o\e
executable

Why learn about the RTS?

A\

=l stackoverflow

Code becomes slower as more boxed arrays are allocated

4. Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might be really obvious. It seems that the time
taken for many operations (creating a new MutableArray , reading or modifying an
I0Ref)increases in proportion to the number of arrays in memory.

Here's the first example:

module Main
where

import Control.Monad

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)

Q search

Computer Programming: Edit
Why are Haskell 'green threads’ more efficient/ performant
than native threads? =

Related to this paper: Page on Yale = (Mio: A High-Performance
Multicore 10 Manager for GHC)

Specifically quoting the introduction:

A naive implementation, using one

native thread (i.e. OS thread) per request would lead to the
use of a large number

of native threads, which would substantially degrade performance
due to the relatively high cost of OS context switches [22]. In
contrast, Haskell threads are lightweight

threads, which can be context switched without incurring an OS
context switch and with much lower overhead.

I've heard the anecdote that Ruby threading was so slow because
Ruby used "green threads" instead of native threads e.g. like Java.
So what makes Haskell "green threads” different from Ruby "green
threads?"

— nis

CLK JYM

V3 GHC/ Golang

SPnCXerN\oc\Ke)’ l:l anguag]

o
@

----------------- HsFFl.h RTS

IY\ o nui‘ske\l...
~ Storage N\anaser (Cya(Base Collection)

-~ Scheduler
— BthCon Tnter p(etQF (GHCY)
—> Dynamic Linker

—> Sc?tware T(aasacti ona\ (‘/\QMOI7’
= Prof ling | and more...]

IY\ o nufcs\r\e\ |

~ | Storage N\anaser (Cya(Base Collection)
- Schgo\u\er

— BthCon Tnter p(etQF (GHCY)
—> Dynamic Linker

—> Sc(’tware T(ac\sacti ona\ (‘/\QMOI7’
= Prof ling | and more...]

7 SJEOfage /\’\anaae,r
Ge(\e(aﬁona\ COpyiﬂj GC
Write barflecs & og omotion
Facsllel GC Cbriefly)

- Scheo\u\er
“Threads HECs
Load\ loalat\cing Bouv\d\ threads

MVars

(5arbs e Collection

Gaf bage Co\\ect'\oc\'. Bf '\QF Rev'\ew

\ \
Re‘Perence Counting l‘*

X Can’t handle cycles
PHP, Ferl, Python®

Y
Mark ad Sweep [I

X F(aamet\‘ta‘tioa
X Needs to sweep edflfe hesp

Golang : Ruby

Genefat'\onal COP)'i“f‘j Co\\ecto(‘
JVM, V8 GHC

" MOS)C oté)ects Ale yOumEJ >

—the Generstionsl Hy,oothes‘.s

Gene(at'\onal COP)'i“f‘j Co\\ecto(‘
JVM, V8 GHC

" Most okjects die young >
eSpecally in functiona) languages !

—the Generstionsl Hy,oothes‘.s

EVACUATING

voot sel

\ \
A Qs fc]l
N

From space

A
Scavense, Po'm’tef

to space

EVACUATING

l

'F('ON\ SPACo
' ‘Forward\r\g i
\ P
T to space

Scavense, Po'm’l:ef

EVACUATING

Al [Jc]

feom space

A

Scavense, Po'm’l:ef

to space

SCAVENGING

/ feom space
\

T to space
Scevenge Po‘m‘l:ef

EVACUATING

AL [8fc]

/ feom space
NN
Alc]s

N4 to space.

Scavense, Po‘m‘l:ef

SCAVENGING

Al lelel
A\
/l \

\
\

feom space

NN
A Qc s

N WV to space

Scavenge Po'm‘bef

EVACUATING

AL [8fc]

feom space

N
Alc s

N WV to space

Scevenge Po“m‘tef

SCAVENGING

AL [8fc]

feom space

N
Alc s

N to space

Scavense, Po'm’l:ef‘

N

—
Fyvacuate
Sca\/enae

NG

Affsfc]l

From space

Nursery

Generation 1

to spaces

Tenus inﬂ

From space

to spaces

Nursecy

AV

Gener ation 1

Nursecy

N A

Genecation 1

Minor GC

Gene(at'\onal COP)'i“f‘j Co\\ecto(‘

~The more garbage you have .
the faster it cuns

—[(ee Memory 1S contl3u0US

mk exit()
entry:
Hp = Hp + 16;

(if (Hp > HpLim) goto gc;)

v::164 = I64[R1] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::164;

R1 = Hp;

Sp = Sp + 8;

jump (I64[Sp + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();

gt dt ity ?

— Write Barriers

= Pealle] Ga(bage Collection

\

Nursecy

/\/fk

Gener ation 1

Nursecy

/\/?K

Gener ation 1

\

M"'\ 3}‘0

Ae 3‘5(1

Nursecy

/\/?k

Gener ation 1

Minor GC

Mutable Set

Z

Nursecy

/\/?K

Gener ation 1

\/\/hy IS S@QK&JUOYG\ GC
had. ¢ ThiS.

\/\/hy IS S@Qr&tiona\ GC
hard in Java ¢ This.

R u(ijcy to the rescue

—Mutation is rare

- _:ORQ‘FS e slow aayway

"Laz'lness S 4 Specia\ kmo\
of mutation

Nursecy

Gener ation 1

Nursecy
Generat'\or\ 1

imnutable now

(R omstion

Nursecy

Gener ation 1

£

imnutable now

Facsllel GC

:0\682 SPIH: }‘\eap to blocks,
and Parsllelize the Scavqu'mﬂ process

N
N\
\

GC thread 1

CC thrad 2L

/

//
N N

NN AN
GC thread 1 GC thread 2

Needs synchroni zation

\F A is imutable...

/

/
/

/N v// /'\
0 | REmEan
GC thead 1 GC thrsd L

...0bsewationally indistinguishable [

R
(

A\

=l stackoverflow

Code becomes slower as more boxed arrays are allocated

4. Ininvestigating some weird benchmarking results in a library, | stumbled upon some

22 behavior | don't understand, though it might &€ really obvidss. It seems that the time
taken for many operations (creating a new|MutableArray)reading or modifying an
I0Ref)increases in proportion to the numder of arrays ipiemory.

Here's the first example:

module Main
where

import Control.Monad

import qualified Data.Primitive as P
import Control.Concurrent

import Data.IORef

import Criterion.Main

import Control.Monad.Primitive(PrimState)

Sokeo\u\e("

Haskell threads

+ Haskell implements user-level threads in control.Concurrent

o Threads are lightweight (in both time and space)

o Use threads where in other langquages would use cheaper constructs
o Runtime emulates blocking OS calls in terms of non-blocking ones

o Thread-switch can happen any time GC could be invoked

» forkio call creates a new thread:
forkI0 :: I0 () -= IO ThreadId -- creates a new thread
¢ A few other very useful thread functions:
throwTo :: Exception e => ThreadId -> e -= ID ()
killThread :: ThreadId -= I0 () -- = flip throwTo Threadkilled

threadDelay :: Int -> I0 () -- sleeps for # of usec
myThreadId :: I0 ThreadId

StoRun
RN

scheduler Haskell code

N

Sty Return

mk exit()

set 1o zeto

entry:
Hp = Hp + 16:
if (Hp > goto gc;

v::164 = I64[R1] + 1;

I64[Hp - 8] = GHC Types I con info;
I64[Hp + 0] = v::164;

R1 = Hp;

Sp = Sp + 8;

jump (I64[Sp + 0]) ();

gc: HpAlloc = 16;
jump stg gc enter 1 ();

Av\ajto w\\/ 01D A H\rea&

— culfent SP
% _Stop_thlead

stg.T30_info | S st

StaCKObJ .“_—}

. — curfent, SP
sta_under-flow flame
‘FOO..\A‘FO
(heap allocated) | 2%
|

Smg\e—ﬂ\(e3deon opeation

=
-
=

J

thesd,

clueu.e

N| heap overflow ¢
. Y ?
timeC @
_ B &
=5 T‘ |

oot set!

Scheduler | oop

MuMi-theaded opetation

Scheduler

|oops

(HEC)

OS
threads

~-N3

/\

—

'Y
>
_/

X

>
_/

i)

FCs are locks

\

N

Work imbalance

i <
o)
-
_/

Work imbalance

'Y
o)
-
_/

Work imbalance

\/\/O(K imbalance —n\(oug\'\pu‘t Fi(S't.l

vV

m 5
a1

I
ol
-—
_/

-—
_/

Bound. theads

e

- ﬁ*
/)

Bound. theads

e

Bound. theads

? T80

-l
S

Bound. theads

head
tail
valune

MVars

MVars

Blocked on MVar?
—9—
= 1 blocked on MVar
Yun queue
quene . ?
O
Re

Fun fact: |f the MVar becomes Sfarbase’ the
‘Uﬂ(ea&s in its queue die oo

Scheduler in a nutshell

SN\&H |I\I+,I8

-—cea

Eve(yﬂ\}ng ives o the heap

, StacK S

Put(ify = most code thresdsate
by default

I HsFFLh RTS

The Glasgow Haskell Compiler

Login | Help/fGuide

m Timeline Roadmap Browse Source Vie

: Commentary / Rts

GHC Trac H] .
e ;“RESQ;_E GHC Commentary: The Runtime System

GHC Home GHC's runtime system is a slightly scary beast: 50,000 lines of C and C--

seems at first glance to be completely obscure. What on earth does the

Joining In - :

Working on GHC highlights:

Mailing Lists & IRC

The GHC Team ¢ It includes all the bits required to execute Haskell code that aren't
itself. For example, the RTS contains the code that knows how to

Documentation call error , code to allocate Array# objects, and code to implerr

Status Reports

Repositories It includes a sophisticated storage manager, including a multi-gene

Building Guide with copying and compacting strategies.

Commentary

Sk e It includes a user-space scheduler for Haskell threads, together wit

— HaSkE"I_'th[r)?ja;? ac:juss multiple CPUs, and allowing Haskell threads

All Bugs separate reads.

£ Tosics here'sa b de i f i, and a dynamic linker for |

All Feature Req's T ere's a y_rte—cu e interpreter for GHCI, and a dynamic linker for

All Proposals a GHCI session.

My Tickets . .)))

Tickets T Created * Heap-profiling (of various kinds), time-profiling and code coverage

By Milestone included.

Related. Work

Harris, Tim, Marlow, Simon, & Jones, Simon Peyton. (2005). Haskell on a shared-memory
multiprocessor. Pages 49-61 of Proceedings of the 2005 acm sigplan workshop on haskell,
Haskell "05. New York, NY, USA: ACM.

Jones, Richard. (2008). Tail recursion without space leaks. Jowrnal of functional programming,
2(01), 73

Marlow, Simon. (2013). GHC commentary: The garbage collector. Available online at
http: //hackage. haskell. org/trac/ghe /viki /Commentary/Rts/Storage /GC.

Marlow, Simon, & Jones, Simon Peyton. (2004). Extending the haskell foreign function interface
with concurrency. Pages 57-68 af: In proceedings of the acm sigplan workshop on haskell.

Marlow, Simon, Jones, Simon Peyvton, Moran, Andrew, & Reppy, John, (2001). Asynchronous
exceptions in haskell. Fages 274-285 oft Proceedings of the acm sigplan 2001 conference on
programming language design and implementation. PLDI "01. New York, NY, USA: ACM.

Marlow, Simon, Yakushev, Alexey Rodriguez, & Jones, Simon Peyton. (2007). Faster laziness using
dynamic pointer tagging. Acm sigplan notices, 42(9), 277,

Marlow, Simon, Harris, Tim, James, Roshan P, & Peyton Jones, Simon. (2008). Parallel
generational-copying garbage collection with a block-structured heap. Pages 11-20 aof:
Proceedings of the 7th international symposium on memory management. ISMM 08, New York,
NY, USA: ACM.

Marlow, Simon, Peyton Jones, Simon, & Singh, Samam. (2009). Buntime support for multicore
Haskell. Acm sigplan notices, 449), 65.

Peyton Jones, Simon, Gordon, Andrew, & Finne, Sighjorn. (1996). Concurrent haskell. Fages 295
308 af Proceedings of the 23rd acm sigplan-sigact symposium on principles of programming
languages. POPL "96. New York, NY, USA: ACM.

Peyton Jones, Simon L., Marlow, Simon, & Elliott, Conal. (2000). Stretching the storage manager:
Weak pointers and stable names in haskell. Pages 37-58 of Selected papers from the 1t
international workshop on implementation of functional languages. IFL "99. London, UK, UK:
Springer-Verlag.

Reid, Alastair. (1999). Putting the spine back in the Spineless Tagless G-Machine: An
implementation of resumable black-holes. Implementation of functional languages, 186199,

http://ezyang.com/jfp-ghc-rts-draft.pdf

&

