Southeast Asian Bulletin of Mathematics (2015) 39: 747-754

Southeast Asian Bulletin of Mathematics © SEAMS. 2015

$p\mbox{-}{\rm Adic}$ Valuation of $(1^2+21)...(n^2+21)$ and Applications *

Qiuyu Yin School of Science, Xihua University, Chengdu 610039, China Email: yinqiuyu26@126.com

Qianrong Tan School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China Email: tqrmei6@126.com

Yuanyuan Luo Mathematical College, Sichuan University, Chengdu 610064, China Email: yuanyuanluoluo@163.com

Received 18 July 2014 Accepted 29 December 2014

Communicated by K. P. Shum

AMS Mathematics Subject Classification(2000): 11A15, 11B83

Abstract. Define $P_n(a) := \prod_{k=1}^n (k^2 + a)$, where *n* and *a* are positive integers. Yang et al. proved that when $1 \le a \le 20$, there are only finite *n*, such that $P_n(a)$ is a square. In this paper, we study the *p*-adic valuation of $P_n(21)$ for all primes *p*. We give explicit expression and bound of the *p*-adic valuation of $P_n(21)$. Then as an application, we prove that $P_n(21)$ is never a square for any positive integer *n*.

Keywords: p-adic valuation; Quadratic reciprocity law; Square.

1. Introduction

The study of integer matrices and polynomials are common topics in number theory (see, for example [1, 4, 8]). We here mainly concentrate on the problem that representing powers by the product of consecutive terms in a sequence of

^{*}The research was supported partially by Program of Science and Technology Department of Sichuan Province Grant #2013 JY0125.

integer quadratic polynomial. In 2010, Hong and Liu [5] studied the *p*-adic valuation of the product $\prod_{k=2}^{n} (k^2 - 1)$ and proved that there exists infinite positive integer *n*, such that $\prod_{k=2}^{n} (k^2 - 1)$ is a square. Yang et al [9] discussed the *p*-adic valuation of $P_n(a) := \prod_{k=1}^{n} (k^2 + a)$ for positive integer *a* with $1 \le a \le 20$ and proved that for those *a*, there exists only finite positive integer *n*, such that $P_n(a)$ is a square. In general, it has been [?] proved that for all positive integers *a*, there exists a positive integer N_a which only depends on *a*, such that $P_n(a)$ is never a square when $n > N_a$. Recently, Chen, Wang and Hu [2] proved that $P_n(23)$ is never a square for all integers $n \ge 4$.

In this paper, we study *p*-adic valuation of the product $P_n := P_n(21)$. As usual, for any positive integer *n*, we let $v_p(n)$ denote the *p*-adic valuation of *n*, i.e., $v_p(n) = r$ if $p^r \parallel n$. Let $\left(\frac{\cdot}{p}\right)$ stand for the Legendre symbol (see, for example, [6]). We will give expression and bound of $v_p(P_n)$, and then using this bound, we show that P_n is always not a square. Let us state the first main result of this paper as follows.

Theorem 1.1. Let *n* be a positive integer. Then $v_2(P_n) = \left\lceil \frac{n}{2} \right\rceil$, $v_p(P_n) = \left\lfloor \frac{n}{p} \right\rfloor$ for $p \in \{3,7\}$ and $v_p(P_n) = 0$ for any prime p > 7 with $\left(\frac{-21}{p}\right) = -1$. For p = 5or any prime p > 7 with $\left(\frac{-21}{p}\right) = 1$, one has

$$2\sum_{l=1}^{\lfloor \log_p n \rfloor} \left\lfloor \frac{n}{p^l} \right\rfloor \le v_p(P_n) \le 2\sum_{l=1}^{\lfloor \log_p (n^2 + 21) \rfloor} \left\lceil \frac{n}{p^l} \right\rceil.$$

Using these formulas, we can get the following interesting result which is the second main result of this paper.

Theorem 1.2. For any positive integer n, the product $\prod_{k=1}^{n} (k^2 + 21)$ is never a square.

The paper is organized as follows. In Section 2, we provide several preliminary lemmas. Consequently, we prove Theorems 1.1 and 1.2. Throughout the paper, p denotes a rational prime. For any nonnegative real number x, we let $\pi(x)$ denote the function $\pi(x) := \sum_{p \le x} 1$.

2. Preliminary Lemmas

In this section, we present some lemmas which will be used in the proof of Theorems 1.1 and 1.2. Write $P_n = \prod_{k=1}^n (k^2 + 21)$.

p-Adic Valuation of $(1^2 + 21)...(n^2 + 21)$ and Applications

Lemma 2.1. Let $n \ge 3$ be an integer. If P_n is a square and p is a prime factor of P_n , then p < 2n.

Proof. Let P_n be a square and let p be a prime factor of P_n . Then we must have $p^2|P_n$. Consider the following two cases:

Case 1. $p^2|(k^2+21)$ for some integer k with $1 \le k \le n$. Then $p \le \sqrt{k^2+21} \le \sqrt{(n^2+21)} < 2n$ since $n \ge 3$. Lemma 2.1 is proved in this case.

Case 2. $p^2 \nmid (k^2 + 21)$ for all integers k with $1 \leq k \leq n$. Then there are integers j and k with $1 \leq k < j \leq n$, such that $p|(k^2 + 21)$ and $p|(j^2 + 21)$. It then follows that p|(j+k)(j-k), which implies that p|(j+k) or p|(j-k). It is obvious that j+k < 2n and j-k < 2n since $1 \leq k < j \leq n$. So we have that $p \leq \max(j+k, j-k) < 2n$. Lemma 2.1 is true in this case.

This completes the proof of Lemma 2.1.

Lemma 2.2. [7] Let n be a positive integer. Then we have

$$v_p(n!) = \sum_{j \le \log n / \log p} \left\lfloor \frac{n}{p^j} \right\rfloor.$$

Lemma 2.3. [3] Let n be a positive integer. Then $\sum_{n .$

Lemma 2.4. [3] Let n be a positive integer. Then $\pi(n) \leq 2 \log 4 \frac{n}{\log n} + \sqrt{n}$.

Lemma 2.5. Let k be a positive integer such that $k^2 + 21$ is a prime. If m is the smallest positive integer satisfying that $k^2 + 21$ divides $m^2 + 21$ and $m \neq k$, then $m = k^2 - k + 21$.

Proof. Write $q = k^2 + 21$. Then q is a prime. Suppose that m is the smallest positive integer satisfying that $(k^2 + 21) \mid (m^2 + 21)$ and $m \neq k$. Then we derive that $q \mid (k+m)(k-m)$. It implies that $q \mid (k+m)$ or $q \mid (m-k)$. If $q \mid (k+m)$, then one deduces that $m \geq q-k$. If $q \mid (m-k)$, then one can derive that $m \geq q+k$. Note that $(k^2 + 21) \mid ((q-k)^2 + 21)$. So we have m = q-k as desired. Lemma 2.5 is proved.

Lemma 2.6. Let k be a positive integer such that $k^2 + 21$ is a prime. Then for all integers n with $k \le n \le k^2 - k + 20$, P_n is not a square.

Proof. Let $q = k^2 + 21$. It then follows from the fact $k \leq n \leq k^2 - k + 20$ and Lemma 2.5 that $q \nmid (m^2 + 21)$ for all integers m with $k < m \leq n$. On the other hand, $q \nmid (m^2 + 21)$ for integers m with $1 \leq m < k$. Thus we deduce that $v_q(P_n) = 1$. This infers that P_n is not a square. This completes the proof of Lemma 2.6.

3. Proof of Theorems 1.1 and 1.2.

This section is devoted to the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By unique factorization we can write

$$P_n = \prod_p p^{\alpha_p}.$$
 (1)

We first compute the value of $\alpha_p := v_p(P_n)$.

(i) p = 2. Let k be an integer with $1 \le k \le n$. Suppose that $2 \mid (k^2 + 21)$. Then k is odd. It follows that $k^2 + 21 \equiv 2 \pmod{4}$, which implies that $v_2(k^2 + 21) = 1$. Thus $v_2(k^2 + 21)$ equals 1 if $2 \nmid k$, is equal to 0 if $2 \mid k$. Hence

$$\alpha_2 = \sum_{k=1}^n v_2(k^2 + 21) = \left\lceil \frac{n}{2} \right\rceil.$$
 (2)

(ii) p = 3. Let k be an integer with $1 \le k \le n$. Suppose that $3 \mid (k^2 + 21)$. This implies that $3 \mid k$. Then $3^2 \nmid (k^2 + 21)$ since $3^2 \nmid 21$. Thus $v_3(k^2 + 21)$ is equal to 1 if $3 \mid k$, and equals 0 if $3 \nmid k$. This infers that

$$\alpha_3 = \sum_{k=1}^n v_3(k^2 + 21) = \left\lfloor \frac{n}{3} \right\rfloor.$$
 (3)

(iii) p = 7. Using the same argument as in (ii), we deduce that $v_7(k^2 + 21)$ equals 1 if 7 | k, and is equal to 0 if 7 $\nmid k$. So

$$\alpha_7 = \sum_{k=1}^n v_7(k^2 + 21) = \left\lfloor \frac{n}{7} \right\rfloor. \tag{4}$$

(iv) $p \neq 2, 3, 7$. Then it is well known that $p \mid (k^2 + 21)$ for some integer k iff $\left(\frac{-21}{p}\right) = 1$. We consider the following two cases.

Case 1. $\left(\frac{-21}{p}\right) = -1$. Then $p \nmid (k^2 + 21)$ for all integers k, which implies that $\alpha_p = 0$ in this case.

Case 2. $\left(\frac{-21}{p}\right) = 1$. Since $\left(\frac{-21}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right) \left(\frac{7}{p}\right)$, we need only to consider the following four cases.

(a) $\left(\frac{-1}{p}\right) = 1, \left(\frac{3}{p}\right) = 1, \left(\frac{7}{p}\right) = 1$. Using quadratic reciprocity law, we deduce that $p \equiv 1 \pmod{4}, p \equiv 1 \pmod{3}$ and $p \equiv 1, 2, 4 \pmod{7}$. So applying the Chinese remainder theorem gives us that $p \equiv 1, 25, 37 \pmod{84}$.

(b) $\left(\frac{-1}{p}\right) = 1, \left(\frac{3}{p}\right) = -1, \left(\frac{7}{p}\right) = -1$. Then one can similarly deduce that $p \equiv 5, 17, 41 \pmod{84}$.

750

p-Adic Valuation of $(1^2 + 21)...(n^2 + 21)$ and Applications

(c)
$$\left(\frac{-1}{p}\right) = -1, \left(\frac{3}{p}\right) = 1, \left(\frac{7}{p}\right) = -1$$
. We can derive that $p \equiv 11, 23, 71 \pmod{84}$.

(d) $\left(\frac{-1}{p}\right) = -1, \left(\frac{3}{p}\right) = -1, \left(\frac{7}{p}\right) = 1$. It can be deduced that $p \equiv 19, 31, 55 \pmod{84}$.

Therefore we have that $\left(\frac{-21}{p}\right) = 1$ if and only if

$$p \equiv 1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55, 71 \pmod{84}.$$

In this case we have $p|(k^2 + 21)$ for some integer k. Meanwhile $x^2 + 21 \equiv 0 \pmod{p}$ has two solutions in each interval of length p. In general, for all positive integers j, the congruence $x^2 + 21 \equiv 0 \pmod{p^j}$ also has two solutions in each interval of length p^j by Hensel's lemma. Let N_j denote the number of integers k with $1 \leq k \leq n$ satisfying $k^2 + 21 \equiv 0 \pmod{p^j}$. It follows that $2\left\lfloor \frac{n}{p^j} \right\rfloor \leq N_j \leq 2\left\lfloor \frac{n}{p^j} \right\rfloor$. On the other hand, it is easy to see that $\alpha_p = \sum_{j \leq \log(n^2 + 21)/\log p} N_j$. Then

$$\sum_{j \le \log n / \log p} 2\left\lfloor \frac{n}{p^j} \right\rfloor \le \alpha_p \le \sum_{j \le \log(n^2 + 21) / \log p} 2\left\lceil \frac{n}{p^j} \right\rceil.$$
(5)

This ends the proof of Theorem 1.1.

For the sake of convenience, we define two sets: $\Re := \{1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55, 71\}$ and $\wp := \bigcup_{a \in \Re} \wp_a$, where $\wp_a := \{p | p \equiv a \pmod{84}\}$. Then for any prime $p \neq 2, 3, 7$, if $p \in \wp$, then (5) holds. If $p \notin \wp$, then $\alpha_p = 0$. We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. By direct computation, we obtain $P_1 = 22$, $P_2 = 550$, $P_3 = 16500$, $P_4 = 610500$, $P_5 = 28083000$, $P_6 = 1600731000$, $P_7 = 112051170000$, $P_8 = 9524349450000$, $P_9 = 971483643900000$, $P_{10} = 117549520911900000$. Hence P_n is not a square for all positive integers n with $n \leq 10$. In what follows we let n > 10 be an integer. We assume that P_n is a square. By the unique factorization theorem and Lemma 2.1, we write

$$P_n = \prod_{p < 2n} p^{\alpha_p},\tag{6}$$

where $\alpha_p = v_p(P_n)$. Then Theorem 1.1 gives us the expression and bound of α_p for each prime p with p < 2n.

And by the unique factorization theorem, we can write

$$n! = \prod_{p \le n} p^{\beta_p},\tag{7}$$

where $\beta_p := v_p(n!)$. It is clear that $P_n > (n!)^2$. So by (6) and (7) and taking logarithm, we get that

$$\sum_{p \le n} \beta_p \log p < \frac{1}{2} \sum_{p < 2n} \alpha_p \log p$$

This is equivalent to

$$\sum_{\substack{p \le n \\ p \notin \wp}} \beta_p \log p < \sum_{\substack{p \le n \\ p \in \wp}} \left(\frac{\alpha_p}{2} - \beta_p\right) \log p + \frac{1}{2} \sum_{\substack{p \le n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p - \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha_p \log p + \frac{1}{2} \sum_{\substack{n < p < 2n \\ p \notin \wp}} \alpha$$

We consider each term on the right hand side of (8): For the first term, since $p \in \wp$, by Lemma 2.2 and (5), we have

$$\frac{\alpha_p}{2} - \beta_p \le \sum_{j \le \log n / \log p} \left(\left\lceil \frac{n}{p^j} \right\rceil - \left\lfloor \frac{n}{p^j} \right\rfloor \right) + \sum_{\log n / \log p < j \le \log(n^2 + 21) / \log p} \left\lceil \frac{n}{p^j} \right\rceil.$$

Noting that $\left\lceil \frac{n}{p^j} \right\rceil - \left\lfloor \frac{n}{p^j} \right\rfloor \le 1$ and $\left\lceil \frac{n}{p^j} \right\rceil = 1$ if $j > \frac{\log n}{\log p}$, so the above inequality becomes

$$\frac{\alpha_p}{2} - \beta_p \le \sum_{j \le \log n / \log p} 1 + \sum_{\log n / \log p < j \le \log(n^2 + 21) / \log p} 1 \le \frac{\log(n^2 + 21)}{\log p}.$$

It then follows that

$$\sum_{\substack{p \le n \\ p \in \wp}} \left(\frac{\alpha_p}{2} - \beta_p\right) \log p \le \log(n^2 + 21) \sum_{\substack{p \le n \\ p \in \wp}} 1.$$
(9)

Consequently, we consider the second term: If $p \neq 2, 3, 7$, then $\alpha_p = 0$ because $p \notin \wp$. As we assume n > 10 at the beginning, we use (2), (3) and (4) to get that

$$\frac{1}{2} \sum_{\substack{p \le n \\ p \notin \wp}} \alpha_p \log p = \frac{1}{2} (\alpha_2 \log 2 + \alpha_3 \log 3 + \alpha_7 \log 7)$$
$$= \frac{1}{2} (\left\lceil \frac{n}{2} \right\rceil \log 2 + \left\lfloor \frac{n}{3} \right\rfloor \log 3 + \left\lfloor \frac{n}{7} \right\rfloor \log 7).$$
(10)

Finally, we deal with the last term. As n > 10, we have $p \ge 11$ in this case. If $p \notin \wp$, then $\alpha_p = 0$. If $p \in \wp$, it then follows from p > n that $p^2 \ge (n+1)^2 > n^2 + 21$. Hence $\frac{\log(n^2 + 21)}{\log p} < 2$, which implies that $\alpha_p \le 2$ by (5). Then by Lemma 2.3, we have

$$\frac{1}{2} \sum_{n
(11)$$

p-Adic Valuation of $(1^2 + 21)...(n^2 + 21)$ and Applications

Putting (9), (10) and (11) into (8), we obtain that

$$\sum_{\substack{p \leq n \\ p \notin \wp}} \beta_p \log p$$

$$< \frac{1}{2} \left(\left\lceil \frac{n}{2} \right\rceil \log 2 + \left\lfloor \frac{n}{3} \right\rfloor \log 3 + \left\lfloor \frac{n}{7} \right\rfloor \log 7 \right) + \log(n^2 + 21) \sum_{\substack{p \leq n \\ p \in \wp}} 1 + n \log 4.$$
(12)

Now we treat the left hand side of the (12): By Lemma 2.2,

$$\beta_p = \sum_{j \le \log n / \log p} \left\lfloor \frac{n}{p^j} \right\rfloor \ge \sum_{j \le \log n / \log p} \left(\frac{n}{p^j} - 1 \right) \ge \frac{n-p}{p-1} - \frac{\log n}{\log p}$$
$$> \frac{n-1}{p-1} - \frac{\log(n^2 + 21)}{\log p}.$$
(13)

So by (12) and (13), we deduce that

$$(n-1)\sum_{\substack{p\leq n\\p\notin\wp}}\frac{\log p}{p-1} < \frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil\log 2 + \left\lfloor\frac{n}{3}\right\rfloor\log 3 + \left\lfloor\frac{n}{7}\right\rfloor\log 7\right) + \log(n^2 + 21)\pi(n) + n\log 4.$$

Then using Lemma 2.4 and noting that $\left\lceil \frac{n}{2} \right\rceil \leq \frac{n+1}{2}, \left\lfloor \frac{n}{3} \right\rfloor \leq \frac{n}{3}, \left\lfloor \frac{n}{7} \right\rfloor \leq \frac{n}{7}$, we obtain that

$$\sum_{\substack{p \le n \\ p \notin \wp}} \frac{\log p}{p-1} < \frac{1}{2(n-1)} \left(\frac{n+1}{2} \log 2 + \frac{n}{3} \log 3 + \frac{n}{7} \log 7 + 2n \log 4\right) + \frac{\log(n^2 + 21)}{n-1} \left((2\log 4)\frac{n}{\log n} + \sqrt{n}\right).$$
(14)

With a little more effort, we can see that the limit of the right hand side of (14) is equal to $\frac{41}{4}\log 2 + \frac{1}{6}\log 3 + \frac{1}{14}\log 7$ (about 7.427) as n tends to ∞ . By the computer we can check that the right hand side is less than 7.78 when $n \ge 4000000$, and the left hand side is bigger than 7.78 when $n \ge 4000000$. So we arrive at a contradiction. Therefore we have proved that for all integers n with $n \ge 4000000$, P_n is not a square.

Now we use Lemmas 2.5 and 2.6 to show that P_n is not a square for all integers n with 10 < n < 4000000:

(i) Since $4^2 + 21 = 37$ is a prime, the smallest positive integer *m* satisfying $37 \mid (m^2 + 21)$ and $m \neq 4$ is 37 - 4 = 33 by Lemma 2.5. Then by Lemma 2.6, P_n is not a square for all integers *n* with $4 \leq n \leq 32$.

(ii) Because $16^2 + 21 = 277$ is a prime, the smallest positive integer m satisfying $277 \mid (m^2 + 21)$ and $m \neq 16$ is 277 - 16 = 261 by Lemma 2.5. Hence by Lemma 2.6, P_n is not a square for all integers n with $16 \leq n \leq 260$.

753

(iii) For $50^2 + 21 = 2521$ is a prime, the smallest positive integer *m* satisfying $2521 \mid (m^2 + 21)$ and $m \neq 50$ is 2521 - 50 = 2471 by Lemma 2.5. Thus by Lemma 2.6, P_n is not a square for all integers *n* with $50 \leq n \leq 2470$.

(iv) Since $2026^2 + 21 = 4104697$ is a prime, the smallest positive integer m satisfying $4104697 \mid (m^2 + 21)$ and $m \neq 2026$ is 4104697 - 2026 = 4102671 by Lemma 2.5. Then by Lemma 2.6, P_n is not a square for all integers n with $2026 \leq n \leq 4102670$. Therefore combining (i), (ii), (iii) with (iv), we obtain that P_n is not a square for all integers n with 10 < n < 4000000.

Thus we deduce that P_n is not a square for all positive integers n. This completes the proof of Theorem 1.2.

References

- P. Borwein and T. Erdelyi, *Polynomials and Polynomial Inequalities*, Springer-Verlag, 1995.
- [2] H. Chen, C. Wang, S. Hu, Squares in $(1^2+23)...(n^2+23)$, J. Sichuan Univ. Natu. Sci. Edi. **52** (1) (2015) 21–24.
- [3] G. Hardy and E. Wright, An Introduction to the Theory of Number, Oxford Univ. Press, 1980.
- [4] S. Hong, Divisibility of determinants of least common mutiple matrices on GCDclosed sets, Southeast Asian Bull. Math. 27 (4) (2003) 615–621.
- [5] S. Hong and X. Liu, Squares in $(2^2 1) \cdots (n^2 1)$ and *p*-adic valuation, Asian-Eur. J. Math. **3** (1) (2010) 19–24.
- [6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 2nd Ed., 1990.
- [7] M. B. Nathanson, *Elementary Methods in Number Theory*, Springer-Verlag, New York, 2003.
- [8] Q. Tan, Notes on the non-divisibility of determinants of power GCD and power LCM matrices, Southeast Asian Bull. Math. 33 (3) (2009) 563–567.
- [9] S. Yang, A. Togbé, B. He, Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory 131 (2011) 1840–1851.