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Abstract. Define Pn(a) :=
∏

n

k=1
(k2 + a), where n and a are positive integers. Yang et

al. proved that when 1 ≤ a ≤ 20, there are only finite n, such that Pn(a) is a square.

In this paper, we study the p-adic valuation of Pn(21) for all primes p. We give explicit

expression and bound of the p-adic valuation of Pn(21). Then as an application, we

prove that Pn(21) is never a square for any positive integer n.
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1. Introduction

The study of integer matrices and polynomials are common topics in number
theory (see, for example [1, 4, 8]). We here mainly concentrate on the problem
that representing powers by the product of consecutive terms in a sequence of
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integer quadratic polynomial. In 2010, Hong and Liu [5] studied the p-adic
valuation of the product

∏n
k=2(k

2 − 1) and proved that there exists infinite
positive integer n, such that

∏n
k=2(k

2−1) is a square. Yang et al [9] discussed the
p-adic valuation of Pn(a) :=

∏n
k=1(k

2+a) for positive integer a with 1 ≤ a ≤ 20
and proved that for those a, there exists only finite positive integer n, such that
Pn(a) is a square. In general, it has been [?] proved that for all positive integers
a, there exists a positive integer Na which only depends on a, such that Pn(a)
is never a square when n > Na. Recently, Chen, Wang and Hu [2] proved that
Pn(23) is never a square for all integers n ≥ 4.

In this paper, we study p-adic valuation of the product Pn := Pn(21). As
usual, for any positive integer n, we let vp(n) denote the p-adic valuation of

n, i.e., vp(n) = r if pr ∥ n. Let
( ⋅
p

)

stand for the Legendre symbol (see, for

example, [6]). We will give expression and bound of vp(Pn), and then using this
bound, we show that Pn is always not a square. Let us state the first main result
of this paper as follows.

Theorem 1.1. Let n be a positive integer. Then v2(Pn) =
⌈n

2

⌉

, vp(Pn) =
⌊n

p

⌋

for p ∈ {3, 7} and vp(Pn) = 0 for any prime p > 7 with
(−21

p

)

= −1. For p = 5

or any prime p > 7 with
(−21

p

)

= 1, one has

2

⌊log
p
n⌋

∑

l=1

⌊ n

pl

⌋

≤ vp(Pn) ≤ 2

⌊log
p
(n2+21)⌋
∑

l=1

⌈ n

pl

⌉

.

Using these formulas, we can get the following interesting result which is the
second main result of this paper.

Theorem 1.2. For any positive integer n, the product
∏n

k=1(k
2 + 21) is never a

square.

The paper is organized as follows. In Section 2, we provide several preliminary
lemmas. Consequently, we prove Theorems 1.1 and 1.2. Throughout the paper,
p denotes a rational prime. For any nonnegative real number x, we let �(x)
denote the function �(x) :=

∑

p≤x 1.

2. Preliminary Lemmas

In this section, we present some lemmas which will be used in the proof of
Theorems 1.1 and 1.2. Write Pn =

∏n
k=1(k

2 + 21).
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Lemma 2.1. Let n ≥ 3 be an integer. If Pn is a square and p is a prime factor

of Pn, then p < 2n.

Proof. Let Pn be a square and let p be a prime factor of Pn. Then we must have
p2∣Pn. Consider the following two cases:

Case 1. p2∣(k2+21) for some integer k with 1 ≤ k ≤ n. Then p ≤
√
k2 + 21 ≤

√

(n2 + 21) < 2n since n ≥ 3. Lemma 2.1 is proved in this case.

Case 2. p2 ∤ (k2 + 21) for all integers k with 1 ≤ k ≤ n. Then there are
integers j and k with 1 ≤ k < j ≤ n, such that p∣(k2 + 21) and p∣(j2 + 21). It
then follows that p∣(j + k)(j − k), which implies that p∣(j + k) or p∣(j − k). It
is obvious that j + k < 2n and j − k < 2n since 1 ≤ k < j ≤ n. So we have that
p ≤ max(j + k, j − k) < 2n. Lemma 2.1 is true in this case.

This completes the proof of Lemma 2.1.

Lemma 2.2. [7] Let n be a positive integer. Then we have

vp(n!) =
∑

j≤log n/ log p

⌊ n

pj

⌋

.

Lemma 2.3. [3] Let n be a positive integer. Then
∑

n<p<2n log p ≤ n log 4.

Lemma 2.4. [3] Let n be a positive integer. Then �(n) ≤ 2 log 4 n
logn +

√
n.

Lemma 2.5. Let k be a positive integer such that k2 +21 is a prime. If m is the

smallest positive integer satisfying that k2+21 divides m2+21 and m ∕= k, then

m = k2 − k + 21.

Proof. Write q = k2 + 21. Then q is a prime. Suppose that m is the smallest
positive integer satisfying that (k2+21) ∣ (m2 +21) and m ∕= k. Then we derive
that q ∣ (k+m)(k−m). It implies that q ∣ (k+m) or q ∣ (m− k). If q ∣ (k+m),
then one deduces that m ≥ q − k. If q ∣ (m − k), then one can derive that
m ≥ q + k. Note that (k2 + 21) ∣ ((q − k)2 + 21). So we have m = q − k as
desired. Lemma 2.5 is proved.

Lemma 2.6. Let k be a positive integer such that k2 + 21 is a prime. Then for

all integers n with k ≤ n ≤ k2 − k + 20, Pn is not a square.

Proof. Let q = k2 + 21. It then follows from the fact k ≤ n ≤ k2 − k + 20
and Lemma 2.5 that q ∤ (m2 + 21) for all integers m with k < m ≤ n. On the
other hand, q ∤ (m2 + 21) for integers m with 1 ≤ m < k. Thus we deduce that
vq(Pn) = 1. This infers that Pn is not a square. This completes the proof of
Lemma 2.6.
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3. Proof of Theorems 1.1 and 1.2.

This section is devoted to the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By unique factorization we can write

Pn =
∏

p

p�p . (1)

We first compute the value of �p := vp(Pn).

(i) p = 2. Let k be an integer with 1 ≤ k ≤ n. Suppose that 2 ∣ (k2 + 21).
Then k is odd. It follows that k2 + 21 ≡ 2 (mod 4), which implies that v2(k

2 +
21) = 1. Thus v2(k

2 + 21) equals 1 if 2 ∤ k, is equal to 0 if 2 ∣ k. Hence

�2 =

n
∑

k=1

v2(k
2 + 21) =

⌈n

2

⌉

. (2)

(ii) p = 3. Let k be an integer with 1 ≤ k ≤ n. Suppose that 3 ∣ (k2 + 21).
This implies that 3 ∣ k. Then 32 ∤ (k2 + 21) since 32 ∤ 21. Thus v3(k

2 + 21) is
equal to 1 if 3 ∣ k, and equals 0 if 3 ∤ k. This infers that

�3 =

n
∑

k=1

v3(k
2 + 21) =

⌊n

3

⌋

. (3)

(iii) p = 7. Using the same argument as in (ii), we deduce that v7(k
2 + 21)

equals 1 if 7 ∣ k, and is equal to 0 if 7 ∤ k. So

�7 =
n
∑

k=1

v7(k
2 + 21) =

⌊n

7

⌋

. (4)

(iv) p ∕= 2, 3, 7. Then it is well known that p ∣ (k2 +21) for some integer k iff
(−21

p

)

= 1. We consider the following two cases.

Case 1.
(−21

p

)

= −1. Then p ∤ (k2 + 21) for all integers k, which implies

that �p = 0 in this case.

Case 2.
(−21

p

)

= 1. Since
(−21

p

)

=
(−1

p

)(3

p

)(7

p

)

, we need only to

consider the following four cases.

(a)
(−1

p

)

= 1,
(3

p

)

= 1,
(7

p

)

= 1. Using quadratic reciprocity law, we

deduce that p ≡ 1 (mod 4), p ≡ 1 (mod 3) and p ≡ 1, 2, 4 (mod 7). So applying
the Chinese remainder theorem gives us that p ≡ 1, 25, 37 (mod 84).

(b)
(−1

p

)

= 1,
(3

p

)

= −1,
(7

p

)

= −1. Then one can similarly deduce that

p ≡ 5, 17, 41 (mod 84).
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(c)
(−1

p

)

= −1,
(3

p

)

= 1,
(7

p

)

= −1. We can derive that p ≡ 11, 23, 71

(mod 84).

(d)
(−1

p

)

= −1,
(3

p

)

= −1,
(7

p

)

= 1. It can be deduced that p ≡ 19, 31, 55

(mod 84).

Therefore we have that
(−21

p

)

= 1 if and only if

p ≡ 1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55, 71 (mod 84).

In this case we have p∣(k2 + 21) for some integer k. Meanwhile x2 + 21 ≡ 0
(mod p) has two solutions in each interval of length p. In general, for all positive
integers j, the congruence x2 + 21 ≡ 0 (mod pj) also has two solutions in each
interval of length pj by Hensel’s lemma. Let Nj denote the number of integers k

with 1 ≤ k ≤ n satisfying k2 + 21 ≡ 0 (mod pj). It follows that 2
⌊ n

pj

⌋

≤ Nj ≤

2
⌈ n

pj

⌉

. On the other hand, it is easy to see that �p =
∑

j≤log(n2+21)/ log p Nj .

Then
∑

j≤log n/ log p

2
⌊ n

pj

⌋

≤ �p ≤
∑

j≤log(n2+21)/ log p

2
⌈ n

pj

⌉

. (5)

This ends the proof of Theorem 1.1.

For the sake of convenience, we define two sets: ℜ := {1, 5, 11, 17, 19, 23, 25, 31, 37, 41, 55,
71} and ℘ :=

∪

a∈ℜ ℘a, where ℘a := {p∣p ≡ a (mod 84)}. Then for any prime
p ∕= 2, 3, 7, if p ∈ ℘, then (5) holds. If p ∕∈ ℘, then �p = 0. We now give the
proof of Theorem 1.2.

Proof of Theorem 1.2. By direct computation, we obtain P1 = 22, P2 =
550, P3 = 16500, P4 = 610500, P5 = 28083000, P6 = 1600731000, P7 =
112051170000,P8 = 9524349450000,P9 = 971483643900000,P10 = 117549520911900000.
Hence Pn is not a square for all positive integers n with n ≤ 10. In what follows
we let n > 10 be an integer. We assume that Pn is a square. By the unique
factorization theorem and Lemma 2.1, we write

Pn =
∏

p<2n

p�p , (6)

where �p = vp(Pn). Then Theorem 1.1 gives us the expression and bound of �p

for each prime p with p < 2n.

And by the unique factorization theorem, we can write

n! =
∏

p≤n

p�p , (7)
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where �p := vp(n!). It is clear that Pn > (n!)2. So by (6) and (7) and taking
logarithm, we get that

∑

p≤n

�p log p <
1

2

∑

p<2n

�p log p.

This is equivalent to

∑

p≤n
p∕∈℘

�p log p <
∑

p≤n
p∈℘

(
�p

2
− �p) log p+

1

2

∑

p≤n
p∕∈℘

�p log p+
1

2

∑

n<p<2n

�p log p. (8)

We consider each term on the right hand side of (8): For the first term, since
p ∈ ℘, by Lemma 2.2 and (5), we have

�p

2
− �p ≤

∑

j≤log n/ log p

(
⌈ n

pj

⌉

−
⌊ n

pj

⌋

) +
∑

log n/ log p<j≤log(n2+21)/ log p

⌈ n

pj

⌉

.

Noting that
⌈ n

pj

⌉

−
⌊ n

pj

⌋

≤ 1 and
⌈ n

pj

⌉

= 1 if j >
log n

log p
, so the above inequality

becomes

�p

2
− �p ≤

∑

j≤log n/ log p

1 +
∑

log n/ log p<j≤log(n2+21)/ log p

1 ≤ log(n2 + 21)

log p
.

It then follows that
∑

p≤n
p∈℘

(
�p

2
− �p) log p ≤ log(n2 + 21)

∑

p≤n
p∈℘

1. (9)

Consequently, we consider the second term: If p ∕= 2, 3, 7, then �p = 0 because
p ∕∈ ℘. As we assume n > 10 at the beginning, we use (2), (3) and (4) to get
that

1

2

∑

p≤n
p∕∈℘

�p log p =
1

2
(�2 log 2 + �3 log 3 + �7 log 7)

=
1

2
(
⌈n

2

⌉

log 2 +
⌊n

3

⌋

log 3 +
⌊n

7

⌋

log 7). (10)

Finally, we deal with the last term. As n > 10, we have p ≥ 11 in this
case. If p ∕∈ ℘, then �p = 0. If p ∈ ℘, it then follows from p > n that

p2 ≥ (n+ 1)2 > n2 + 21. Hence
log(n2 + 21)

log p
< 2, which implies that �p ≤ 2 by

(5). Then by Lemma 2.3, we have

1

2

∑

n<p<2n

�p log p ≤
∑

n<p<2n

log p ≤ n log 4. (11)
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Putting (9), (10) and (11) into (8), we obtain that
∑

p≤n
p∕∈℘

�p log p

<
1

2

(⌈n

2

⌉

log 2 +
⌊n

3

⌋

log 3 +
⌊n

7

⌋

log 7
)

+ log(n2 + 21)
∑

p≤n
p∈℘

1 + n log 4.
(12)

Now we treat the left hand side of the (12): By Lemma 2.2,

�p =
∑

j≤logn/ log p

⌊ n

pj

⌋

≥
∑

j≤log n/ log p

(
n

pj
− 1) ≥ n− p

p− 1
− logn

log p

>
n− 1

p− 1
− log(n2 + 21)

log p
. (13)

So by (12) and (13), we deduce that

(n− 1)
∑

p≤n
p∕∈℘

log p

p− 1
<

1

2
(
⌈n

2

⌉

log 2 +
⌊n

3

⌋

log 3 +
⌊n

7

⌋

log 7)

+ log(n2 + 21)�(n) + n log 4.

Then using Lemma 2.4 and noting that
⌈n

2

⌉

≤ n+ 1

2
,
⌊n

3

⌋

≤ n

3
,
⌊n

7

⌋

≤ n

7
, we

obtain that

∑

p≤n
p∕∈℘

log p

p− 1
<

1

2(n− 1)
(
n+ 1

2
log 2 +

n

3
log 3 +

n

7
log 7 + 2n log 4)

+
log(n2 + 21)

n− 1
((2 log 4)

n

logn
+
√
n). (14)

With a little more effort, we can see that the limit of the right hand side

of (14) is equal to
41

4
log 2 +

1

6
log 3 +

1

14
log 7 (about 7.427) as n tends to ∞.

By the computer we can check that the right hand side is less than 7.78 when
n ≥ 4000000, and the left hand side is bigger than 7.78 when n ≥ 4000000. So
we arrive at a contradiction. Therefore we have proved that for all integers n

with n ≥ 4000000, Pn is not a square.

Now we use Lemmas 2.5 and 2.6 to show that Pn is not a square for all
integers n with 10 < n < 4000000:

(i) Since 42 + 21 = 37 is a prime, the smallest positive integer m satisfying
37 ∣ (m2 + 21) and m ∕= 4 is 37 − 4 = 33 by Lemma 2.5. Then by Lemma 2.6,
Pn is not a square for all integers n with 4 ≤ n ≤ 32.

(ii) Because 162 + 21 = 277 is a prime, the smallest positive integer m satis-
fying 277 ∣ (m2 + 21) and m ∕= 16 is 277 − 16 = 261 by Lemma 2.5. Hence by
Lemma 2.6, Pn is not a square for all integers n with 16 ≤ n ≤ 260.
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(iii) For 502+21 = 2521 is a prime, the smallest positive integer m satisfying
2521 ∣ (m2 + 21) and m ∕= 50 is 2521 − 50 = 2471 by Lemma 2.5. Thus by
Lemma 2.6, Pn is not a square for all integers n with 50 ≤ n ≤ 2470.

(iv) Since 20262 + 21 = 4104697 is a prime, the smallest positive integer m
satisfying 4104697 ∣ (m2 + 21) and m ∕= 2026 is 4104697− 2026 = 4102671 by
Lemma 2.5. Then by Lemma 2.6, Pn is not a square for all integers n with
2026 ≤ n ≤ 4102670. Therefore combining (i), (ii), (iii) with (iv), we obtain
that Pn is not a square for all integers n with 10 < n < 4000000.

Thus we deduce that Pn is not a square for all positive integers n. This
completes the proof of Theorem 1.2.
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