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Abstract. In this note, a new proof of the fact that the variety of Hilbert algebras is a

congruence-distributive variety using a result from I. Chajda and E. Horváth [Acta Sci.

Math. (Szeged) 68 (2002), 29–35] is determined. In addition, the relationship between

implicative semilattices, (H)-Hilbert algebras and Hilbert algebras with infimum is

described. Finally, a representation theorem for (H)-Hilbert algebras is established

which is extended to a duality for finite (H)-Hilbert algebras.
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1. Preliminaries

A. Monteiro in [17] (see also [18]) called Hilbert algebra a triple 〈A,→, 1〉 where
A is a nonempty set,→ is a binary operation on A, 1 is an element of A such
that the following conditions are satisfied for every p, q, r ∈ A:

(M1) p→(q→p) = 1,

(M2) (p→(q→r))→((p→q)→(q→r)) = 1,

(M3) p→1 = 1,

(M4) p→q = 1 and q→p = 1 imply p = q.
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In 1960, L. Iturrioz proved that (M3) follows from (M1) and (M4) and that
(M1), (M2) and (M4) are independent. Besides, that same year A. Diego, an-
swering a problem posed by A. Monteiro, obtained an equational definition of
these algebras.

It is worth mentioning that A. Diego was one of the authors who made a
fundamental contribution to the development of the theory of these algebras
and his conclusions may be consulted in [10] (see also [9]). Later on, many
articles have been published about this class of algebras, some of them can be
consulted in [2], [3], [6], [11], [18] and [20].

In what follows, we shall denote by H the variety of Hilbert algebras.

The result we shall indicate in (H1) is widely used in the theory of Hilbert
algebras and according to what is noted in [17], it was L. Henkin who established
it in [13].

(H1) For every A ∈ H the relation ≤ defined by the prescription p ≤ q if and
only if p→q = 1 is a partial order on A; with respect to this ordering 1 is
the last element of A.

Most of the results established in [17] were in fact never published, but some
of them were obtained independently by other authors many years later. To the
best of our knowledge, A. Monteiro was the first one to prove, among others,
the following properties which are necessary for our paper:

(H2) Let A ∈ H and ConH(A) be the set of H−congruences of A. Then
ConH(A) = {R(D) : D ∈ D(A)}, where R(D) = {(x, y) ∈ A × A : x→
y, y→x ∈ D} and D(A) is the family of all deductive systems of A, (i.e.
the subsets D of A such that 1 ∈ D and if x, x→y ∈ D then y ∈ D).

(H3) Let A ∈ H and X ⊆ A. Then the deductive system generated by X,
denoted by [X], is

(i) {1}, if X = ∅,
(ii) {b ∈ A : there are x1, . . . , xn ∈ X such that x1→ (x2→ ( . . .→ (xn→

b) . . .)=1}, if X 6= ∅.

Furthermore, the deductive system generated by one element a ∈ A called
a principal deductive system is denoted by [a), and it is easy to verify that
[a) = {x ∈ A : a ≤ x}.

Besides, A. Monteiro introduced, among many others, the following notion:

(H4) A proper deductive system D of a Hilbert algebra A is irreducible if for
any D1, D2 ∈ D(A) such that D = D1 ∩D2, then D = D1 or D = D2.
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Later on, in 1999 I. Chajda and H. Halas̆ [6] introduced the notion of ideal
on Hilbert algebras as follows:

(H5) A nonempty subset J of a Hilbert algebra A is an ideal if

(I1) 1∈J ,

(I2) a∈A and b∈J imply a→b∈J ,

(I3) a∈A and u, v∈J imply (u→(v→a))→a∈J .

and these authors also proved

(H6) ConH(A)={T (J) : J ∈ J (A)}, where T (J) = {(x, y) ∈ A×A : x→y, y→
x ∈ J} and J (A) is the family of all ideals of A.

That same year, W. Dudek proved that in Hilbert algebras the notions of
ideals and deductive systems coincide ([11, Theorem 1]). Besides, the character-
ization of H−congruences obtained in [11, Theorem 2] is another proof of the
results indicated in (H2).

On the other hand, D. Busneag [2] proved that if A ∈ H and D1, D2 ∈ D(A)
then,

(H7) D1 ∨ D2 = {x ∈ A : there are x1, . . . , xn ∈D1 such that (x1, . . . , xn;x) ∈
D2},

where (x1, . . . , xn−1;xn) =

{
xn if n = 1

x1→(x2, . . . , xn−1;xn) if n > 1
.

(H8) the relative pseudocomplement of D1 with respect to D2 is

D1 ⇒ D2 = {x ∈ A : [x) ∩D1 ⊆ D2}.

2. Distributivity of Congruences in Hilbert Algebras

The fact that the variety of Hilbert algebras is a congruence distributive variety
has been shown, in some way since 1961 because by (H2) the congruences are
determined by the deductive systems and A. Diego [9] proved

(H9) Let A ∈ H. Then the ordered set (D(A),⊆) is a complete distributive
lattice where for any D, D′ ∈ D(A) the infimum and the supremum of
{D, D′} is D∩D′ and [D∪D′] respectively. More precisely, in 〈D(A),∩,∨〉,
the infinite distributive law D ∩ ∨

i∈I

Di =
∨
i∈I

(D ∩Di) holds true.
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On the other hand, W. Blok and D. Pigozzi in [1] determined the ternary
term p(x, y, z) = (x→ y)→ ((y → x)→ z) for Hilbert algebras, from which it
follows that H has equationally definable principal congruences and therefore,
it is a congruence-distributive variety.

Besides, I. Chajda in [5] proved by a different procedure as the one indicated
in (H9) that the lattice of deductive systems of a Hilbert algebra is distributive.

Next, we shall indicate a different proof that the lattice ConH(A) is distrib-
utive, in which we shall use the notion of triangular scheme introduced by I.
Chajda and E. Horváth in [7].

In what follows, n is a positive integer and for any congruence δ we shall
denote δ1 = δ and δn+1 = δn ◦ δ, where ◦ means the composition of relations.

In [7] the following statements were established:

(ChH1) Weak Triangular Principle. An algebra A = 〈A,F 〉 satisfies the Weak
Triangular Principle for n if for any x, y, z ∈ A and every α, β, γ ∈ ConA
with α ∩ β ⊆ γ and Λn = (γ ◦ α ◦ γ)n, the following implication holds:

(Pn) (x, z) ∈ α, (z, y) ∈ β, (x, y) ∈ Λn imply (z, y) ∈ γ.

In addition, A satisfies the Weak Triangular Principle if (Pn) holds true
for all n.

(ChH2) An algebra A satisfies the Weak Triangular Principle if and only if ConA
is distributive.

Theorem 2.1 will allow us to conclude that H is congruence-distributive.

Theorem 2.1. Let A ∈ H. Then A satisfies the Weak Triangular Principle.

Proof. Let α, β, γ ∈ Con(A), and

(1) α ∩ β ⊆ γ, (2) Λn = (γ ◦ α ◦ γ)n.

Suppose

(3) (x, z) ∈ α, (4) (z, y) ∈ β, (5) (x, y) ∈ Λn.

Then, taking into account the definition of supremum between equivalence
relations, we have

(6) α ◦ Λn ⊆ α ∨ γ,

and therefore,
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(7) (z, y) ∈ α ∨ γ. [(3), (5), (6)]

On the other hand, from (H2) there are Dα, Dβ , Dγ ∈ D(A) such that

(8) α = R(Dα), (9) β = R(Dβ), (10) γ = R(Dγ).

Then,

(11) (z, y) ∈ R(Dα ∨Dγ), [(7), (8), (10)]

(12) z→y, y→z ∈ Dα ∨Dγ , [(11), (H2)]

(13) there are a1, . . . , al ∈ Dγ such that (a1, . . . , al; z→y) ∈ Dα, [(12), (H7)]

(14) there are b1, . . . , bt ∈ Dγ such that (b1, . . . , bt; y→z) ∈ Dα. [(12), (H7)]

Besides,

(15) z→y, y→z ∈ Dβ , [(4), (9), (H2)]

(16) (a1, . . . , al; z→y) ∈ Dα ∩Dβ , [(13), (15)]

(17) (b1, . . . , bt; y→z) ∈ Dα ∩Dβ , [(14), (15)]

(18) (a1, . . . , al; z→y) ∈ (Dα ∩Dβ) ∨Dγ , [(13), (16)]

(19) (b1, . . . , bt; y→z) ∈ (Dα ∩Dβ) ∨Dγ . [(14), (17)]

Since

(20) a1, . . . , al, b1, . . . , bt ∈ (Dα ∩Dβ) ∨Dγ , [(13), (14)]

we deduce that

(21) z→y, y→z ∈ (Dα ∩Dβ) ∨Dγ , [(18), (19), (20), (H2)]

(22) (z, y) ∈ (α ∩ β) ∨ γ, [(21), (H2)]

(23) (z, y) ∈ γ. [(22), (1)]

Then, A verifies (Pn) for all n, ending the proof.

3. On (H)-Hilbert Algebras

In this section, we shall firstly indicate the relationship between implicative
semilattices, Hilbert algebras with infimum and (H)-Hilbert algebras. Next, we
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shall determine a representation theorem for (H)-Hilbert algebras which can be
extended to a duality for finite algebras.

Recall that an implicative semilattice is an algebra 〈A,→,∧, 1〉 of type (2, 2, 0)
such that the reduct 〈A,∧, 1〉 is a meet–semilattice with last element 1, which
satisfies the following property:

(B) x ∧ y ≤ z ⇔ x ≤ y → z. (see [19])

This notion was introduced by H.B. Curry in [8, page 66] as implicative
logical group whereas A. Monteiro in [16] called them implicative systems. For
simplicity, in what follows, we call them IS−algebras.

It was determined that the class of IS−algebras form a variety in [16]. More
precisely, it was proved that an IS−algebra is an algebra 〈A,→,∧, 1〉 of type
(2, 2, 0) which satisfies the following identities:

(He1) x→x = 1,

(He2) (x→y) ∧ y = y,

(He3) x ∧ (x→y) = x ∧ y,

(He4) x→(y ∧ z) = (x→z) ∧ (x→y).

It is a well-known result that the reduct 〈A,→, 1〉 of an IS−algebra is a
Hilbert algebra and since the reduct 〈A,∧, 1〉 is a meet–semilattice with last
element 1, we conclude that IS−algebras are Hilbert algebras with infimum.

In [12], the authors realized that Hilbert algebras with infimum are not the
same as IS−algebras. Then they introduced the notion of iH−algebras as alge-
bras 〈A,→,∧, 1〉 of type (2, 2, 0) such that the reduct 〈A,→, 1〉 is a Hilbert algebra
and the following identities are fulfilled:

(iH1) x ∧ (y ∧ z) = (x ∧ y) ∧ z,

(iH2) x ∧ x = x,

(iH3) x ∧ (x→y) = x ∧ y,

(iH4) (x→(y ∧ z))→((x→z) ∧ (x→y)) = 1,

and they proved that the notions of iH−algebras and Hilbert algebras with
infimum are equivalent.

On the other hand, (H)-Hilbert algebras are introduced in [14] as Hilbert
algebras A which satisfy the following condition:
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(H) the set A(a, b) = {x ∈ A : a → (b → x) = 1} has least element for all
a, b ∈ A, and this element is denoted by a + b.

M. Kondo in [15] proved that IS−algebras are the same as (H)-Hilbert alge-
bras where a + b is the infimum of {a, b}. It is noteworthy to remark that the
result is correct although the proof is incomplete. In fact, this author proved
that (H)-Hilbert algebras are Hilbert algebras with infimum. Then, taking into
account [16] to complete the proof it only remains to prove (B). Indeed, from
x ∧ y ≤ z, it follows x→ (y→ (x ∧ y)) ≤ x→ (y→z). Since in every (H)-Hilbert
algebra x→ (y→ (x ∧ y)) = 1 we have that x→ (y→ z) = 1. The converse is
immediate by (iH3).

On the other hand, in [12, Lemma 2.2], it was proved that iH−algebras which
satisfy the additional identity

(iH5) x → (y → (x ∧ y)) = 1,

are IS−algebras. The proof is based on the above mentioned Kondo’s result,
although the same proof can be obtained without it.

It is worth mentioning that the converse of this statement also holds. That
is, IS−algebras coincide with iH−algebras which verify (iH5).

Next, we shall describe a representation theorem for (H)-Hilbert algebras and
Hilbert algebras with infimum.

In [10] it was proved that Hilbert algebras can be represented by a subalgebra
of the Hilbert algebra of all open subsets of a topological space following an
analogous reasoning to the one used by M. Stone [21] for Heyting algebras. Later
on, S. Celani in [4] obtained a new representation theorem for these algebras by
means of posets.

Let (X,≤) be a poset. We shall denote by Sc(X) the set of all increasing
subsets of X, where Y ⊆ X is increasing if Y = {x ∈ X : y ≤ x for some y ∈ Y }.

Now, we shall prove that Hilbert algebras described in [4] are (H)-Hilbert
algebras. More precisely, we have the following proposition.

Proposition 3.1. Let (X,≤) be a poset. Then 〈Sc(X),⇒, X〉 is an (H)-Hilbert
algebra where the implication operation is defined as in (H8).

Proof. From [4] it only remains to prove condition (H). If U, V ∈ Sc(X), then
U∩V ∈ Sc(X). Besides, for all W ∈ Sc(X) (1) U ⇒ (V ∩W ) = (U ⇒ V )∩(U ⇒
W ) holds true. Indeed, let p ∈ (U ⇒ V ) ∩ (U ⇒ W ), then by (H8) we have
[p) ∩ U ⊆ V and [p) ∩ U ⊆ W . Therefore, [p) ∩ U ⊆ V ∩W and so we conclude
that p ∈ U ⇒ (V ∩W ). The other inclusion follows immediately. On the other
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hand, by (1) and properties of Hilbert algebras, we have U ⇒ (V ⇒ (U ∩ V )) =
X. Therefore, U ∩ V ∈ Sc(X)(U, V ). Furthermore, if W ∈ Sc(X)(U, V ) then
X = (U ∩V ) ⇒ (U ⇒ (V ⇒ W )) = ((U ∩V ) ⇒ U) ⇒ ((U ∩V ) ⇒ (V ⇒ W )) =
((U ∩ V ) ⇒ V ) ⇒ ((U ∩ V ) ⇒ W ) = (U ∩ V ) ⇒ W . Hence, U ∩ V is the least
element of Sc(X)(U, V ).

Proposition 3.1 and [4] allow us to obtained a representation theorem for
(H)-Hilbert algebras.

Theorem 3.2. If A is an (H)-Hilbert algebra, then A is isomorphic to a subalgebra
of Sc(X(A)) where X(A) is the set of all irreducible deductive systems of A.

Proof. From [4] the application β : A −→ Sc(X(A)) definided by the prescription
β(a) = {P ∈ X(A) : a ∈ P} is the desired immersion.

We remark that Theorem 3.2 is also valid for Hilbert algebras with infimum.

Theorem 3.3. If A is a finite (H)-Hilbert algebra, then A ' Sc(X(A)).

Proof. The proof is a consequence of the fact that each finite (H)-Hilbert algebra
can turn into a Heyting algebra.

Remark 3.4. Theorem 3.3 is not true for finite Hilbert algebras with infimum.
For that, it is enough to consider the following algebra A:

•

• •

•

...................
...................

...................
...................

...................
........

...................
...................
...................
...................
...................
...........................

...................
...................
...................
...................
........

...................
...................

...................
...................

...................
........

0

a b

1
→ 0 a b 1
0 1 1 1 1
a 0 1 b 1
b 0 a 1 1
1 0 a b 1

Then the irreducible deductive systems of A are D1 = {a, 1}, D2 = {b, 1} and
D3 = {a, b, 1}. Therefore, Sc(X(A)) = {∅, {D3}, {D1, D3}, {D2, D3}, X(A)}
and the aplication β of Theorem 3.2 is defined by

x ∈ A 0 a b 1
β(x) ∅ {D1, D3} {D2, D3} X(A)
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In the sequel, Theorem 3.2 allows us to obtain a duality for finite (H)-Hilbert
algebras as follows:

Let HH be the category of (H)-Hilbert algebras and their corresponding
homomorphism and P be the category whose objects are posets and whose
morphisms are mappings f : X −→ Y with X, Y ∈ P satisfying the following
conditions:

(P1) f is increasing,

(P2) for all (z, t) ∈ X × Y such that f(z) ≤ t, there is d ∈ X such that z ≤ d
and f(d) = t.

For each X ∈ P we define ϕ(X) = Sc(X) and by Proposition 3.1 we have
that ϕ(X) ∈ HH. Let X1, X2 ∈ P . If f : X1 −→ X2 is a P-morphism and we
define ϕ(f) : Sc(X2) −→ Sc(X1) by the prescription ϕ(f)(U) = f−1(U), for all
U ∈ Sc(X2). It is simple to verify that ϕ is a contravariant functor between the
categories P and HH. Besides, the restriction ϕf of ϕ to the full subcategory
Pf of finite posets is a duality (coequivalence) between Pf and category HHf

of finite (H)-Hilbert algebras because ϕf is representative, full and faithful.
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