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Abstract

We consider an revealed preference based method which will partition consumer microdata into an

approximate minimal number of preference types such that the data are perfectly rationalisable by standard

utility theory. This provides a simple, nonparametric and theory-driven way of investigating unobserved

preference heterogeneity in empirical data, and easily extends to any choice model which has a revealed

preference characterisation. We illustrate the approach using survey data and �nd that the number of types

is remarkably few relative to the sample size - only 4 or 5 types are necessary to fully characterise all observed

choices in a dataset with 500 observations of choice vectors.
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1 Unobserved Heterogeneity in Microdata

One of the most striking features of consumer microdata is the great heterogeneity in choice behaviour which

is evident, even amongst economic agents which are otherwise similar in observable respects. This presents

researchers with a di¢ cult problem - how to model behaviour in a way which accommodates this heterogeneity

and yet preserves theoretical consistency and tractability.

One rather robust response is to demand that everything should be explainable by the theory in terms of

observables alone. This view is typi�ed by Becker and Stigler (1977):

�Tastes neither change capriciously nor di¤er importantly between people.�G. Becker and G. Stigler

De Gustibus Non Est Disputandum, AER, 1977

The research agenda which follows from this view is one which tries to explain di¤erences in observed

behaviour without recourse to unobserved heterogeneity in tastes, but instead purely in terms of the theory and

observable di¤erences in constraints, characteristics of market goods and characteristics of agents. From this

point of view, resorting to unobserved preference heterogeneity in order to rationalise behaviour is a cop-out;

it is an admission of failure on the part of the theory.
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From this perspective it is therefore a matter of some regret that measures of �t in applied work on microdata

are typically very low - that is, the theory performs poorly (see, e.g., Banks, Blundell, Lewbell 1997 and Lewbel

and Pendakur 2009 who report R2 as low as 20% in consumer demand microdata). As a result, the belief

that unobserved heterogeneity is an inescapable and essential part of the modeling problem has become the

dominant view in the profession. This approach was summarised by the joint 2000 Nobel laureates as follows.

�In the 1960�s, rapidly increasing availability of survey data on individual behavior ... focussed

attention on the variations in demand across individuals. It became important to explain these

variations as part of consumer theory, rather than as ad hoc disturbances". D. McFadden, Nobel

Lecture

�Research in microeconometrics demonstrated that it was necessary to be careful in accounting for

the sources of manifest di¤erences among apparently similar individuals. ... This heterogeneity

has profound consequences for economic theory and for econometric practice.�J. Heckman, Nobel

Lecture

In applied microeconometrics, the standard approach has been to pool data across agents and to model the

behaviour of individuals as a combination of a common component and an idiosyncratic component which re�ects

unobserved heterogeneity. In its least sophisticated form, this amounts to interpreting additive error terms as

unobserved preference heterogeneity parameters. Recently, it has become clear that such an approach typically

requires a combination of assumptions on the functional form of the statistical model and the distribution

of unobserved heterogeneity. Contributions here include McElroy (1987), Brown and Walker (1989), Lewbel

(2001) and Lewbel and Pendakur (2009). Broadly, the current consensus on unobserved heterogeneity is that: it

is a fundamental feature of consumer microdata; if neglected it makes econometric estimation and identi�cation

di¢ cult; and it is rather hard to deal with convincingly, especially in non-linear models and where heterogeneity

is not additively separable.

Whilst the dominant empirical methods, by and large, proceed by pooling agents, the approach which we

develop here is based on partitioning. The spirit of pooling agents is to account for heterogeneity with a

small number of extra parameters (e.g., one) per type or characteristic, as in �xed-e¤ects models with lots of

covariates. Here, most parameters (e.g., those relating to covariates) are shared across the agents in the pooled

model, but each agent has one or more agent-speci�c parameters. In contrast, the spirit of partitioning is

to allow each type to be arbitrarily di¤erent from every other, for example, by giving each type a completely

di¤erent set of parameters governing the e¤ects of covariates.

We work from the basis of revealed preference (RP) restrictions (Afriat 1967, Diewert 1973 and Varian

1982). At heart, RP restrictions are inequality restrictions on observables (prices, budgets and demands), which

provide necessary and su¢ cient conditions for the existence of an unobservable (a well behaved utility function

representing the consumer�s preferences which rationalises the data). RP restrictions are usually applied to

longitudinal data on individual consumers and are used to check for the existence and stability of well-behaved

preferences. In this paper we apply this kind of test to cross-section data on many di¤erent consumers (though,

as we describe below, our idea applies to many contexts with optimising agents). In this context, RP restrictions

are interpretable as a check for the commonality of well-behaved preferences.1

Of course, this is a rather simplistic idea. The very notion that such a check might pass and that the choices

of all of the consumers in a large microeconomic dataset could be explained perfectly by a single common utility
1We are not the �rst to make this observation. Gross (1995) also applies RP tests to cross sectional consumer data in order to

look at the evidence for and against the assumption of commonality.
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function is, as Lewbel (2001) points out, �implausibly restrictive�. The real problem is what to do if (or more

likely when) the data do not satisfy the RP restrictions. It is important to recognise that there are many reasons

that a model which assumes homogeneous preferences might �t the data poorly including mistakes by the data

collector (measurement error), mistakes by the individuals themselves (optimisation error) and mistakes by

the theorist (speci�cation error, which is to say applying the wrong model). The truth is doubtless a mixture

of all three but this paper focuses primarily on the last of these and in particular on the issue of preference

heterogeneity and asks how far we can get by assuming that this is the sole cause of poor �t2 . Dean and Martin

(2010) provide one type of solution along these lines: they show how to �nd the largest subset of the data that

do satisfy (some of) the RP restrictions. However, their approach leaves some of the data as unexplained by

the optimising model.

The contribution of this paper is to provide a di¤erent (and complementary) set of strategies for the case

where the pooled data violate the RP restrictions. Here, some amount of preference heterogeneity is necessary

in order to model those data� we need more than just one utility function. The question is how many do we

need? Is it very many (perhaps as many as there are observations), or just a few? This paper shows how to

�nd out the minimum number of types (utility functions) necessary to fully explain all observed choices in a

data set. In seeking the minimum number of utility functions necessary to rationalise behaviour, we keep with

Friedman�s (1957) assertion that we don�t want the true model, which may be unfathomably complex; rather,

we want the simplest model that is not rejected by the data. Occam�s Razor applies here: we know that we can

fully explain behaviour with a model in which every agent is arbitrarily di¤erent from every other, but that

model is not useful for modeling or predicting behaviour. Instead, our aim is to group agents into types to the

maximum possible degree that is consistent with common preferences. If the minimum number of types (utility

functions) is very large relative to the number of observations, then modeling strategies with a continuum of

types, or with one type for each agent (such as �xed e¤ects models), might be appropriate. In contrast, if

the minimum number of types is small relative to the number of observations, then modeling strategies with a

small number of discrete types, such as those found in macro-labour, education choice, and empirical marketing

models, might be better.

We argue that our approach o¤ers two main bene�ts which may complement the standard approaches to

unobserved heterogeneity in empirical work. Firstly, it provides a framework for dealing with heterogeneity

which is driven by an economic model of interest and it thereby provides a practical method of partitioning

data so that the observations in each group are fully theory-consistent. This contrasts with approaches wherein

only part of the model (the part which excludes the unobserved heterogeneity) satis�es the theory.3 Secondly,

it is elementary: our approach does not require statements about the empirical distributions of objects we

can�t observe or functional structures about which economic theory is silent. This contrasts with the standard

approach of specifying a priori both the distribution of unobserved preference heterogeneity parameters and

its functional relationship with observed variables.

We implement our strategy with cross-sectional dataset consumer microdata. These data happen to record

milk purchases but, importantly, they have individual-level price, quantity and product characteristics infor-

mation, and so are ideal for the application of RP methods. We �nd that at the number of types needed to

completely explain all of the observed variation in consumption behaviour is quite small relative to the number

of observations in our data. For our main application, with a cross-sectional dataset of 500 observations of

2 In fact the approach considered here can be augmented to allow for measurement and optimisation errors as well. The methods
involved are not original to this paper but we give a brief account of them in the Appendix.

3We note that by having a model in which the data are theory-consistent by construction, one cannot test the theory. Indeed,
in our context, testability amounts to precluding unobserved heterogeneity.

3



quantity vectors, we �nd that 4 or 5 types is enough. Furthermore it seems that two-thirds of the data are

consistent with a single type and two types are su¢ cient to model 85% of the observations.

The paper is organised as follows. We begin with a description of the cross-sectional data on household

expenditures and demographics which we use in this study. We then investigate whether these data might be

rationalised by partitioning on observed variables which form the standard controls in microeconometric models

of spending patterns. We then set out a simple method for partitioning on revealed preferences, and consider

whether the results from these partitioning exercises can be a useful input to econometric modelling of the

data. We then consider the problem of inferring the number of types in the population from which our sample

is drawn. The �nal section draws some conclusions.

2 The Data

In this paper we focus on the issue of rationalising cross-sectional household-level data on spending patterns

with the standard static utility maximisation model of rational consumer choice. This approach can readily be

extended to other more exotic economic models which have a nonparametric/revealed preference characterisation

(examples are given in the discussion and in the Appendix). The data we use are on Danish households and

their purchases of milk. These households comprise all types ranging from young singles to couples with children

to elderly couples. The sample is from a survey of households which is representative of the Danish population.

Each household keeps a strict record of the price paid and the quantity purchased as well as the characteristics

of the product. We aggregate the milk records to a monthly level, partly to ease the computational burden

and partly to allow us to treat milk as a non-durable, non-storable good, so that the intertemporally separable

model which we are invoking is appropriate. Six di¤erent types of milk are recorded in the data: skimmed, semi-

skimmed or full-fat versions of either organic or conventionally produced milk. Quantity indices are computed

by simply adding the volume of each variety purchased and a corresponding unit price (total expenditure on

a given variety divided by the total volume of that variety purchased) is used as the price index. That we

can di¤erentiate varieties is a particularly attractive feature of the these data because it means that variation

in these prices in the cross section is principally due to supply and demand variation across markets (de�ned

by time and location) and not due to unobserved di¤erences in product qualities and characteristics4 . Our

full dataset has information on 1,917 households. Since some of the following calculations are computationally

quite expensive we begin by drawing a smaller random sample of 500 households from our data. In section 6

we return, gradually, to the full sample size.

Descriptive statistics are given in Table 1. In what follows let I = fi : i = 1; :::; 500g denote the index set
for these observations and let fpi;qigi2I denote the price-quantity data. We will also make use of a list of
observed characteristics (these are standard demographic controls used in demand analysis) of each household

and these are represented by the vectors fzigi2I .
Given these data the question of interest is whether it is possible to rationalise them with the canonical

utility maximisation model. The classic result on this issue is provided by Afriat�s Theorem (see especially Afriat

(1967), Diewert (1973) and Varian (1982, 1983)). Afriat�s Theorem shows that the generalised axiom of revealed

preference (GARP) is a necessary and su¢ cient condition for the existence of a well-behaved utility function u (q)

which exactly rationalises the data. Such rationalisability requires that for every observed choice, qi, the choice

made weakly utility-dominates all other a¤ordable choices: u (qi) � u (q) for all q such that p0iqi � p0iq. Let
4See Deaton (1988) for a discussion of the problems which arise when unit prices which combine multiple varieties of goods are

used.
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p0iqi � p0iqj , qiR
0qj denote a direct revealed preference relation and let R be the transitive closure of R0. The

generalised axiom of revealed preference (GARP) is de�ned by the restriction that qiRqm ) p0iqi � p0iqm. If
observed demands fpi;qigi2I satisfy these GARP inequalities, then there is a single utility function (preference
map) that can rationalise all observed demands. If not, then there is not.

Table 1: Descriptive Statistics

Mean Min Max Std. Dev

fwigi=1;::;500 Budget Shares
Conventional Full Fat 0.1688 0 1 0.3158

Conventional Semi-skimmed 0.4255 0 1 0.4102

Conventional Skimmed 0.1521 0 1 0.2932

Organic Full Fat 0.0374 0 1 0.1394

Organic Semi-skimmed 0.0977 0 1 0.2237

Organic Skimmed 0.1185 0 0.9951 0.2669

Total Expenditure (DK)
Total Expenditure 66.1986 4.8222 345.1279 58.5765

fpigi=1;::;500 Prices (DK litre)

Conventional Full Fat 6.1507 3.3068 11.3289 0.4652

Conventional Semi-skimmed 5.4104 4.0919 7.9567 0.4304

Conventional Skimmed 5.1524 4.1619 6.2075 0.1814

Organic Full Fat 7.3335 6.1188 8.6597 0.1860

Organic Semi-skimmed 6.4968 5.0565 8.5374 0.2187

Organic Skimmed 6.2679 5.5312 7.9684 0.1501

fzigi=1;::;500 Demographics
Singles f0; 1g 0.3260 0 1 0.4692

Singles Parents f0; 1g 0.0420 0 1 0.2008

Couples f0; 1g 0.3500 0 1 0.4774

Couples with children f0; 1g 0.2300 0 1 0.4213

Multi-adult f0; 1g 0.0520 0 1 0.2222

Age (Y ears)) 47.8600 18 87 15.5240

Male HoH f0; 1g 0.92 0 1 0.27156

We checked the data for consistency with GARP and it failed5 . No single utility function exists which can

explain the choices of all of these households - Lewbel�s (2001) warning seems to be justi�ed. So we now turn to

the question: how many well-behaved utility functions are required to rationalise these price-quantity microdata?

Obviously 500 utility functions, each one rationalising each observation, will be over-su¢ cient. The next two

section explore the idea of conditioning on observed demographic variables and revealed preferences in order to

�nd a minimal necessary partition of these data.

5We use the method described in Varian (1982) which uses an algorithm due to Warshall (1962) to check for cycles whch violate
GARP. The time required is proportional to the number of observations cubed. See the Appendix in Varian (1982) for details.
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3 Partitioning on Observed Variables

We begin by investigating whether it is possible to achieve a parsimonious partition of the data using "standard

observables" - i.e. the sorts of variables which are often used as conditioning variables in microeconometric

demand systems. To do this we used information on the structure of the household (de�ned according to 5

groups: single person households, single parents, couples, couples with children and multi-adult households),

the age of the head of household (3 roughly equally-sized groups: less than 40 years old, 40 to 60 years old

and over 60), region (there are 9 regional indicators observed in the data), the gender of the head of household

and the size of the household�s budget (deciles). Using these variables to partition observations there were 341

non-empty cells - the distribution of groups sizes were 235, 68, 29, 5, 2 and 2 for singletons, pairs, triples and

groups of 4, 5 and 6 households respectively. Despite the fact that this partitioning of the data was clearly

very �ne, and that by creating groups composed of very small numbers of households we improve the prospect

that within-group tests of GARP are satis�ed (indeed singletons cannot fail) we found this did not produce a

partition which was consistent with within-group commonality of preferences. It seems that even very small

groups of households with similar observable characteristics exhibit preference heterogeneity. An interesting

implication of this exercise6 is that one can immediately conclude that no combination of two or three of these

conditioning variables can produce consistent partitions. This is because combined data from multiple cells

will always violate GARP if any of the data in the contributing cells violate. Thus, if a �ne partition cannot

rationalise the data, then neither can any coarser partition constructed from it.

Instead of using pre-de�ned cells to partition the data it is also possible to take a more data-driven, adaptive

approach. This is essentially a question of designing a search algorithm which uses the results of a sequence of

GARP tests to tell the investigator where to place the partitions. The simplest example of such an approach

would be to order the data by some observable like age then to start with the youngest household and add

successively older households until the current group violates GARP. The data are partitioned at this point

and the last household to be added is then used to start the next group and so on. If the investigator wishes to

consider other conditioning variables then the resulting partition is naturally path-dependent (the order in which

one selects the variables with which to order the data a¤ects the �nal result). As the number of conditioning

variables grows the number of potential paths grows very quickly as does the computational complexity of

�nding the best solution. Nonetheless, while it may not be computationally feasible to �nd a fully e¢ cient

solution by checking all paths, such an approach does hold out the possibility of �nding a more parsimonious

partition than might be available through the use of pre-de�ned groups. To investigate we �rst strati�ed the

data according to the household structure variable described above, and next ordered the household of each

structure by the age of the head of household and, beginning with the youngest, we sequentially tested the RP

condition in order to see whether we could rationalise behaviour by a further partition on age into contiguous

bands. This proved impossible because there were instances of households with the same structure whose

heads of household were the same age whose behaviour was not mutually rationalisable. Having �rst split by

household structure, and then split by age and not yet found a rationalisation for the data we further split by

region. This too failed to rationalise the data as there were instances of households with identical structure and

age living in the same region who were irreconcilable with a common utility function. We then looked at the

gender of the household head. This, �nally, produced a rationalisation of the data. In contrast to the exercise

which used 341 pre-de�ned cells and still could not rationalise the data, this adaptive procedure produced a

consistent partition with 46 types de�ned by household structure/age/region/gender.

6We are grateful to an anonymous referee for suggesting this.
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The left hand panel of Figure 1 shows the distribution of group sizes with the groups ordered largest to

smallest. This shows that the largest groups consist of approximately 5% of the data (there are two such groups)

whilst the smallest (the 44th, 45th and 46th on the left of the histogram) consist of singletons. The right hand

panel of Figure 1 shows the cumulative proportion of the data explained by the rising numbers of types. The

�rst ordinate shows that approximately 5% of the data are rationalisable by one type (the most numerous) and

approximation 10% by two most numerous types. Ten types are needed to rationalise half the data.

Figure 1. Partitioning on Observed Demographics
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It appears, therefore, that e¤orts to �nd a partition of the data in to types which admit common within-type

preferences on the basis of the sorts of variables typically observed in microdata on consumer choices does not

seem to produce a parsimonious result. Whilst a search algorithm does a great deal better than the simpler

�xed-cell type of approach the results are still not impressive - each type only accounts for around 2% of the

data on average.

4 Partitioning on Revealed Preferences

In this section we consider partitioning on revealed preferences. As before we are interested in trying to split

the data into as few (and as large) groups as we can such that all of the households within each group can

be modelled as having a common well-behaved utility function. However this time we will not use observables

like those used above to guide/constrain us. The simplest �brute force� approach would be to check the RP

restrictions within all of the possible subsets of the data and retain those which form the minimal exclusive

exhaustive partitions of the data. This is computationally infeasible as there are 2500 such subsets. Instead we

have designed two simple algorithms which will provide two-sided bounds on the minimal number of types in

the data. The details of the algorithms need not detain us here (they are described in the Appendix).

We ran the algorithms on our data and found that the minimal number of types was between 4 and 5.

That is one needs at least 4, and not more than 5, utility functions to completely rationalise all the observed

variation in choice behaviour observed in these data in terms of income and substitution e¤ects.7 For our upper

7Recalling that our data are a random sample of 500 observations from a larger dataset of 1,917 observations, we also investigated
the variability of these bounds induced by (re)sampling. We took 25 samples of 500 observations with replacement and calculated
the bounds on the number of types in each sample. In all cases the bounds remained [4,5]. We are very grateful to an anonymous
referee for suggesting this exercise and conclude from it that the bounds on the number of types, for a given sample size, is
reasonably robust to sampling variation. We investigate the e¤ects of varying the size of the sample below.
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bound of 5 types our algorithm also delivers a partition of the data into the groups, such that within-groups a

single utility function is su¢ cient to rationalise all the observed behaviour8 . Table 2 gives the average budget

shares for each group delivered by our upper bound algorithm and Figure 2 shows the distribution of types and

gives the same information as Figure 1 on the same scale for ease of comparison and in order to emphasize how

parsimonious this partition is in comparison. In contrast to Figure 1 we can see that a single utility function

can rationalise the observed choices of around two-thirds of the sample. And two utility functions is all that is

needed to rationalise nearly 85% of the data.

Figure 2. Partitioning on Unobserved Variables
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Our expectation was that, even though conditioning on observables did not seem to be able to produce a

perfect and parsimonious partition of the data, nonetheless observable characteristics of households would be

important correlates of type-membership. However, a multinomial logit model of group membership conditional

on demographic characteristics (age and sex of household head, number of members, number of children and

geographic location) has a (McFadden unadjusted) pseudo-R2 of only 5.4%.9 That is, observed characteristics

of households are essentially uninformative regarding which of the �ve types to which a household is assigned.

The implication here is that, in a framework where we want to �nd the minimum number of types, preference

heterogeneity is vastly more important than demographic heterogeneity.

Table 2: Average Budget Shares Across Types

Conventional Milk Organic Milk

Sample Means Group N Full-fat Semi Skim Full-fat Semi Skim

pooled 500 0.168 0.425 0.152 0.037 0.097 0.118

Type 1 321 0.160 0.496 0.143 0.024 0.075 0.100

Type 2 100 0.155 0.285 0.205 0.070 0.121 0.162

Type 3 53 0.239 0.351 0.074 0.044 0.144 0.147

Type 4 18 0.134 0.256 0.148 0.032 0.258 0.170

Type 5 8 0.292 0.195 0.357 0.128 0.017 0.009

8Note that the allocation of households to groups is not necessarily unique - it might be feasible to allocate any given housheold
to more than one group. We return to this point below.

9We note that the low value of the pseudo-R2 is not driven by the large number of classi�cations (5). If we drop the 5th type
(the smallest group), the pseudo-R2 drops to 4.5%, and if we drop the 4th and 5th types (the two smallest groups), it drops to
4.1%. We also not that the mean value of each regressor is not signi�cantly di¤erent across groups.
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5 Estimation of Preferences

The incorporation of unobserved preference heterogeneity into demand estimation is a theoretically and econo-

metrically tricky a¤air. Matzkin (2003, 2007) proposes a variety of models and estimators for this application,

all of which involve nonlinearly restricted quantile estimators, and most of which allow for unobserved het-

erogeneity which has arbitrary (but monotonic) e¤ects on demand. These models are di¢ cult to implement,

and, as yet, only Matzkin (2003, 2007) has implemented them. Lewbel and Pendakur (2009) o¤er an empir-

ical framework that incorporates unobserved preference heterogeneity into demand estimation that is easy to

implement, but which requires that unobserved preference parameters act like �xed e¤ects, pushing the entire

compensated budget share function up or down by a �xed factor.

Given the di¢ culty of incorporating unobserved preference heterogeneity beyond a �xed e¤ect, it is in-

structive to evaluate how our 5 utility functions di¤er from each other. Since group 5 has only 8 observations

assigned to it, we leave it out of this part of the analysis. For the remaining groups we estimate group-speci�c

demand systems. Since we know that, within each type, there exists a single preference map which rationalises

all of the data we need not worry about unobserved heterogeneity in our estimation. We know that there is

a single integrable demand system which exactly �ts the data for each group. The problem we face is that

we do not know the speci�cation of that demand system so our main econometric problem is �nding the right

speci�cation. We take the simplest possible route here and estimate a demand system with a �exible functional

form - the quadratic almost ideal (QAI) demand system (Banks, Blundell and Lewbel 1997)). The idea is that

such a model should be �exible enough to �t the mean well and that the interpretation of the errors is solely

speci�cation error10 .

The QAI demand system has budget shares, wji , for each good j = 1; :::;K and each household i = 1; :::; N

given by

wji = a
j +

KX
j=1

Ajk ln pki + b
j ln exi + qj (ln exi)2 =ebi + eji ;

where

ln exi = lnxi �
KX
k=1

ak ln pki �
1

2

KX
k=1

KX
l=1

Akl ln pki ln p
l
i; and

ebi =
KY
k=1

(pki )
bk ;

and pk are prices, x is total expenditure on all (milk) goods and ej are error terms. The rationality restrictions

of homogeneity and symmetry require that
P

k a
k = 1,

P
k b

k =
P

k q
k = 0,

P
k A

kl = 0 for all l, and Akl = Alk

for all k; l. We impose these restrictions and report the coe¢ cients ak and bk in Table 3 below. Here, Engel

Curves (de�ned as budget-share functions over expenditure holding price constant) are roughly quadratic in

the log of total expenditure. Blundell and Robin (1999) show that this budget-share system may be estimated

by iterated seemingly unrelated regression (SUR), and we use that method. For estimation, we normalise

each price to its median value and normalise expenditure to its median value, so that at median prices and

expenditure, ln pk = lnx = 0. In practise, the estimates from this iterated model are �close� to estimated

coe¢ cients from OLS regression of budget shares wj on a constant (aj), log-prices (Ajk), log-expenditure (bj)

and its square (qj).

10Measurement error is much more cumbersome to consider in a revealed-preference context, so we do not consider it here.
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By estimating budget-share equations for each of our four largest groups we characterise what their Engel

curves look like and test whether or not including group dummies in budget share equations (as in Lewbel and

Pendakur (2009)) is su¢ cient to absorb the di¤erences across these utility functions.

Table 3: Predicted Budget Shares and Semi-Elasticities, QAI Estimation

Conventional Milk Organic Milk

Group Group N Full-fat Semi Skim Full-fat Semi Skim

Levels, aj

group 1 321 0.155 0.434 0.173 0.020 0.085 0.133

(0.022) (0.030) (0.021) (0.007 (0.014) (0.017)

group 2 100 0.153 0.287 0.194 0.089 0.092 0.184

(0.032) (0.044) (0.041) (0.021) (0.028) (0.032)

group 3 53 0.195 0.330 0.091 0.070 0.130 0.184

(0.055) (0.064) (0.033) (0.027) (0.036) (0.041)

group 4 18 0.084 0.171 0.295 0.052 0.209 0.190

(0.061) (0.075) (0.079) (0.028) (0.061) (0.057)

Semi-Elasticities wrt Expenditure, bj

group 1 321 -0.040 0.004 0.021 -0.003 0.002 0.016

(0.018) (0.025) (0.017) (0.006) (0.011) (0.014)

group 2 100 -0.044 0.066 -0.030 -0.033 -0.002 0.043

(0.032) (0.043) (0.041) (0.021) (0.028) (0.032)

group 3 53 -0.013 0.010 -0.044 0.016 -0.019 0.049

(0.056) (0.065) (0.034) (0.027) (0.037) (0.042)

group 4 18 -0.099 0.034 -0.175 0.028 0.268 -0.056

(0.069) (0.087) (0.092) (0.032) (0.070) (0.065)

The top panel of Table 3 gives predicted budget-shares for each group, evaluated at a common constraint

de�ned by the vector of median prices and the median milk expenditure level. (These are the level coe¢ cients in

the QAI regressions for each group, where prices and expenditures are normalised to 1 at the median constraint.)

The point estimates di¤er quite substantially across groups, and a glance at the estimated standard errors shown

in parentheses (and italics) shows that the hypothesis that these point estimates are the same value is heartily

rejected.

The bottom panel of Table 3 gives estimated slopes of budget-shares with respect to the log of expenditure

(expenditure semi-elasticities) at a common constraint de�ned by the vector of median prices and the median

milk expenditure level. These are the slope coe¢ cients in the QAI regressions for each group, and they di¤er

somewhat across groups. We can weakly reject the hypothesis that the slopes are the same across all 4 groups:

the sample value of the Wald test statistic for the hypothesis is 26, and under the Null it is distributed as a �215
with a p-value of 3:7%. In fact, the restriction that we can bring in heterogeneity via group dummies implies

that all these groups have the same slope and curvature terms. This hypothesis is also weakly rejected� the

sample value of the test statistic is 45:4, and under the Null it is distributed as a �230 with a p-value of 3:5%.

Individually, only groups 2 and 4 show evidence that they di¤er from group 1 in terms of the total expenditure

responses of budget shares (they test out with p-values of 8% and 1%, respectively).

Whereas expenditure e¤ects di¤er only modestly across groups, the estimated price responses of budget

shares di¤er greatly across groups. We do not present coe¢ cient estimates here because there are 15 of them
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for each group, but we can assess their di¤erence across groups via testing. The test that all 4 groups share

the same price responses has a sample value of 382, and is distributed under the Null as a �245 with a p-value

of less than 0:1%. Further, any pairwise test of the hypothesis that two groups share the same price responses

rejects at conventional levels of signi�cance.

One can also test the hypothesis the heterogeneity across the types can be absorbed into level e¤ects. Not

surprisingly, given that we reject both the hypotheses that total expenditure e¤ects are identical and that

price e¤ects are identical, this test is massively rejected. The test statistic has a sample value of 405, and is

distributed under the Null as a �275 with a p-value of less than 0:1%.

One problem with using the QAI demand system to evaluate the di¤erences across groups is that there is

no reason to think that the functional structure imposed by the QAI demand system is true. An alternative

approach is to use nonparametric methods. These methods have the advantage of not imposing a particular

functional form on the shape of demand. They have the disadvantage of su¤ering from a severe curse of

dimensionality, because in essence one needs to estimate the level of the function at every point in the support

of possible budget constraints. The dimensionality problem is that this support grows fast with the number of

goods in the demand system. A nonparametric approach that does not su¤er from the curse of dimensionality

is to try to estimate averages across the support of budget constraints.

Table 4: Predicted Budget Shares and Semi-Elasticities, Nonparametric Estimation

Conventional Milk Organic Milk

Group Group N Full-fat Semi-fat Skimmed Full-fat Semi-fat Skimmed

Average Levels

group 1 321 0.157 0.465 0.158 0.027 0.078 0.115

(0.015) (0.020) (0.014) (0.006) (0.014) (0.013)

group 2 100 0.168 0.292 0.191 0.074 0.092 0.184

(0.022) (0.035) (0.029) (0.013) (0.015) (0.028)

group 3 53 0.201 0.362 0.073 0.034 0.128 0.201

(0.056) (0.056) (0.019) (0.017) (0.032) (0.056)

Average Semi-Elasticity wrt Expenditure

group 1 321 -0.020 0.013 0.003 -0.001 -0.016 0.022

(0.022) (0.028) (0.016) (0.007) (0.009) (0.014)

group 2 100 -0.048 0.068 -0.084 -0.010 0.000 0.074

(0.028) (0.061) (0.040) (0.013) (0.025) (0.050)

group 3 53 0.028 -0.074 -0.029 -0.002 -0.054 0.132

(0.082) (0.094) (0.027) (0.017) (0.035) (0.099)

In the top panel of Table 4, we present the average over all observed budget constraints of the nonparametric

estimate of budget shares for each group. For the nonparametric analysis, we study only the 3 largest groups,

totaling 474 observations. For each group, we nonparametrically estimate the budget share function evaluated

at each of the 474 budget constraints, and report its average over the 474 values. Nonparametric estimates of

budget-shares given prices and expenditures are computed following Haag, Hoderlein and Pendakur (2009), and

the averages of these estimates are presented in the Table. The nonparametric estimate of the budget-share

vector at a particular expenditure level and price vector is the locally-weighted average of budget-shares, with

weights declining for observations with �distant�prices or expenditures. Haag, Hoderlein and Pendakur (2009)

show how to estimate such a locally weighted model while maintaining the restrictions of Slutsky symmetry
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and homogeneity. Simulated standard errors are in parentheses.11

The top panel of Table 4 shows average levels that are broadly similar to the sample averages reported in

Table 2. However, those reported in Table 4 di¤er in one important respect: whereas those shown in Table

2 are averages across the budget constraints in each group, those reported in Table 4 are averages across the

budget constraints of all groups. That is, whereas the sample averages in Table 2 mix the e¤ects of preferences

and constraints, the nonparametric estimates in Table 4 hold the budget constraints constant. These numbers

suggest that there is a quite a lot of preference heterogeneity. For example, Group 1 and Group 2 have

statistically signi�cantly di¤erent average budget shares for most types of milk.

Given that unobserved heterogeneity which can be absorbed through level e¤ects can �t into recently pro-

posed models of demand (Lewbel and Pendakur 2009), it is more important to �gure out whether or not the

slopes of demand functions di¤er across groups. The bottom panel of Table 4 presents average derivatives with

respect to the log of expenditure (that is, the expenditure semi-elasticities of budget share functions), again

averaged over the 474 observed budget constraints, with simulated standard errors shown in parentheses (and

italics).

Clearly, the estimated average derivatives are much more hazily estimated than the average levels. But,

one can still distinguish groups 1 and 2: the skimmed conventional milk budget share function of group 2 has

a statistically signi�cantly lower (and negative) expenditure response than that of group 1. No other pairwise

comparison is statistically signi�cant. However, the restriction that the average derivatives are the same across

groups combines 10 z-tests like this, two restrictions for each of the 5 independent equations. One can construct

a nonparametric analogue to the joint Wald test of whether or not the three groups share the same expenditure

responses in each of the 6 equations. This test statistic has a sample value of 24:3 and has a simulated p-value

of 0:7%.12

The picture we have of the heterogeneity in the consumer microdata is as follows. First, we can completely

explain all the variation of observed behaviour with variation in budget constraints and 4 or 5 preference maps

(i.e. ordinal utility functions). Second, the groupings are not strongly related to observed characteristics of

households. That is, the primary heterogeneity here is unobserved. Third, the groups found by our upper

bound algorithm are very di¤erent from each other, mainly in terms of how budget shares respond to prices,

but also in expenditure responses. That the budget-share equations of the groups di¤er by more than just

level e¤ects suggests that unobserved preference heterogeneity may not act like �error terms�(or �xed e¤ects) in

regression equations, and thus do not �t into models recently proposed to accommodate preference heterogeneity

in consumer demand modeling.

6 How Many Types in the Population?

Up to now, we have concerned ourselves with the question of how many types are needed to characterise

preferences in a sample of micro-economic choice data. This begs the question of how many types are needed
11 It is well-known that average derivative estimators su¤er from boundary bias. Although the estimates in Table 4 do not trim

near the boundaries, estimates which do trim near the boundaries yield the same conclusions. Standard errors are simulated via
the wild bootstrap using Radamacher bootstrap errors. Nonparametric estimators only su¤er from speci�cation error in the small
sample. Such error disappears as the sample size gets large. Further, unobserved heterogeneneity need not cause a deviation
from the regression line, because such heterogeneity is not necessary after our grouping exercise. Thus, the wild bootstrap, which
bases simulations on resamples from an error distribution, is actually an odd �t to the application at hand. An alternative is to
resample from budget constraints (rather than from budget shares) to simulate standard errors. These simulated standard errors
are much smaller, and make the groups look sharply di¤erent from each other in terms of both average levels and average slopes.
12 If we use the alternative resampling strategy which provides tighter standard errors (outlined in the previous footnote), then

the test that the average derivatives are the same for all 3 groups is rejected in each of the 5 independent equations, and, not
surprisingly, rejected for all 5 together.
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to characterise preferences in the population from which the sample is drawn. This is similar in some ways

to the famous coupon collector�s problem (see, e.g., Erd½os and Rényi (1961)) and other classical problems in

probability theory like the problem of estimating how many words Shakespeare knew, based on the Complete

Works (see, e.g., Efron and Thisted (1975)). It is also a di¢ cult problem to answer credibly - especially when

the unseen types in the population are not abundant and there is consequently a high probability that you will

miss them in any given sample.

Biologists have long concerned themselves with a question which is closely analogous to ours, that of the

number of species which exist in the population of animals. Biostatisticians have developed a variety of estima-

tors for this object. Most are based on the �frequency of frequencies�of species in a sample (see, e.g., surveys

by Bunge and Fitzpatrick (1993) and Colwell and Coddington (1994)). The frequency of frequencies records

the number of singletons, de�ned as species observed only once in a sample, the number of doubletons, de�ned

as the number of species observed twice, and so on.

Perhaps the simplest of these estimators is that of Chao (1984) who proposes a lower bound estimator of

the number of species equal to sobs + s21=2s2, where sobs is the number of species observed in the sample, s1 is

the number of singletons, and s2 is the number of doubletons. This estimator has the property that it equals

sobs when there are no singletons (s1 = 0). A variety of other (nonparametric) estimators have been proposed

since Chao (1984), but all those we found have this same property regarding the dependence on the number of

singletons.

Another approach is to characterise the number of species via extrapolation of the number of species observed

in increasingly large samples from a �nite population (Colwell and Coddington (1994) survey this literature).

The idea is intuitively appealing: if the graph of sobs(N), the number of observed species as a function of

sampling e¤ort measured by the sample size N , asymptotes to a �xed number, then this may be taken as an

estimate of the number of species in the population.

The analogy between animal species and preference types is worth considering for a moment. Whether or

not two individuals could have the same utility function, and thus could be of the same type, is veri�able (via

RP tests). However, when revealed preference restrictions are used to identify types, it is often possible to

�t individuals into more than one type. That is to say that the de�nition of a type is not "crisp" and the

allocation of individuals to types is not unique. It may be that persons A and C violate an RP test when

pooled together, and so have di¤erent preferences, but that B passes an RP test when combined with either -

where should we put B? In assessments of biodiversity which apply the statistical methods described above, the

literature proceeds as if there is no such uncertainty as to which species an observation should be assigned. It is

worth pointing out that biologists know that this is not entirely true. There exist "ring species" (the Ensatina

salamanders which live in the Central Valley in California are the famous example) where (sub)species A and C

cannot breed successfully, but species B can breed with either A�s or C�s - where should B lie in the taxonomy?

The biostatistics literature treats this as an ignorable problem. It may or may not be an ignorable problem for

economists. Nonetheless we too will ignore it.

As shown in the previous section we did not �nd any singletons in our dataset of 500 observations. Therefore

the frequencies of frequencies approach cannot be applied fruitfully in our data - it will simply give an estimate

of the number of types in the population equal to the number of types in our sample - we adopt the idea of

plotting sobs(N) and extrapolating. From the full data set of 1917 observations, we took random sub-samples of

sizes 250,500,...,1750, and the full sample of 1917 observations, and ran our upper and lower bound algorithms

to determine bounds on the minimum number of types necessary to rationalise all the observed choices in each

sample. Figure 3 shows results for sobs(N): the upper line traces out the upper bound, and the lower line
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traces out the lower bound. Figure 4 shows the ratio of types to sample size: sobs(N)=N .

Figure 3. The bounds on the number of types against sample size
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Examination of Figure 3 does not immediately suggest an asymptote for sobs(N). However, it is clear

from Figure 4 which shows the ratio of types to sample size that the number of types rises slower than linearly

with the number of observations in the sample. Because the number of observations in the sample does not

get anywhere near the size of the population (about 2.5 million, the number of households in Denmark), we

cannot pick out this asymptote in a nonparametric way. Raaijmakers (1987) suggests the use of the parametric

Eadie-Ho¤stee equation (sobs(N) = spop�Bsobs(N)=N , where spop and B are unknown parameters) to estimate
the asymptote, and provides a maximum likelihood estimator for the asymptote spop, which may be taken as

the estimated number of species in the population. Implementation of this estimator using the upper bound

on the number of types results in an estimate of 10:75 with a standard error of 0:6. This suggests that the

number of types in the population is at most 12.

Figure 4. The bounds on the ratio of types to sample size
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7 Discussion

We consider an elementary method of partitioning data so that it can be explained perfectly by the theory, and

in a way which admits the minimal necessary heterogeneity. We argue that our approach o¤ers two bene�ts

which may complement the more established microeconometrics treatment of unobserved heterogeneity. Firstly

it provides a framework in which to study heterogeneity which is driven by the economic model of interest. In

doing so it provides a practical method of partitioning data so that the observations in each group are precisely

theory-consistent rather than just approximately so. This allows researchers to estimate group-speci�c demand

models without fear of the complications which arise in the presence of unobserved heterogeneity. Secondly it

does not require statements about the distributions of objects we can�t observe or functional structures about

which economic theory is silent.

Throughout this paper we have focused on consumer data and on the canonical utility maximisation model.

This is mainly for expositional reasons and it is important to point out what we are proposing can easily be

applied to the analysis of heterogeneity in any microeconomic model of optimising behaviour which admits

a RP-type characterisation. This is an increasingly wide class which includes pro�t maximisation and cost-

minimisation models of competitive and monopolistic �rms, models of intertemporal choice, habits, choice

under uncertainty, collective household behaviour, characteristics models, �rm investment as well as special

cases of all of these models which embody useful structural restrictions on preferences or technology (e.g. weak

separability, homotheticity and latent separability)13 . To adapt our approach to any of those models, one simply

replaces the GARP check in all the algorithms with the appropriate RP check (see the Appendix). The point

is that our strategy for assessing heterogeneity in the consumer demand framework is in principle applicable to

any environment where agents are assumed to be optimising something.

In the empirical illustration we characterise the amount of heterogeneity necessary to completely rationalise

the observed variation in our consumer microdata. We �nd that very few types are su¢ cient to rationalise

observed behaviour completely. Our results suggest that Becker and Stigler had it wrong in De Gustibus:

preferences do indeed di¤er both capriciously and importantly between people. The capriciousness is that

although in the three decades since Becker and Stigler�s assessment, we have learned much about how to deal

with preference heterogeneity that is correlated with observed variables, it seems that the more important kind

of heterogeneity is driven by unobserved variables. Our results also suggest that models which use a small

number of heterogeneous types� such as those found in macro-labour models, education choice models, and a

vast number of empirical marketing models� may in fact be dealing with unobserved heterogeneity in a su¢ cient

fashion. In contrast, models like Lewbel and Pendakur (2009), in which unobserved preference heterogeneity

is captured by a multidimensional continuum of unobserved parameters could well be overkill.

13Afriat (1967), Diewert (1973), Varian (1982, 1983a, 1983b, 1984), Hanoch and Rothschild (1972), Browning (1989), Bar-Shiva
(1992), Cherchye, De Rock and Vermuelen (2007),Blow et al (2008),
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Appendix

Partitioning Algorithms

Notation: For an arbitrary set A, P (A) denotes the power set (set of all subsets) of A The number of elements
of A is denoted by jAj. For arbitrary sets A and B; AnB denotes A minus B: all elements from A that are not

in B: In what follows I is th e index set f1; :::; Ng:

Brute Force Algorithm

Inputs: I; fpi;qigi2I : Outputs: N and G.

1. If fpi;qigi2I satis�es RP set N = 1; G = I and goto (6).

2. Set H =
�
h : h 2 P (I) ; fpi;qigi2h satis�es RP

	
3. Set J =

n
j : j 2 P (H) ; [

sk2j
sk = I where sk 2 j

o
4. N = min fjjj : j 2 Jg :
5. Set G = fj : j 2 J; jjj = Ng :
6. Stop.

The outputs of the �Brute Force�algorithm are N = the number of types and G = a set containing all of

the exclusive and exhaustive partitions of the data into N subsets such that the data in each type satisfy RP.

This algorithm works by simply enumerating all of the subsets of the data, checking RP conditions within those

subsets and then �nding the minimal partition based on those subsets which satisfy RP.

Upper Bound Algorithm.

Inputs: I; fpi;qigi2I . Outputs: N and G

1. If fpi;qigi2I satis�es RP set N = 1; G = I and goto (8).

2. Select i 2 I with uniform probability, set I = Ini:
3. Set G1 = fig, set G =

�
G1
	

4. If I 6= ?, select i 2 I with uniform probability, set I = Ini,
set E = G: Else if I = ? goto (8)

5. If E 6= ?, select g = argmax
�
jgj : g 2 E

	
,

if g contains more than one element set g = mini
�
Gi 2 g

	
;

set E = Gng:
Else goto (7)

6. If fpj ;qjgj2fg;ig satis�es RP set G = Gng, set g = g [ i,
set G = G [ g and goto (4); else goto (5).

7. Set GjGj+1 = fig, set G = G [GjGj+1, goto (4).
8. N = jGj
9. Stop.

The outputs of the Upper Bound algorithm are N = the upper bound on the number of types and G =

a set containing an exclusive and exhaustive partition of the data into N subsets such that the data in each

type satisfy the RP conditions. The algorithm works on the principle of randomly ordering the data and trying
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to construct groups which satisfy RP conditional on that ordering. As new observations are drawn it tries to

add them to the existing partition and starts by placing them in the largest group available. If an observation

cannot be added to an existing group it is used to initialise a new group. The upper bound algorithm begins

by picking a single observation at random without replacement. This forms the basis for the �rst group. It

then chooses the next observation at random also without replacement and tests whether the two satisfy RP.

If they do they are placed together in the �rst group. If they don�t the new observation is used to begin a new

group. The next observation is then drawn and, starting with the largest existing group an RP test is used to

determine whether it can by placed in that group. It is placed into the �rst group where it satis�es RP. If no

such group can be found amongst the exists groups the observation is used to start a new group. The algorithm

continues in this way until the dataset is empty and all observations have been assigned to groups. Since this

algorithm relies on a random ordering of the data we run it a number of times and retain the minimum partition

over these independent runs. In all of the empirical work in this paper we used 50 runs of the algorithm.

Lower Bound Algorithm.

Inputs: I; fpi;qigi2I .. Output: N

1. If fpi;qigi2I satis�es RP set N= 1; g = 1 and goto (6).

2. Select i 2 I randomly with uniform probability, set I = Ini and g = i
3. If I 6= ?, select j 2 I with uniform probability, set I = Inj,
else if I = ? goto (6)

4. If the dataset fpj ;qj ;pi;qig8j;i2fj;gg violates RP set g = g [ j. Goto (3).
5. N= jgj
6. Stop.

The output of the Lower Bound algorithm is N = the lower bound on the number of types. This algorithm

works on the principle that if we can �nd N observations which violate RP in all pairwise tests conducted

between themselves, then there must be at least N groups (since none of these observations could ever be

placed in the same group). It begins by selecting an initial observation at random without replacement. It

then picks another observation without replacement and tests RP. If the pair satisfy RP the second observation

is dropped and a new observation selected. However if the pair violate RP the new observation is retained.

We now have two observations which violate RP. A third observation is now selected from the data without

replacement. This is tested against each of the observations currently held. If it violates in pairwise tests

against all of them then it is retained. Otherwise it is dropped. The algorithm continues in this way until the

dataset is exhausted. At the end of the process the algorithm has collected together a set of observations which

all violate pairwise RP test conducted between each of them. The number of these observations gives the lower

bounds N: As before the algorithm is reliant on a random ordering of the data. We therefore run the process

a number of times and retain the maximum value of N we �nd.

Allowing for Optimisation Errors

In the body of the paper we have treated the data as error free. We now consider optimising error by consumers

and measurement errors by the data collector. Our treatment of these issues is not original to this paper14 .

The point of this section is merely to show, brie�y, that these treatments can be applied in our context.

14The treatment of optimisation errors in RP tests is due to Afriat (1967) and that of measurement error is due to Varian (1985).
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Afriat (1967) interpreted RP checks as a con�ation of two sub-hypotheses: theoretical consistency and the

idea that economic agents are e¢ cient programmers. If the data violate the conditions then it may be that

some consumers have made optimisation errors. His suggestion was that, instead of requiring exact e¢ ciency, a

form of partial e¢ ciency is allowed. This is achieved by introducing a parameter e 2 [0; 1] (the Afriat e¢ ciency
parameter) such that

ep0tqt � p0tqs , qtR
0
eqs

The weaker form of GARP is then

qjReqi ) ep0iqi � p0iqj

where Re is the transitive closure of R0e. The interpretation of e is as the proportion of the consumer�s budget

which they are allowed to waste through optimisation errors. This parameter is used to modify the restrictions

of interest to allow for a weaker form of consistency (see Afriat (1967)). To admit optimisation error into

the partitioning approach all we need to do is to specify a level for e in advance and insert the modi�ed RP

restriction into the algorithms at the appropriate steps (step (2) in the exact algorithm, step (6) in the upper

bound and step (4) in the lower bound algorithm). It is then straightforward to examine how the results vary

with the required e¢ ciency level. The e¤ects of allowing for optimisation errors is to reduce the amount of

heterogeneity which is needed to rationalise the data. Admit enough error and it is possible to rationalise almost

anything. As a result, running the algorithms without these adaptations will give a �worst-case�assessment,

delivering the �maximum minimum�number of groups.

We implemented this methodology with our sample of 500 observations of household milk demands. Clearly

if there is enough optimisation error, then one can explain any behaviour with just one utility function. This

is what we observe for e � 0:781. For e greater than this, more than one utility function may be required to

explain the variation in behaviour that we observe. For e � 0:90, more than one utility function is de�nitely
required to explain the variation in observed behaviour.

Table A.1: Bounds and Afriat E¢ ciency

e Bounds

0.78 1

0.80 2

0.85 2

0.90 [2,3]

0.95 [3,4]

1.00 [4,5]

A method for dealing with classical measurement error is described in Varian (1985) and it is as follows.

Suppose that the demands are measured with error which is assumed normal with mean zero and variance

�2. Suppose further that we knew the true demands q�t : Then et = q�t � qt and the statistic
P

t e
0
tet=�

2 is

chi-squared. Thus if we knew the true values we could, given this probablistic model for the measurement error,

proceed on this basis to compute the probability with which the true data satisfy the RP criteria. The trouble

is we do not know the truth so statistics based on the distance between the observations and their true values

are not immediately useful. However Varian (1985) suggests replacing et = q�t � qt with ut = bqt � qt where bqt
solves the quadratic programming problem

min
fbqtgt=1;:;;;T

X
t

u0tut=�
2
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subject to the constraint that fpt; bqtgt=1;:::;T satis�es the RP restrictions. Thus the fbqtgt=1;:;;;T represent the
closest (in the least-squares sense) set of demands which satisfy the RP restrictions. Under the null hypothesis

that the true data satisfy the theory the distance between the observed demands and the true demands cannot

be less than the distance between the observed demands and these closest, theory-consistent points. Thus,

it is argued, basing a statistical test on whether
P

t u
0
tut=�

2 exceeds an � critical value gives a conservative

approach to inference in the sense that the probability of rejecting the hypothesis that the true data satisfy the

RP restrictions will be less than �. The essence of Varian (1985) is to use the quadratic programming problem

to bound the unobserved random variable. In the present context this is, in principle, a straightforward bolt-on

to the methods described in the paper: whenever an RP test is used to detect whether observations are of a

common type a statistical test along these lines can be implemented given a suitable assumption about the

form of the measurement error. The computational cost is likely to considerable though because ever test would

involve solving a quadratic programming problem with, depending on the number of agents involved, very many

parameters.

Panel Methods

So far we have considered cross-section data. Clearly in cross section data, where each consumer is observed

only once, some degree of commonality in preferences is necessary in order to make progress in applied work.

However panel data generally holds out the hope of identifying more about individuals than is possible with

cross section data. Indeed panel data has two important features in terms of identifying types in our framework.

Firstly, repeated observation on individuals allows them to distinguish their type more clearly through their

behaviour. Secondly, repeated observations mean that stability of preferences becomes an important factor.

Recalling our main question: how many sets of preferences are needed to rationalise the data? a natural

way to proceed is to �rst check GARP for each individual consumer and then to seek to allocate consumers

into type groups. Given a set of individually GARP-consistent consumers, the algorithms described above can

be applied almost without modi�cation.

Of course some consumers will individually fail GARP and the question arises what to do with them. One

answer is to simply set them aside as their behaviour is not rationalisable with the model of interest. However,

this would not be in the spirit of taking rationality as a maintained assumption. A second possibility is to

allow for enough optimisation errors in the way we describe above. However, this strategy would also a¤ect the

grouping of people (because admitting optimisation error would tend to decrease the amount of RP violations).

Thirdly, we could consider alternative models for their intertemporal behaviour.

People change. Although economists like to invoke immutable preferences, we all know that our preferences

can change, sometimes in a dramatic fashion. So, a �nal alternative is to allow for "multiple personalities". By

that we mean that we can take the data on an individual and search within it for contiguous sub-periods during

which their behaviour is rationalisable. We can then treat each of these sub-periods as a separate individual

(which they are in the sense that each one potentially requires a di¤erent utility function to model it) and run

the partitioning algorithms as before. Because this approach sits wholly inside our basic framework, without

the need for discarding data, including optimisation errors or writing down a dynamic structure for utility

functions, it is in some sense the simplest option, and therefore our preferred one.

We use the same 500 households as in our cross-sectional analysis, but use a sequence of up to 24 months of

milk consumption data for each household. Using the "multiple personality" mentioned above, which preserves

all of the data from our 500 households, we implement our model. The number of groups needed to completely

rationalise these data is at least 12 and not more than 31. This is quite surprising. After all the standard
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approach to panel data in applied econometric analysis is to use "�xed e¤ects", which in this context would

imply 434 groups. Our results show that this is at least 15 times as many groups as are really necessary, and

therefore is radically over-speci�ed.

Fixed e¤ects are a bad match to these data for 2 more important reasons. First, Blundell, Duncan and

Pendakur (1998) show that �xed e¤ects in budget shares are consistent with rationality restrictions only if

budget shares are linear in the natural logarithm of total expenditure. Second, in our exploration of cross-

sectional data above, we showed that both levels and derivatives of budget-share equations vary across groups.

Thus, �xed level e¤ects do not adequately capture the di¤erences across groups.

Other Contexts

The methods outlined in this paper can be easily adapted to other optimising models. Corresponding restric-

tions are available for models of intertemporal choice (Browning 1989), habits (Crawford 2010), choice under

uncertainty (Bar Shira 1992), pro�t maximisation by �rms (Hanoch and Rothschild 1972), cost minimisation

by �rms (Hanoch and Rothschild 1972), collective household behaviour (Cherchye, De Rock and Vermuelen

2007), characteristics models (Blow et al 2008), as well as special cases of all of these models which embody

useful structural restrictions on preferences or technology (e.g. weak separability, homotheticity and latent

separability). In order to apply our methods to another optimising model, one simply replaces the GARP

restrictions used in the body of this paper with the corresponding restrictions on optimising behaviour driven

by the model of interest. Below, we brie�y demonstrate how this works by applying our methods to a model

of �rm cost minimisation. Instead of seeking the minimum number of distinct preference maps necessary to

rationalise observed consumption choices, we seek the minimum number of distinct technologies necessary to

rationalise the observed input demand choices.

Here we provide an illustration of the application of partitioning to �rm data. The data relate to 281

Danish Farms observed in 1990. These are Danish Farm Association Service data gathered through a voluntary

consultancy scheme and for each farm the data includes detailed annual accounts of variable costs and earnings

for each production line with corresponding accounts measures of most inputs and outputs. We measure �ve

outputs {milk, two types of beef, and two types of crops} and we observed 46 inputs - like fodder, cattle,

fertiliser, pesticides, and the services from labour, land, building and machine capital. The farms recorded the

transactions prices for each of their inputs and outputs. In this application we are interested in unobserved

technological heterogeneity and the economic model of interest is the canonical cost minimisation model:

min
x

w0
ix subject to x is in V (qi)

where qi denotes a vector recording the quantities of the outputs of �rm i and xi is a vector recording the

quantities of the �rm�s inputs. Technology is denoted by the input requirement set V (qi) which is a closed,

non-empty, monotonic, nested and convex set which consists of all input vectors x that can produce at least

the output vector qi.The observable consequences of this model are summarised in the following theorem.

Theorem: (Hanoch and Rothschild (1972), Diewert and Parkan (1983), Varian (1984)). The following condi-
tions are equivalent:

(1) there exists a family of nontrivial, closed, convex, positive monotonic input requirement sets fV (q)g such
that the data fqt;wt;xtg solves the problem minx w

0
ix subject to x is in V (qi) for each i = 0; 1; :::; N:

(2) if qj � qi then w0
ixj � w0

ixi for all i and j.

The condition in (2) is the Weak Axiom of Cost Minimisation (Varian, 1983) and it provides the partitioning
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criteria: if the data for two �rms are such that (2) does not hold then the two �rms concerned cannot have the

same technology. We simply replace GARP with WACM in the algorithms described in the paper and �nd the

following bounds on the number of technological types is between 3 and 4. It appears that very few production

technologies are required to model (precisely) these very disaggregated data in which �rms are able to choose

from many inputs and produce several outputs. Furthermore as with the consumer cross section data it turns

out that a single production technology will �t the majority of the data:

Table A.2: The cumulative distribution of technological types

Number of Types 1 2 3 4

Percent of Sample Explained 80% 94% 98% 100%
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