p-Adic Valuation of $\left(1^{2}+21\right) \ldots\left(n^{2}+21\right)$ and Applications *

Qiuyu Yin
School of Science, Xihua University, Chengdu 610039, China
Email: yinqiuyu26@126.com
Qianrong Tan
School of Mathematics and Computer Science, Panzhihua University,
Panzhihua 617000, China
Email: tqrmei6@126.com
Yuanyuan Luo
Mathematical College, Sichuan University, Chengdu 610064, China
Email: yuanyuanluoluo@163.com
Received 18 July 2014
Accepted 29 December 2014
Communicated by K. P. Shum
AMS Mathematics Subject Classification(2000): 11A15, 11B83

Abstract

Define $P_{n}(a):=\prod_{k=1}^{n}\left(k^{2}+a\right)$, where n and a are positive integers. Yang et al. proved that when $1 \leq a \leq 20$, there are only finite n, such that $P_{n}(a)$ is a square. In this paper, we study the p-adic valuation of $P_{n}(21)$ for all primes p. We give explicit expression and bound of the p-adic valuation of $P_{n}(21)$. Then as an application, we prove that $P_{n}(21)$ is never a square for any positive integer n.

Keywords: p-adic valuation; Quadratic reciprocity law; Square.

1. Introduction

The study of integer matrices and polynomials are common topics in number theory (see, for example $[1,4,8]$). We here mainly concentrate on the problem that representing powers by the product of consecutive terms in a sequence of

[^0]integer quadratic polynomial. In 2010, Hong and Liu [5] studied the p-adic valuation of the product $\prod_{k=2}^{n}\left(k^{2}-1\right)$ and proved that there exists infinite positive integer n, such that $\prod_{k=2}^{n}\left(k^{2}-1\right)$ is a square. Yang et al [9] discussed the p-adic valuation of $P_{n}(a):=\prod_{k=1}^{n}\left(k^{2}+a\right)$ for positive integer a with $1 \leq a \leq 20$ and proved that for those a, there exists only finite positive integer n, such that $P_{n}(a)$ is a square. In general, it has been [?] proved that for all positive integers a, there exists a positive integer N_{a} which only depends on a, such that $P_{n}(a)$ is never a square when $n>N_{a}$. Recently, Chen, Wang and Hu [2] proved that $P_{n}(23)$ is never a square for all integers $n \geq 4$.

In this paper, we study p-adic valuation of the product $P_{n}:=P_{n}(21)$. As usual, for any positive integer n, we let $v_{p}(n)$ denote the p-adic valuation of n, i.e., $v_{p}(n)=r$ if $p^{r} \| n$. Let $\left(\frac{\dot{\rightharpoonup}}{p}\right)$ stand for the Legendre symbol (see, for example, [6]). We will give expression and bound of $v_{p}\left(P_{n}\right)$, and then using this bound, we show that P_{n} is always not a square. Let us state the first main result of this paper as follows.

Theorem 1.1. Let n be a positive integer. Then $v_{2}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil, v_{p}\left(P_{n}\right)=\left\lfloor\frac{n}{p}\right\rfloor$ for $p \in\{3,7\}$ and $v_{p}\left(P_{n}\right)=0$ for any prime $p>7$ with $\left(\frac{-21}{p}\right)=-1$. For $p=5$ or any prime $p>7$ with $\left(\frac{-21}{p}\right)=1$, one has

$$
2 \sum_{l=1}^{\left\lfloor\log _{p} n\right\rfloor}\left\lfloor\frac{n}{p^{l}}\right\rfloor \leq v_{p}\left(P_{n}\right) \leq 2 \sum_{l=1}^{\left\lfloor\log _{p}\left(n^{2}+21\right)\right\rfloor}\left\lceil\frac{n}{p^{l}}\right\rceil
$$

Using these formulas, we can get the following interesting result which is the second main result of this paper.

Theorem 1.2. For any positive integer n, the product $\prod_{k=1}^{n}\left(k^{2}+21\right)$ is never a square.

The paper is organized as follows. In Section 2, we provide several preliminary lemmas. Consequently, we prove Theorems 1.1 and 1.2. Throughout the paper, p denotes a rational prime. For any nonnegative real number x, we let $\pi(x)$ denote the function $\pi(x):=\sum_{p \leq x} 1$.

2. Preliminary Lemmas

In this section, we present some lemmas which will be used in the proof of Theorems 1.1 and 1.2. Write $P_{n}=\prod_{k=1}^{n}\left(k^{2}+21\right)$.

Lemma 2.1. Let $n \geq 3$ be an integer. If P_{n} is a square and p is a prime factor of P_{n}, then $p<2 n$.

Proof. Let P_{n} be a square and let p be a prime factor of P_{n}. Then we must have $p^{2} \mid P_{n}$. Consider the following two cases:
Case 1. $p^{2} \mid\left(k^{2}+21\right)$ for some integer k with $1 \leq k \leq n$. Then $p \leq \sqrt{k^{2}+21} \leq$ $\sqrt{\left(n^{2}+21\right)}<2 n$ since $n \geq 3$. Lemma 2.1 is proved in this case.

Case 2. $p^{2} \nmid\left(k^{2}+21\right)$ for all integers k with $1 \leq k \leq n$. Then there are integers j and k with $1 \leq k<j \leq n$, such that $p \mid\left(k^{2}+21\right)$ and $p \mid\left(j^{2}+21\right)$. It then follows that $p \mid(j+k)(j-k)$, which implies that $p \mid(j+k)$ or $p \mid(j-k)$. It is obvious that $j+k<2 n$ and $j-k<2 n$ since $1 \leq k<j \leq n$. So we have that $p \leq \max (j+k, j-k)<2 n$. Lemma 2.1 is true in this case.

This completes the proof of Lemma 2.1.
Lemma 2.2. [7] Let n be a positive integer. Then we have

$$
v_{p}(n!)=\sum_{j \leq \log n / \log p}\left\lfloor\frac{n}{p^{j}}\right\rfloor .
$$

Lemma 2.3. [3] Let n be a positive integer. Then $\sum_{n<p<2 n} \log p \leq n \log 4$.
Lemma 2.4. [3] Let n be a positive integer. Then $\pi(n) \leq 2 \log 4 \frac{n}{\log n}+\sqrt{n}$.
Lemma 2.5. Let k be a positive integer such that $k^{2}+21$ is a prime. If m is the smallest positive integer satisfying that $k^{2}+21$ divides $m^{2}+21$ and $m \neq k$, then $m=k^{2}-k+21$.

Proof. Write $q=k^{2}+21$. Then q is a prime. Suppose that m is the smallest positive integer satisfying that $\left(k^{2}+21\right) \mid\left(m^{2}+21\right)$ and $m \neq k$. Then we derive that $q \mid(k+m)(k-m)$. It implies that $q \mid(k+m)$ or $q \mid(m-k)$. If $q \mid(k+m)$, then one deduces that $m \geq q-k$. If $q \mid(m-k)$, then one can derive that $m \geq q+k$. Note that $\left(k^{2}+21\right) \mid\left((q-k)^{2}+21\right)$. So we have $m=q-k$ as desired. Lemma 2.5 is proved.

Lemma 2.6. Let k be a positive integer such that $k^{2}+21$ is a prime. Then for all integers n with $k \leq n \leq k^{2}-k+20, P_{n}$ is not a square.

Proof. Let $q=k^{2}+21$. It then follows from the fact $k \leq n \leq k^{2}-k+20$ and Lemma 2.5 that $q \nmid\left(m^{2}+21\right)$ for all integers m with $k<m \leq n$. On the other hand, $q \nmid\left(m^{2}+21\right)$ for integers m with $1 \leq m<k$. Thus we deduce that $v_{q}\left(P_{n}\right)=1$. This infers that P_{n} is not a square. This completes the proof of Lemma 2.6.

3. Proof of Theorems 1.1 and 1.2.

This section is devoted to the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By unique factorization we can write

$$
\begin{equation*}
P_{n}=\prod_{p} p^{\alpha_{p}} \tag{1}
\end{equation*}
$$

We first compute the value of $\alpha_{p}:=v_{p}\left(P_{n}\right)$.
(i) $p=2$. Let k be an integer with $1 \leq k \leq n$. Suppose that $2 \mid\left(k^{2}+21\right)$. Then k is odd. It follows that $k^{2}+21 \equiv 2(\bmod 4)$, which implies that $v_{2}\left(k^{2}+\right.$ $21)=1$. Thus $v_{2}\left(k^{2}+21\right)$ equals 1 if $2 \nmid k$, is equal to 0 if $2 \mid k$. Hence

$$
\begin{equation*}
\alpha_{2}=\sum_{k=1}^{n} v_{2}\left(k^{2}+21\right)=\left\lceil\frac{n}{2}\right\rceil . \tag{2}
\end{equation*}
$$

(ii) $p=3$. Let k be an integer with $1 \leq k \leq n$. Suppose that $3 \mid\left(k^{2}+21\right)$. This implies that $3 \mid k$. Then $3^{2} \nmid\left(k^{2}+21\right)$ since $3^{2} \nmid 21$. Thus $v_{3}\left(k^{2}+21\right)$ is equal to 1 if $3 \mid k$, and equals 0 if $3 \nmid k$. This infers that

$$
\begin{equation*}
\alpha_{3}=\sum_{k=1}^{n} v_{3}\left(k^{2}+21\right)=\left\lfloor\frac{n}{3}\right\rfloor . \tag{3}
\end{equation*}
$$

(iii) $p=7$. Using the same argument as in (ii), we deduce that $v_{7}\left(k^{2}+21\right)$ equals 1 if $7 \mid k$, and is equal to 0 if $7 \nmid k$. So

$$
\begin{equation*}
\alpha_{7}=\sum_{k=1}^{n} v_{7}\left(k^{2}+21\right)=\left\lfloor\frac{n}{7}\right\rfloor . \tag{4}
\end{equation*}
$$

(iv) $p \neq 2,3,7$. Then it is well known that $p \mid\left(k^{2}+21\right)$ for some integer k iff $\left(\frac{-21}{p}\right)=1$. We consider the following two cases.

Case 1. $\left(\frac{-21}{p}\right)=-1$. Then $p \nmid\left(k^{2}+21\right)$ for all integers k, which implies that $\alpha_{p}=0$ in this case.

Case 2. $\left(\frac{-21}{p}\right)=1$. Since $\left(\frac{-21}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)\left(\frac{7}{p}\right)$, we need only to consider the following four cases.
(a) $\left(\frac{-1}{p}\right)=1,\left(\frac{3}{p}\right)=1,\left(\frac{7}{p}\right)=1$. Using quadratic reciprocity law, we deduce that $p \equiv 1(\bmod 4), p \equiv 1(\bmod 3)$ and $p \equiv 1,2,4(\bmod 7)$. So applying the Chinese remainder theorem gives us that $p \equiv 1,25,37(\bmod 84)$.
(b) $\left(\frac{-1}{p}\right)=1,\left(\frac{3}{p}\right)=-1,\left(\frac{7}{p}\right)=-1$. Then one can similarly deduce that $p \equiv 5,17,41(\bmod 84)$.
(c) $\left(\frac{-1}{p}\right)=-1,\left(\frac{3}{p}\right)=1,\left(\frac{7}{p}\right)=-1$. We can derive that $p \equiv 11,23,71$ $(\bmod 84)$.
(d) $\left(\frac{-1}{p}\right)=-1,\left(\frac{3}{p}\right)=-1,\left(\frac{7}{p}\right)=1$. It can be deduced that $p \equiv 19,31,55$ $(\bmod 84)$.

Therefore we have that $\left(\frac{-21}{p}\right)=1$ if and only if

$$
p \equiv 1,5,11,17,19,23,25,31,37,41,55,71 \quad(\bmod 84)
$$

In this case we have $p \mid\left(k^{2}+21\right)$ for some integer k. Meanwhile $x^{2}+21 \equiv 0$ $(\bmod p)$ has two solutions in each interval of length p. In general, for all positive integers j, the congruence $x^{2}+21 \equiv 0\left(\bmod p^{j}\right)$ also has two solutions in each interval of length p^{j} by Hensel's lemma. Let N_{j} denote the number of integers k with $1 \leq k \leq n$ satisfying $k^{2}+21 \equiv 0\left(\bmod p^{j}\right)$. It follows that $2\left\lfloor\frac{n}{p^{j}}\right\rfloor \leq N_{j} \leq$ $2\left\lceil\frac{n}{p^{j}}\right\rceil$. On the other hand, it is easy to see that $\alpha_{p}=\sum_{j \leq \log \left(n^{2}+21\right) / \log p} N_{j}$. Then

$$
\begin{equation*}
\sum_{j \leq \log n / \log p} 2\left\lfloor\frac{n}{p^{j}}\right\rfloor \leq \alpha_{p} \leq \sum_{j \leq \log \left(n^{2}+21\right) / \log p} 2\left\lceil\frac{n}{p^{j}}\right\rceil \tag{5}
\end{equation*}
$$

This ends the proof of Theorem 1.1.

For the sake of convenience, we define two sets: $\Re:=\{1,5,11,17,19,23,25,31,37,41,55$, $71\}$ and $\wp:=\bigcup_{a \in \Re} \wp_{a}$, where $\wp_{a}:=\{p \mid p \equiv a(\bmod 84)\}$. Then for any prime $p \neq 2,3,7$, if $p \in \wp$, then (5) holds. If $p \notin \wp$, then $\alpha_{p}=0$. We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. By direct computation, we obtain $P_{1}=22, P_{2}=$ $550, P_{3}=16500, P_{4}=610500, P_{5}=28083000, P_{6}=1600731000, P_{7}=$ $112051170000, P_{8}=9524349450000, P_{9}=971483643900000, P_{10}=117549520911900000$.
Hence P_{n} is not a square for all positive integers n with $n \leq 10$. In what follows we let $n>10$ be an integer. We assume that P_{n} is a square. By the unique factorization theorem and Lemma 2.1, we write

$$
\begin{equation*}
P_{n}=\prod_{p<2 n} p^{\alpha_{p}} \tag{6}
\end{equation*}
$$

where $\alpha_{p}=v_{p}\left(P_{n}\right)$. Then Theorem 1.1 gives us the expression and bound of α_{p} for each prime p with $p<2 n$.

And by the unique factorization theorem, we can write

$$
\begin{equation*}
n!=\prod_{p \leq n} p^{\beta_{p}} \tag{7}
\end{equation*}
$$

where $\beta_{p}:=v_{p}(n!)$. It is clear that $P_{n}>(n!)^{2}$. So by (6) and (7) and taking logarithm, we get that

$$
\sum_{p \leq n} \beta_{p} \log p<\frac{1}{2} \sum_{p<2 n} \alpha_{p} \log p
$$

This is equivalent to

$$
\begin{equation*}
\sum_{\substack{p \leq n \\ p \notin \wp}} \beta_{p} \log p<\sum_{\substack{p \leq n \\ p \in \wp}}\left(\frac{\alpha_{p}}{2}-\beta_{p}\right) \log p+\frac{1}{2} \sum_{\substack{p \leq n \\ p \notin \wp}} \alpha_{p} \log p+\frac{1}{2} \sum_{n<p<2 n} \alpha_{p} \log p . \tag{8}
\end{equation*}
$$

We consider each term on the right hand side of (8): For the first term, since $p \in \wp$, by Lemma 2.2 and (5), we have

$$
\frac{\alpha_{p}}{2}-\beta_{p} \leq \sum_{j \leq \log n / \log p}\left(\left\lceil\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)+\sum_{\log n / \log p<j \leq \log \left(n^{2}+21\right) / \log p}\left\lceil\frac{n}{p^{j}}\right\rceil
$$

Noting that $\left\lceil\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor \leq 1$ and $\left\lceil\frac{n}{p^{j}}\right\rceil=1$ if $j>\frac{\log n}{\log p}$, so the above inequality becomes

$$
\frac{\alpha_{p}}{2}-\beta_{p} \leq \sum_{j \leq \log n / \log p} 1+\sum_{\log n / \log p<j \leq \log \left(n^{2}+21\right) / \log p} 1 \leq \frac{\log \left(n^{2}+21\right)}{\log p}
$$

It then follows that

$$
\begin{equation*}
\sum_{\substack{p \leq n \\ p \in \wp}}\left(\frac{\alpha_{p}}{2}-\beta_{p}\right) \log p \leq \log \left(n^{2}+21\right) \sum_{\substack{p \leq n \\ p \in \wp}} 1 \tag{9}
\end{equation*}
$$

Consequently, we consider the second term: If $p \neq 2,3,7$, then $\alpha_{p}=0$ because $p \notin \wp$. As we assume $n>10$ at the beginning, we use (2), (3) and (4) to get that

$$
\begin{align*}
\frac{1}{2} \sum_{\substack{p \leq n \\
p \notin \wp}} \alpha_{p} \log p & =\frac{1}{2}\left(\alpha_{2} \log 2+\alpha_{3} \log 3+\alpha_{7} \log 7\right) \\
& =\frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil \log 2+\left\lfloor\frac{n}{3}\right\rfloor \log 3+\left\lfloor\frac{n}{7}\right\rfloor \log 7\right) . \tag{10}
\end{align*}
$$

Finally, we deal with the last term. As $n>10$, we have $p \geq 11$ in this case. If $p \notin \wp$, then $\alpha_{p}=0$. If $p \in \wp$, it then follows from $p>n$ that $p^{2} \geq(n+1)^{2}>n^{2}+21$. Hence $\frac{\log \left(n^{2}+21\right)}{\log p}<2$, which implies that $\alpha_{p} \leq 2$ by (5). Then by Lemma 2.3, we have

$$
\begin{equation*}
\frac{1}{2} \sum_{n<p<2 n} \alpha_{p} \log p \leq \sum_{n<p<2 n} \log p \leq n \log 4 \tag{11}
\end{equation*}
$$

Putting (9), (10) and (11) into (8), we obtain that

$$
\begin{align*}
& \sum_{\substack{p \leq n \\
p \notin \wp}} \beta_{p} \log p \\
< & \frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil \log 2+\left\lfloor\frac{n}{3}\right\rfloor \log 3+\left\lfloor\frac{n}{7}\right\rfloor \log 7\right)+\log \left(n^{2}+21\right) \sum_{\substack{p \leq n \\
p \in \wp}} 1+n \log 4 . \tag{12}
\end{align*}
$$

Now we treat the left hand side of the (12): By Lemma 2.2,

$$
\begin{align*}
\beta_{p}=\sum_{j \leq \log n / \log p}\left\lfloor\frac{n}{p^{j}}\right\rfloor \geq \sum_{j \leq \log n / \log p}\left(\frac{n}{p^{j}}-1\right) & \geq \frac{n-p}{p-1}-\frac{\log n}{\log p} \\
& >\frac{n-1}{p-1}-\frac{\log \left(n^{2}+21\right)}{\log p} \tag{13}
\end{align*}
$$

So by (12) and (13), we deduce that

$$
\begin{gathered}
(n-1) \sum_{\substack{p \leq n \\
p \notin \wp<}} \frac{\log p}{p-1}<\frac{1}{2}\left(\left\lceil\frac{n}{2}\right\rceil \log 2+\left\lfloor\frac{n}{3}\right\rfloor \log 3+\left\lfloor\frac{n}{7}\right\rfloor \log 7\right) \\
\\
+\log \left(n^{2}+21\right) \pi(n)+n \log 4 .
\end{gathered}
$$

Then using Lemma 2.4 and noting that $\left\lceil\frac{n}{2}\right\rceil \leq \frac{n+1}{2},\left\lfloor\frac{n}{3}\right\rfloor \leq \frac{n}{3},\left\lfloor\frac{n}{7}\right\rfloor \leq \frac{n}{7}$, we obtain that

$$
\begin{align*}
\sum_{\substack{p \leq n \\
p \notin \wp}} \frac{\log p}{p-1}< & \frac{1}{2(n-1)}\left(\frac{n+1}{2} \log 2+\frac{n}{3} \log 3+\frac{n}{7} \log 7+2 n \log 4\right) \\
& +\frac{\log \left(n^{2}+21\right)}{n-1}\left((2 \log 4) \frac{n}{\log n}+\sqrt{n}\right) . \tag{14}
\end{align*}
$$

With a little more effort, we can see that the limit of the right hand side of (14) is equal to $\frac{41}{4} \log 2+\frac{1}{6} \log 3+\frac{1}{14} \log 7$ (about 7.427) as n tends to ∞. By the computer we can check that the right hand side is less than 7.78 when $n \geq 4000000$, and the left hand side is bigger than 7.78 when $n \geq 4000000$. So we arrive at a contradiction. Therefore we have proved that for all integers n with $n \geq 4000000, P_{n}$ is not a square.

Now we use Lemmas 2.5 and 2.6 to show that P_{n} is not a square for all integers n with $10<n<4000000$:
(i) Since $4^{2}+21=37$ is a prime, the smallest positive integer m satisfying $37 \mid\left(m^{2}+21\right)$ and $m \neq 4$ is $37-4=33$ by Lemma 2.5. Then by Lemma 2.6, P_{n} is not a square for all integers n with $4 \leq n \leq 32$.
(ii) Because $16^{2}+21=277$ is a prime, the smallest positive integer m satisfying $277 \mid\left(m^{2}+21\right)$ and $m \neq 16$ is $277-16=261$ by Lemma 2.5 . Hence by Lemma 2.6, P_{n} is not a square for all integers n with $16 \leq n \leq 260$.
(iii) For $50^{2}+21=2521$ is a prime, the smallest positive integer m satisfying $2521 \mid\left(m^{2}+21\right)$ and $m \neq 50$ is $2521-50=2471$ by Lemma 2.5 . Thus by Lemma 2.6, P_{n} is not a square for all integers n with $50 \leq n \leq 2470$.
(iv) Since $2026^{2}+21=4104697$ is a prime, the smallest positive integer m satisfying $4104697 \mid\left(m^{2}+21\right)$ and $m \neq 2026$ is $4104697-2026=4102671$ by Lemma 2.5. Then by Lemma 2.6, P_{n} is not a square for all integers n with $2026 \leq n \leq 4102670$. Therefore combining (i), (ii), (iii) with (iv), we obtain that P_{n} is not a square for all integers n with $10<n<4000000$.

Thus we deduce that P_{n} is not a square for all positive integers n. This completes the proof of Theorem 1.2.

References

[1] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, SpringerVerlag, 1995.
[2] H. Chen, C. Wang, S. Hu, Squares in $\left(1^{2}+23\right) \ldots\left(n^{2}+23\right)$, J. Sichuan Univ. Natu. Sci. Edi. 52 (1) (2015) 21-24.
[3] G. Hardy and E. Wright, An Introduction to the Theory of Number, Oxford Univ. Press, 1980.
[4] S. Hong, Divisibility of determinants of least common mutiple matrices on GCDclosed sets, Southeast Asian Bull. Math. 27 (4) (2003) 615-621.
[5] S. Hong and X. Liu, Squares in $\left(2^{2}-1\right) \cdots\left(n^{2}-1\right)$ and p-adic valuation, AsianEur. J. Math. 3 (1) (2010) 19-24.
[6] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 2nd Ed., 1990.
[7] M. B. Nathanson, Elementary Methods in Number Theory, Springer-Verlag, New York, 2003.
[8] Q. Tan, Notes on the non-divisibility of determinants of power GCD and power LCM matrices, Southeast Asian Bull. Math. 33 (3) (2009) 563-567.
[9] S. Yang, A. Togbé, B. He, Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory 131 (2011) 1840-1851.

[^0]: *The research was supported partially by Program of Science and Technology Department of Sichuan Province Grant \#2013JY0125.

