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Microdata concerning consumer demand typically show considerable variation in real

expenditures, but very little variation in prices. We propose a semiparametric strategy

for the consumer demand problem in which expenditure share equations are estimated
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nonparametrically in the real expenditure direction and estimated parametrically (with

fixed- or varying-coefficients) in price directions. In our model, Engel curves are unre-

stricted: demands may have any rank. Because the demand model is derived from a cost

function, it may be restricted to satisfy integrability and used for consumer surplus cal-

culations. Since real expenditure is unobserved, but rather estimated under the model,

we face a semiparametric model with a nonparametrically generated regressor. We show

efficient convergence rates for parametric and nonparametric components. We illustrate

the feasibility of our proposed strategy using Canadian expenditure and price data:

Engel curves display curvature which cannot be encompassed by standard parametric

models. We also find that the rationality restriction of Slutsky symmetry is rejected in

the fixed-coefficients model, but not in the varying-coefficients model.

Keywords: Consumer Demand, Engel Curves, Semiparametric Econometrics, Generated

Regressors.

2



1 Introduction

Microdata concerning consumer demand typically exhibit considerable variation in real

expenditure, but very little variation in prices. We propose a semiparametric strategy for

the consumer-demand problem in which expenditure share equations are estimated non-

parametrically in the real expenditure direction and parametrically in price directions.

Our approach puts flexibility where the data can actually provide a lot of information

— the Engel curve — and puts parametric structure on the price effects, where the data

often have little variation.

Parametric approaches to the estimation of consumer demand systems are attractive

because they allow the researcher to estimate a cost function, which makes consumer

surplus calculations clear and easy. However, they typically impose strict limits on the

complexity of Engel curves. Nonparametric approaches to the estimation of these sys-

tems have the advantage of letting the data determine the shape of Engel curves, but do

not typically allow the researcher to estimate a cost function. Our semiparametric model

combines the advantages of both by allowing Engel curves to be arbitrarily complex and

yielding a cost function suitable for consumer surplus analysis.

We proceed by specifying a cost function which we call a utility-dependent translog. This

is essentially a translog cost function, except that some or all of its parameters depend on

utility in a nonparametric way. In our base model, the compensated demand system is

a partially-linear model which is nonparametric in the utility direction and parametric
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with fixed coefficients in the M price directions. We also extend the model to allow

the price effects to depend on utility, which yields a varying coefficients econometric

structure.

In our model, Engel curves (expenditure-share equations over real expenditure at a

particular price vector) are unrestricted, so the demand system can have any rank up

to (M − 1); see Lewbel (1991) for a detailed discussion. This contrasts sharply with

parametric approaches, such as the popular quadratic almost-ideal demand system in

which the demand system is rank 3 and Engel curves are quadratic in the logarithm

of expenditure. Although our semiparametric approach is more restrictive than a fully

nonparametric approach — such as Haag, Hoderlein, and Pendakur (2005) — at least

two important advantages exist. First, our model is composed of functions which have

intuitive economic interpretations. Second, our approach avoids the curse of dimension-

ality faced in multivariate nonparametric regression. A fully nonparametric approach to

estimating a consumer demand system has (M + 1) dimensions, whereas our approach

has only one-dimensional nonparametric functions.

Our cost function cannot be inverted analytically, so we cannot substitute indirect util-

ity into the compensated demand system to generate an uncompensated demand sys-

tem. Instead, following the lead of McLaren, Rossiter and Powell (2000) and Wong

and McLaren (2005), we numerically invert the cost function into real expenditure —

a convenient cardinalisation of utility — and substitute that into the compensated de-

mand system. Thus, our empirical model uses a two-step estimator: in the first step,

4



we construct a consistent predictor for real expenditure, while in the second step, we

estimate the fixed- or varying-coefficient semiparametric model with this constructed

regressor. We provide asymptotics for both the fixed- and varying-coefficients consumer

demand models with a constructed regressor. In particular, we show
√
n−convergence

for the parametric price effects and efficient convergence rates for the nonparametric

components. We also provide several consistent predictors for real expenditure, each of

which satisfies the requirements for our constructed regressor model.

Lewbel and Pendakur (2008) as well as Sarmiento (2005) have considered problems

related to ours. Lewbel and Pendakur (2008) considered a parametric model similar

to ours, but they forced price effects to enter linearly. The nonparametric dependence

of price effects on real expenditure is a strength of our varying-coefficients approach.

Whereas Sarmiento (2005) used a varying-coefficients structure to approximate a full

demand system, we use a similar strategy to identify an exact cost function. To our

knowledge, no semiparametric consumer demand models have been proposed in which

dimensionality is reduced, flexibility in the Engel curve and in price effects is retained,

and integrability to an exact cost function is possible. Our model fills this gap.

We analyse Canadian price and expenditure data and find that some expenditure-share

equations are ‘S-shaped’ or even more complex. In addition, we find evidence that

compensated price effects are different for rich and poor households. In a cost-of-living

experiment, we find that both the complexity of Engel curves and the utility-dependence

of price effects affect welfare analyses. Considering the rationality restriction of Slutsky
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symmetry, we reject symmetry in the fixed-coefficients version of our model, but not

in the varying-coefficients version. This suggests that rejection of Slustky symmetry in

previous parametric work may be due to the unduly restrictive incorporation of price ef-

fects in typical parametric models. This explanation may supplement other explanations

having to do with the unobserved heterogeneity; see Lewbel (2001).

The remainder of our paper is organized as follows: in section 2, we introduce our

model of cost and demand, while in section 3, we provide the econometric theory for the

estimation of our demand system. In section 4, we discuss inference and the testing and

maintaining of rationality conditions. In section 5, we present an empirical example

using Canadian microdata.

2 Model

Denote log-prices as p = [p1, ..., pM ] and log total-expenditure as x. Define indirect util-

ity V (p, x) to be the utility attained when facing log-prices p with log total-expenditure

(log-budget) x. Define log-cost, logC(p, u), as the inverse of V (p, x) over x giving

the minimum log total-expenditure required to attain the utility level u when facing

log-prices p. Denote expenditure shares yielding the share of total expenditure com-

manded by the jth good as wj and let w = [w1, ..., wM ] be the expenditure-share

vector. Note that since expenditure shares sum to 1, wM = 1 −
∑M−1

j=1 wj . Let

{W 1
i , ...,W

M
i , P 1

i , ..., P
M
i , Xi}ni=1 be a random (2M + 1) vector summarizing the expen-

diture shares, log-prices and log-expenditures of a sample of n individuals.
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2.1 Utility-Dependent Translog

Consider the “utility-dependent translog” (UTL) log-cost function

logC(p, u) = u+ p>β (u) +
1

2
p>A (u)p, (1)

where u is an ordinal index of utility, so u can always be replaced by φ (u) where φ is

an unknown increasing monotonic transformation.1 The restrictions ι>β (u) = 1 and

A (u)> ι = 0M are sufficient for homogeneity. The overbars on β and A emphasize that

they are arbitrary functions of utility, rather than of an observable variable. The word

‘translog’ is used because if β and A are independent of utility, the model collapses

to the (homothetic) translog model of Christensen, Jorgenson, and Lau (1971). If A

is independent of utility, then prices come in via ‘fixed coefficients’ and we shall apply

semiparametric partially-linear modelling. IfA depends arbitrarily on utility, then prices

come in via a ‘varying coefficients’ structure, and we shall use semiparametric varying

coefficients modelling. Note that when β is linear and A is independent of utility, the

1The presence of u as the leading term in the cost function is not restrictive. Rather, it helps clarify

that indirect utility can be (log) money metric at a base price vector p as discussed below.

At this point, there are no demographic effects. They can be incorporated into the cost function as

follows. Denote a vector of demographic characteristics z where z = 0T for some reference household

type. Write the log-cost function as

log C(p, u) = u + p>β (u) +
1
2
p>A(u)p+ p>Γz.

Note that this formulation does not allow z to affect cost independently of prices. All the methods

proposed below may be adapted to this model.
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model collapses to the almost-ideal case.

The dual indirect utility function V is defined by

u = V (p, x) ≡ x− p>β (u)− 1

2
p>A (u)p, (2)

which can be solved analytically only in special cases, such as the almost-ideal case.

Applying Shephard’s lemma, w = ∇p logC(p, u), to the log-cost function (1) yields a

vector of compensated (Hicksian) expenditure share equations ω(p, u) given by

ω(p, u) = β (u) +A (u)p , (3)

whereA (u) = A (u)> . This compensated expenditure-share system is very simple: were

utility u observed, it would be estimable by semiparametric methods for partially-linear

or varying-coefficients models, depending on whether or not A varies with u.

Set a reference vector of prices to unity, so that log-reference prices are p = 0M , and

note that indirect utility satisfies

V (p, x) = x. (4)

The choice of reference price vector is innocuous because we can always make utility

(log-) money metric at one price vector. Define ‘log real-expenditure’, xR = R(p, x),

as the level of expenditure at p which yields the same level of utility as x at p. It is

implicitly defined by

V (p, x) = V (p, xR), (5)
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and given by

xR = R(p, x) = log [Cp, V (p, x)] .

Here, R and V are ordinally equivalent representations of preferences because R is a

monotonically increasing function of V . However, R is cardinalised — its value is mea-

sured in base-price log-money units. Substituting xR = R(p, x) into the compensated

demand system yields a demand system which depends only on observables. Define

β
(
xR
)

= β
[
V (p, xR)

]
and A

(
xR
)

= A
[
V (p, xR)

]
. Here, the overbars are removed to

indicate that these functions depend on the particular cardinalisation of utility, xR.

Of course, the analytical form for R may be difficult to recover if logC is not analytically

invertible. However, in our model, R can be estimated numerically as follows. Define

xN = N(p, x) as the log nominal expenditure function which gives the log-expenditure

necessary at p to give the same utility as x at p. Since R(p, x) = x, we have

V (p, xN) = V (p, x)⇔ (6)

xN = N(p, x) = x+ p>β (x) +
1

2
p>A (x)p.

Log real-expenditure is then given by the inverse of N with respect to x at each p; i.e.,

xR = R(·, x) = N−1(·, x). (7)

Here, R can be found at each p by numerical inversion of N . If log-cost is increasing in

utility at p, then N is monotonically increasing in x, and is easily inverted numerically.2

2Cost is locally weakly increasing in p if and only if expenditure shares are weakly greater than

zero. The parametric component Ap guarantees violations of positivity with p large (small) enough
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Note that log real-expenditure xR is an interesting tool for welfare economics: the cost-

of-living index I for a person facing prices p compared to p may be defined by

log I(p, x) = x−R(p, x) = x− xR.

Given xR = R(p, x), uncompensated shares over xR are given by substituting log real-

expenditure xR (which holds utility constant) for utility u in the compensated demand

system and replacing β and A with β and A:

w(p, xR) = β
(
xR
)

+A(xR)p. (8)

If A is independent of utility, then A is independent of log real-expenditure, xR, and we

have the following partially-linear semiparametric structure:

w(p, xR) = β
(
xR
)

+Ap (9)

where A is a matrix of parameters rather than of functions.

A nice feature is the clear interpretability that obtains here: we shall call the β(·) ‘Engel

curve functions’ because they yield the Engel curves at the reference price vector. We

shall further call the elements of A ‘compensated price effects’ because they give the

effect of price changes on demand holding utility constant. Thus, our structure is fairly

simple: the demand system is characterized by a set of Engel curve functions and a

matrix of compensated price effects.

when A 6= 0. Thus, we cannot restrict the UTL to satisfy increasingness. However, no commonly-

used parametric demand system is globally increasing either. Since C cannot be restricted to global

increasingness in u, one might be cautious about evaluating N at price vectors very far from the observed

price vectors.
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3 Estimation

We refer to the model given by equation (9) as a ‘fixed-coefficients’ model because

the coefficients governing compensated price effects are fixed with respect to all other

variables. In contrast, the model given by equation (8) has compensated price effects

which depend on xR, so that substitution responses may be different for rich and poor

persons. We refer to this as a ‘varying-coefficients’ model. The econometrics involved

in estimating these two types of models are rather different from each other, so we treat

them separately, beginning with the simpler fixed-coefficients model.

Consider estimation of the UTL demand system where A (A) is independent of log

real-expenditure (utility) given by equation (9). If xR were observed, then this would

be a standard partially-linear model. Since it is unobserved, we instead use a generated

regressor approach: we first construct a consistent predictor for xR for each observa-

tion and then estimate the partially-linear model (9) by semiparametric methods. In

this section, we provide two consistent initial predictors for xR which satisfy the condi-

tions required for consistency of the estimated demand system and for efficiency of the

estimator for A.

3.1 Estimation of Fixed-Coefficients Price Effects

To estimate the matrix A
√
n- consistently and efficiently, we discuss two approaches:

the kernel-smoothing estimator of Rodŕıguez-Poó, Sperlich, and Fernández (2005) and
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the differencing estimator of Yatchew (1997).3 Both approaches are based on the same

idea — differencing out the nonparametric vector-function β.

It is convenient to describe the estimation method equation-by-equation. We face the

data generating process

W j
i = βj [R(P i, Xi)] + ajP i + εji , j = 1, . . . ,M (10)

where aj are the rows of A, so that A =
[
a1| ...| aM

]
, and the disturbances εji , i =

1, . . . , n are independently and identically distributed with mean zero and variance func-

tion σjj(x,p) for all j, being bounded from above. Define the compact set XR as the

region of interest of xR. For any approach, we shall use the following assumptions:

[A1] The vector of error terms ε = (ε1, . . . , εM)> has the covariance function Cov[εε>|x,p]

= {σlk(x,p)}Ml,k=1 = Σε(x,p) is bounded and Lipschitz continuous in each argument.

[A2] The (marginal) density f(·) of XR is uniformly bounded away from both zero and

infinity, and has a continuous second derivative on XR.

[A3] The functions βj(·) have bounded and continuous second derivatives on XR.

The econometric strategy is to difference out the contribution of βj smoothly using

kernel weights on the distances, thus leaving only the contribution of ajP i. Consider

for each j the sample

wji − w
j
k = βj(xRi )− βj(xRk ) + aj(pi − pk) + εji − ε

j
k ,∀ i 6= k .

3Alternatively, one might use the approaches as proposed by Speckman (1988).
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Weighting inversely to the distance |xRi − xRk | will cancel the contribution of βj due to

its smoothness. Our estimator is given by

ÂRSF = Ĥ−1
PP ĤPW (11)

ĤPP =

 n

2


−1

n∑
i=1

n−1∑
k=i+1

(pi − pk)(pi − pk)T>v̂ik

ĤPW =

 n

2


−1

n∑
i=1

n−1∑
k=i+1

(pi − pk)(wi −wk)
>v̂ik

where v̂ik = Kh(x̂
R
i − x̂Rk )

Here, Kh(v) = 1
h
K(vh−1) is a kernel function. We further assume:

[R1] The kernel K is bounded, symmetric, compactly supported, and integrates to one,

having first moment equal to zero and a continuous second derivative.

[R2] The prices P j have nondegenerate conditional distributions given XR and X, re-

spectively, with E[P j|XR = xR] = gj(x
R), and E[Cov(P |XR)] = ΣP |XR . The functions

gj(·) have bounded first derivatives on XR.

[R3] For bandwidth h we need nh6 →∞ and nh8 → 0.

We shall need a consistent (nonparametric) predictor for all xR from the range XR:

[X1] There exists a consistent predictor for each xR ∈ XR so that

x̂Ri = R(pi, xi) +BX(xi,pi) + ui , ui := u(xi,pi) ,

where BX(·) is the bias, u(x,p) the stochastic error with E[u(x,p)] = 0 and variance
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function σ2
X(x,p). Both, BX and σX are Lipschitz continuous in x and converge to zero

as n→∞. Further, E[uiukσX(xi,pi)σX(xk,pk)] = O( 1
n
) uniformly for all i 6= k.

These assumptions are fulfilled by any simple kernel estimator. As both xR and the

conditional mean function of W come from related data generating processes, we have

to allow for correlation between the stochastic errors ui and εi from equation (10).

[X2] For all j = 1, . . . ,M we have E[uri (ε
j
k)
s] ≤ O( 1

nr ) ∀ i, k, s = 1, 2, r = 1, 2; and

E[uγx] = σγX(x,p) = o( 1
n
) for γ > 2. Finally, the third cumulant E[εji ε

j
kui] is assumed to

be of order o( 1
n
). All these rates hold uniformly for all i, k.

In addition, for the efficient estimation of the parametric part, we need

[X3] For all xRi , i = 1, . . . , n there exist predictors x̂Ri such that supi |x̂Ri −xRi |h−2 = op(1)

for the bandwidths given in [R3].

We can now establish the asymptotics of our model as a corollary of results from

Rodŕıguez-Poó, Sperlich, and Fernández (2005):

Corollary 1 Under assumptions [A1]–[A3], [R1]–[R3], [X1]–[X3], we have for each row

aj of A as n goes to ∞

√
n
(
âjRSF − a

j
)
−→ N

(
0M , E[Σ−1

P |XR ]E[PXσjj(X,P )P>X ]E[Σ−1
P |XR ]

)
,

where PX := P − E[P |XR]. The covariance matrix between vector aj and ak is

E
[
Σ−1
P |XR ]E[PXσjk(X,P )P>X ]E[Σ−1

P |XR

]
,

for all k, j = 1, . . . ,M .
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Yatchew (1997) proposed a different approach which does not employ smoothing. Con-

sequently, this approach is simpler in practise though less efficient asymptotically. First,

we order the observations {wi, x̂
R
i ,pi}ni=1 by x̂Ri . Consider for each equation j = 1, . . . ,M

the differences

m∑
i=0

diw
j
k−i =

m∑
i=0

diβ
j(x̂Rk−i) +

M∑
j=1

m∑
i=0

dip
j
k−iaj +

m∑
i=0

diε
j
k−i , k = m+ 1, . . . , n

with differencing coefficients d0, d1, . . . , dm fulfilling

m∑
i=0

di = 0, and
m∑
i=0

d2
i = 1 . (12)

Again, the contribution of βj is canceled out due to its assumed smoothness and the

assumption:

[Y1] The data are ordered such that 1
n

∑n
i=1 |x̂Ri − x̂Ri−1|2 = O(n−2(1−δ)) for δ positive

and arbitrarily close to zero.

Define optimal differencing weights by minimizing
∑m

k=1(
∑

l dldl+k)
2 under the con-

straints (12); see Hall, Kay, and Titterington (1990). Then, define the ‘differenced’

vectors and matrices, ∆y =
∑m

k=0 dkyi−k with y being W or P . Finally, apply ordinary

least squares to the differenced data:

ÂY = [∆P∆P>]−1∆P>∆W (13)

The asymptotics follow mainly from results in Yatchew (1997):
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Corollary 2 Under assumptions [A1]–[A3], [X1]–[X3], [Y1], and [R2] it holds that for

each row aj of A we have for n going to ∞

√
n
(
âjY − a

j
)
−→ N

(
0M , (1 +

1

2m
)E[Σ−1

P |XR ]E[PXσjj(X,P )P>X ]E[Σ−1
P |XR ]

)
,

where PX := P − E[P |XR] . The covariance matrix between vector aj and ak is

(1 +
1

2m
)E[Σ−1

P |XR ]E[PXσjk(X,P )P>X ]E[Σ−1
P |XR ] .

The two approaches are similar: in Yatchew’s approach the kernel weights were substi-

tuted by the so-called ‘differencing weights’, and the parameter m corresponds to band-

width h in the first approach. In the empirical work below, we implement Yatchew’s

estimator for the fixed-coefficient model.

3.2 Estimation of Engel Curve Functions

An efficient nonparametric estimator for β(xR) may be obtained by standard methods

if xRi is known and we have a
√
n-consistent estimate of the matrix A. In this case, we

simply apply a local estimator on the M one-dimensional regression problems

W j − âjP = βj(XR) + εj j = 1, . . . ,M.

However, in our case, we have only a consistent predictor xRi , and so we must take into

account the bias and randomness of the x̂Ri .

Let Kh(v) = 1
h
K(vh−1) again be our kernel function with bandwidth h. We denote

estimators of βj and their first derivatives by θ1(x
R) = βj(xR), θ2(x

R) = ∂
∂v
βj(v)|v=xR
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and employ a local-linear estimator:

θ̂(xR) = argminθ

n∑
i=1

[
(wji − â

jpi)− θ1 − θ2(x̂
R
i − xR)

]2
Kh(x̂

R
i − xR)

Having predictors in the kernel as well as inside the square brackets complicates the

asymptotic theory. Since we are only interested in the levels of βj, we concentrate here

on the asymptotic distribution of β̂j(v). The following theorem gives the asymptotic

behavior of β̂j with a constructed regressor. The proof is given in the appendix.

Theorem 3 Assume that [A1]–[A3], [R1] and [X1]–[X2] hold. Assume that the follow-

ing rates hold uniformly: BX = o(h), and σ2
X = O( 1

ngn
) for a gn such that 1

ngn
is o(h2).

Assume that there exists (x0,p0) such that xR = R(p0, x0) and that for n→∞, nh and

h−1 go to ∞. Then, with β(xR) := {βj(xR)}Mj=1 and β̂(xR) := {β̂j(xR)}Mj=1, we have for

xR in XR:

√
(nh ∧ ngn)

[
β̂(xR)− β(xR)−Bβ(xR)

]
−→ N

(
0,Σβ(xR)

)
with bias

Bβ(xR) =
h2

2
µ2(K)β′′(xR)−BX(x0,p0)β′(xR) ,

where β′(xR), β′′(xR) are the vectors of the first and second derivatives, respectively,

of β(xR). Further, recalling that f(·) denotes the marginal density of XR, then with

µl(K) =
∫
vlK(v)dv we have

1

nh ∧ ngn
Σβ(xR) =

1

nh
f−1(xR)||K||22Σε(x

R)⊕ σ2
X(x0,p0)β′

2
(xR) ,

where ⊕ denotes ‘element-wise’ summation.
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The newly-introduced parameter gn corresponds to a smoothing parameter in the pre-

diction of xR. In case of using kernel-smoothing methods and gn as a bandwidth it is

clear that, without bias-reducing methods, the bias BX is of rate g2
n, the variance σ2

X

of rate 1
ngn

. Thus, the assumptions Bx = o(h) and σ2
X = o(h2) are trivially fulfilled.

Theorem 3 shows that the estimator for β(xR) with a generated regressor is consistent

and that its asymptotic bias and variance are driven in part by the bias and variance,

respectively, of the predictor.

We now consider improving the estimation of β by applying iteration. Recall that the

value of log real expenditures xRi can be recalculated using estimates of β and A. There

are two purposes for iteration: first, one can use iteration to generate model-consistent

results. Here, if β̂ and Â are iterated with x̂Ri , the estimates of each may ‘settle down’

in such a way that β̂ and Â imply x̂Ri , and x̂Ri implies β̂ and Â. Such estimates may be

called ‘model-consistent’, and have the advantage that either set of estimates completely

characterises the model: that is, one could present empirical results on either β̂ and Â

or on x̂Ri without any loss of information.

A second purpose of iteration is to try to reduce (or to eliminate) the influence of

the pre-estimation of x̂R. The corollaries and theorem above hold for any predictor of

log real-expenditure fulfilling fairly weak conditions, including those which result from

iteration. Thus, iteration does not reduce the efficiency of the estimator. One could try

to establish conditions on the model enabling us to apply a contraction result, which

would show that iteration would give an asymptotically efficient estimate. However,
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such an exercise is quite difficult and beyond the scope of the present paper. We are

more interested in the practical question as to whether the initial prediction affects the

final estimates in real data. ¿From the results given above, we see that after iteration

the asymptotic distribution of β̂ only changes in the additive term containing the bias

and the variance of the predictor. We may assess the contribution of these terms via a

simple subsampling approach as follows:

(i) Predict the n log real-expenditures xRi for the full sample using initial estimates

of β and A which come from a random subsample of the data.

(ii) Estimate with them and the full sample the function β and A, recalculate with

them the xRi , and iterate this until convergence.

(iii) Repeat steps (i) and (ii) B times to determine the distribution of the final estimates

of β, A, and the log real-expenditures xRi .

If the final estimates do not vary over the different subsamples, then the initial prediction

has little impact on the final estimates. In this case, iteration yields an efficient estimator.

In the empirical work below, we shall show that the iterated estimates are roughly

independent of the initial pre-estimates, and therefore we suggest using iteration in

practice. The sampling distribution for the nonparametric estimates should be estimated

by resampling (bootstrap) methods, which we discuss in Section 6.
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3.3 Consistent Predictors of Log Real-Expenditure xR
i

The results above are all based on the assumption that we have predictors of the xRi ,

i = 1, . . . , n fulfilling conditions given in [X1]–[X3]. We first show an initial estimate of

xRi computed from initial estimates of β and A. Then, we discuss different approaches

to initial estimates of β and A which satisfy [X1]–[X3] and are not too burdensome.

Our initial estimators of xRi will use initial estimates of β and A that we shall call β0

and A0. Define N0 as the log-nominal expenditure function using these initial estimates

β0 and A0:

N0(p, x) = x+ p>β0(x) + p>A0p.

Then define R0 as the inverse with respect to x of N0, so that R0(·, x) = N−1
0 (·, x),and

use x̂Ri = R0(p, xi)as the (initial) predictor of xRi .

Given monotonically increasing costs in utility, both R(p, x) and N(p, x) are increasing

in x for each p. Therefore, we may invert N and derive the convergence rate. For each

p fixed, and t = N̂(p, x), R(p, t) = N−1(p, t), R̂(p, t) = N̂−1(p, t)

sup
t
|R̂(p, t)−R(p, t)| = sup

u
|R̂{p, N̂(p, u)} −R{p, N̂(p, u)}|

sup
u
|u−R{p, N̂(p, u)}| = sup

u
|R{p, N(p, u)} −R{p, N̂(p, u)}|

≤ sup
t
| d
dt
R(p, t)| sup

u
|N(p, u)− N̂(p, u)|.

This implies that x̂Ri ≡ R̂(pi, xi) inherits the convergence rate of N̂(·, ·) which itself

inherits the convergence rate of the initial estimates β0(·) and Â0.
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Recall that p = 0M , which implies that R(p, x) = x, and that for observations facing

p, xRi = xi and Ap = 0M . A consistent initial estimator for β(xR), denoted β0(x
R),

may be obtained by nonparametric estimation of expenditure shares on log-expenditure

using only those observations facing p:

β0(x
R) = E[W i|Xi = x,P i = p].

This estimator may be constructed either by estimating the univariate nonparametric

Engel curve at p, using only the observations which face p, or by estimating the nonpara-

metric demand system using all n observations facing all price vectors, and evaluating

this demand system at p = p.

Note that the matrixA is the matrix of log-price derivatives of compensated expenditure

share equations. In general, the matrix of compensated semi-elasticities, Υ(p, x), may

be expressed in terms of observables as:

Υ(p, x) = ∇pw(p, x) + ∇xw(p, x)w(p, x)>.

Given our fixed-coefficients model, Υ(p, x) = A is a matrix of constants. Following

Haag, Hoderlein, and Pendakur (2005), one may estimate Υ(p, x) via nonparametric

methods using local polynomial modelling of the Marshallian expenditure-share system.

Methods like these yield estimated compensated semi-elasticities which depend on p, x,

which we denote Υ̂(p, x). A consistent estimator for A is thus given by

Â0 =
1

n

n∑
i=1

Υ̂( P i, Xi). (14)

Here, Â0 may or may not be symmetric.
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We note that Lewbel (2001) showed that Υ̂(p, x) is only a consistent estimate of Υ(p, x)

when the disturbance terms on the right-hand side of the regression are not behavioral

parameters or when they satisfy rather complex covariance conditions that are difficult

to verify in practice. An alternative estimator that avoids this problem was proposed

by Crossley and Pendakur (2006) as well as by Hoderlein (2005). They suggested an

estimator of the compensated semi-elasticity matrix which exploits the Slutsky symmetry

restrictions:

Υ̂(p, x) =
1

2

[
∇̂pw(p, x) + ∇̂pw(p, x)> + ∇̂x

{
w(p, x)w(p, x)>

}]
,

where ∇̂pw(p, x) is an estimator of the derivative of the budget-share vector with

respect to the log-price vector and ∇̂x
{
w(p, x)w(p, x)>

}
is an estimator of the deriva-

tive of the outer-product of budget-shares with respect to log-expenditure. Because

∇x
{
w(p, x)w(p, x)>

}
can be consistently estimated regardless of the structure of un-

observed heterogeneity, this symmetry-restricted version of Υ̂ is not subject to Lewbel’s

(2001) critique. The matrix Â0 is again taken as the sample average of Υ̂(pi, xi).

Note that for either estimator of Υ(p, x), we use high-dimensional nonparametric pre-

estimators that have very slow convergence rates. Fortunately, the averaging in equation

(14) reduces the variance of Â0 such that with an undersmoothed pre-estimate Υ̂ we

end up with a rate that easily fulfills the rates necessary to satisfy [X1]—[X3], the

assumptions used in Theorem 3. See Hengartner and Sperlich (2008) for similar uses of

averaging to improve convergence rates.
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3.4 Estimation with Varying Price Effects

We now turn to the case where A(xR) (A(xR)) depends on log real expenditure (utility).

We again assume that a consistent predictor of log real-expenditures XR
i exists (we

provide one such predictor below). The model

E[W |p, xR] = β
(
xR
)

+A(xR)p (15)

can be interpreted as a varying-coefficients model that is linear in p but with coefficients

that vary with xR. For observed
{
p, xR

}
these models have been well-studied in the

non- and semiparametric literature – see Cleveland, Grosse, and Shyu (1991) as well as

Fan and Zhang (1999) – but not for constructed regressors and simultaneous equations.

We use a local-linear model to get estimates of the functions βj and aj = (aj1, a
j
2, . . . , a

j
M)

at a given point xR0 . For all j, minimize over the scalars βj0 and βj1 and the vectors aj0

and, aj1 the kernel-weighted sum-of-squares

n∑
i=1

[
W j
i − β

j
0 − β

j
1(x̂Ri − xR0 )−

{
aj0 + aj1(x̂

R
i − xR0 )

}′
P i

]2
Kh(x̂

R
i − xR0 ) (16)

and then set β̂j(xR0 ) = βj0, âj(xR0 ) = aj0 for all j, k. For the ease of notation, let us set

log-prices P 0
i ≡ 0M for all i, and aj0(x

R) = βj(xR). We need the assumptions

[V1] E[(pj)2s] < ∞ for some s > 2, j = 0, . . . ,M . Further, the second derivative of

rjk(x
R) := E[pjpk|xR] is continuous and bounded from zero on XR the for all j, k.

and replace [A3] by

[V2] The second derivatives of A(xR) are continuous and bounded on XR for all j, k.
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The following theorem describes the asymptotic behavior for the varying-coefficient

model with constructed regressors. The proof is deferred to the appendix.

Theorem 4 Assume the same conditions as in Theorem 3 without [A3], but adding

[V1] and [V2]. Define the estimators as in (16), and set αk =
(
ak0, a

k
1, · · · , akM

)>
(xR) for

k = 1, . . . ,M . Then we have

√
(nh ∧ ngn)

{
α̂k − αk −Bk(x

R)
}
−→ N

(
0,Σαk

(xR)
)
.

with bias

Bk(x
R) =

h2

2
µ2(K)α′′k −BX(x0,p0)α′k ,

where α′k, α′′k are the vectors of the first and second derivatives, respectively, of αk(x
R).

The covariance structure is given by

1

nh ∧ ngn
Σαk

(xR) =
1

nh
f−1(xR)||K||22ΩΣεk,k(x

R)⊕ σ2
X(x0,p0)α′

2
k ,

where Ω is the inverse of E
[
(P 0, P 1, . . . , PM)>(P 0, P 1, . . . , PM)|xR

]
, and Σεk,k(x

R) is

the (k, k)th element of Σε(x
R).

Theorem 4 is analogous to Theorem 3 (the nonparametric part in the fixed coefficients

model). Theorem 4 shows that the varying-coefficients estimator for A(xR) with a

constructed regressor is consistent, and that its bias and variance are partly driven by

the bias and variance, respectively, of the predictor of xR.
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3.4.1 Consistent Predictor for x̂R
i

As in the fixed-coefficients case, we proceed by plugging initial estimates of β and A

and into the function N(p, x), and then inverting around x to get R(p, x) which defines

our predictor for real expenditure. We may get consistent initial estimators for β(xR)

as in Section 3.3. However, for A we must use a different approach.

In the varying-coefficients model, the matrix A of compensated semi-elasticities depends

only on xR and not on prices. Although xR = R(p, x) is a complicated function of prices

and expenditure in general, recall that at the base price vector, R satisfies R(p, x) = x.

Thus, we obtain a consistent estimator for the matrix-valued function by

Â0(x
R) = Υ̂(p, x).

Here, there is no averaging, so this estimator inherits the slow convergence rate of the

nonparametric pre-estimator Υ̂. We note, however, that this slow convergence rate

is only for the initial estimator. As discussed above for the fixed coefficients model,

iteration may help. Consequently, an iterated predictor for xR will not (necessarily)

inherit this suboptimal rate. Stronger statements would require a technical mathematical

analysis of the convexity of the estimation problem. Finally, as in the fixed coefficients

case, we can either calculate the symmetry-restricted or the unrestricted estimate for

Υ to get A0(x
R). Then, as in section 3.3, we can derive the convergence rate of the

predictors x̂Ri .
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4 Inference and Rationality Conditions

4.1 Bootstrap Confidence Bands

Here, we describe how to construct uniform confidence bands around β̂j. In the varying-

coefficients model, one may construct uniform confidence bands around âj in the same

way. We first define the statistic

Sj = supxR |β̂j(xR)− βj(xR)|Σ̂
−0.5

β jj (x
R) , j = 1, . . . ,M,

where Σ̂
0.5

β jj(x
R) is the estimated standard deviation of β̂j at point xR. Following Härdle,

Huet, Mammen, and Sperlich (2004) we determine the distribution of Sj via the wild

bootstrap. To this end, we calculate

S∗j = supxR |β̌j(xR)− E∗
[
β̌j(xR)

]
|Σ̌−0.5

β jj (x
R) ,

where the ˇ indicates estimates from bootstrap samples, and E∗ refers to the expectation

over the bootstrap sample estimates. The confidence bands are defined by

[
β̂j(xR)− s∗j Σ̌

0.5

β jj(x
R) , β̂j(xR) + s∗j Σ̌

0.5

β jj(x
R)
]

at each point xR, where s∗j is the (1− α) quantile of S∗j and α ∈ (0, 1).

In Section 3, we show how to account for the variance caused by the prediction of the

xRi , i = 1, . . . , n. We show below that, in our empirical example, the variance of the

initial prediction does not influence the distribution of the final estimates when iteration

is used. In this case, the bootstrap samples can be generated with estimates given the
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sample {x̂Ri ,pi}ni=1 for j = 1, . . . ,M by

wji
∗

= β̂j(x̂Ri ) + âjpi + εji
∗
,

where the εji
∗

reflects the covariance structure (between the M different equations) of

the original errors. For the wild bootstrap, we use the Radamacher distribution where

the bootstrap error vector ε∗i = eiµi with ei is the sample residual vector, and µi is a

scalar-valued independent random variable satisfying P [µi = 1] = P [µi = −1] = 0.5; see

Davidson and Flachaire (2005) for details and particular advantages of this method.

4.2 Maintaining or Testing Homogeneity

The UTL may easily be restricted to satisfy homogeneity by normalizing prices with

respect to pM . We shall discuss the case for the fixed-coefficients version, but the pro-

cedure is analogous for the varying-coefficients version. In the fixed-coefficients UTL,

homogeneity is satisfied if and only if ι>β (u) = 1 and Aι = 0M . Since only (M − 1)

independent expenditure share equations are estimated, the summation restriction on β

only affects the calculation of N and R, and does not restrict the estimation.

The linear restriction on the parameters A can be implemented in various ways, nor-

malizing prices being one of them. Denote the kth normalized price as p̃k = pk− pM and

let p̃ = [p̃1, ..., p̃M−1], and denote P̃ k
i = P k

i − PM
i and P̃ i = [P̃ 1

i , ..., P̃
M−1
i ]. Denote the

Ã as the (M − 1) × (M − 1) upper-left submatrix of A, and denote β̃ as the (M − 1)

vector function giving all but the last element of β, and W̃ and w̃ defined analogously
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as the first (M − 1) expenditure shares and share functions. Log nominal expenditure

over normalized prices is

N(p̃, x) = x+ p̃>β̃ (x) + pM +
1

2
p̃>Ãp̃

and log real-expenditure is still its inverse with respect to x at each p̃. Then, the

homogeneity-restricted model analogous to (9) is given by

E[W̃ |XR = xR, P̃ = p̃] = β̃(xR) + Ãp̃. (17)

This model may be estimated via the techniques outlined above.

In our semiparametric partially-linear model, the Null Hypothesis of homogeneity re-

duces to

H0 : Aι = 0M

against the alternative that at least one of these equations does not hold. This null

hypothesis can be checked by a Wald test at the parametric rate since the variance-

covariance structure is explicitly given in Corollary 1 and Corollary 2. The variance-

covariance matrix must be estimated nonparametrically. Although it can be shown

that this is theoretically valid, for practical applications one should use the bootstrap

or subsampling. If the real data sample is relatively small, these resampling methods

should also be used to determine the critical value of the test statistic. For the varying-

coefficients case, this test is evaluated at particular values of xR.
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4.3 Maintaining or Testing Symmetry

Symmetry is also easily imposed in our framework. Again, the procedure is analogous

between the fixed- and varying-coefficients models, so we discuss the fixed-coefficients

case only. The Slutsky matrix S is given by

S = A+ww> − diag{w} . (18)

Symmetry is satisfied if and only if A is symmetric. To impose symmetry, we apply a

linear estimator under linear cross-equation restrictions in the partially model. Thus,

for example, in equation (13), we would include the restriction A = A> (or, Ã = Ã
>

for the homogeneity-restricted version).

If we first estimate A without the symmetry restriction, then we may test symmetry via

a parametric hypothesis test for

H0 : aji = aij ∀ i, j = 1, . . . ,M vs H1 : aji 6= aij for at least one i 6= j = 1, . . . ,M

withA = {aji}Mi,j=1. Given theorems 1 and 2, we have the covariance matrix of the vector

of all differences of interest,

α =
(
a2

1 − a1
2, a

3
1 − a1

3, · · · , aM1 − a1
M , a

3
2 − a2

3, · · · , aMM−1 − aM−1
M

)>
which we denote Σα. Then, our test statistic is α>Σ−1

α α that under H0 converges to

a χ2-distribution with {(M − 1) (M − 2)}/2 degrees of freedom, and under H1 goes to

infinity. This can be written as a Wald-type-test applying the same variance-covariance

matrix as in the homogeneity test.
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5 Empirical Application

The data used in this paper come from the following public use sources: (1) the Family

Expenditure Surveys 1969, 1974, 1978, 1982, 1984, 1986, 1990, 1992 and 1996; (2) the

Surveys of Household Spending 1997, 1998 and 1999; and (3) Browning and Thomas

(1999), with updates and extensions to rental prices from Pendakur (2001, 2002). Price

and expenditure data are available for 12 years in 5 regions (Atlantic, Quebec, Ontario,

Prairies and British Columbia) yielding 60 distinct price vectors. Prices are normalized

so that the price vector facing residents of Ontario in 1986 is (1, ..., 1).

In Table 1, we present summary statistics for 6,952 observations of rental-tenure unattached

individuals aged 25-64 with no dependents. Analysis is restricted to these households

to minimize demographic variation in preferences. In the empirical analysis, we used

annual expenditure in nine categories: food-in, food-out, rent, clothing, household op-

eration, household furnishing & equipment, private transportation operation, public

transportation and personal care. Personal care was the left-out equation, yielding eight

expenditure share equations that depend on 9 log-prices and log-expenditure.

These expenditure categories accounted for about three quarters of the current con-

sumption of the households in the sample. Because Canadian expenditure data are at

the annual level, the infrequency problem which plagues other data sources (e.g., UK

expenditure data) with endogeneity problems is not a major issue here.

All models estimated maintain the restriction of homogeneity, and models used in con-
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sumer surplus exercises maintain the additional restriction of Slutsky symmetry. Thus,

for the 9-good demand system, the A (A(xR)) matrix (function) is a (9× 9) matrix of

compensated semi-elasticities with row-sums of zero, and β(xR) is a 9 element vector-

function of log real-expenditure which everywhere sums to one. We implemented our

models using a predictor of log real-expenditure that uses pre-estimates of A and β. For

the fixed-coefficient model, we computed Â0, the pre-estimate of A, as the average of

the fully nonparametric estimate of symmetry-unrestricted compensated semi-elasticity

matrix at each observation. For the varying-coefficients model, we computed Â0(x
R),

the pre-estimate of A(xR), as the nonparametric estimate of the symmetry-unrestricted

compensated semi-elasticity matrix at the base price vector p = 0M . For both models,

we computed β0, the pre-estimate of β, as equal to the Engel curve for observations

facing base prices p = 0M . Given these initial estimates, we created our generated

regressor for each observation, xRi .

For the fixed-coefficients model, we used Yatchew’s difference estimator of A with 100th

order moving-average difference coefficients. Holding the order of the difference constant,

our results were essentially unchanged if we use optimal or optimal symmetric difference

coefficients instead. Estimates were essentially identical if 50th or 20th order moving

average differencing coefficients are used instead. For the nonparametric part, we used

a Gaussian kernel with the cross-validated bandwidth of 0.24 for all equations.

For the varying-coefficients model, we used the same bandwidth for the matrix-valued

function A(xR) since symmetry restrictions are cross-equation restrictions. In addition,
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symmetry-unrestricted estimates using different cross-validated bandwidths across equa-

tions yielded very similar estimates of the matrix A (A(xR)). Our results, including

all the results of all tests described below, do not qualitatively change if a bandwidth

(common to all equations) 50 percent larger or 25 percent smaller is used instead.

We used subsampling to assess the influence of the pre-estimation step, and consid-

ered the homogeneity-restricted but symmetry-unrestricted fixed-coefficients model. We

drew 200 subsamples containing 2,000 observations each from the 6,952 observations

in the data described above. For each subsample, we created pre-estimates of A and

β as described above, and used these pre-estimates to estimate the iterated model on

the entire sample of 6,952 observations. We iterated the model 6 iterations past the

pre-estimation for each of the 200 consistent pre-estimates. We shall discuss only the

behaviour of the estimate of A across subsamples. The sum of the 64 variances of the

elements of the pre-estimates of A across the subsamples is 0.0129. The sum of the 64

variances of the elements of iterated estimates of A across the subsamples is 0.0000009,

which is smaller by a factor of about 15,000. Clearly, the variance of the constructed

regressor hardly affects the variance of the iterated estimator. Thus, we conclude that

the iterated estimator is efficient and we present only iterated estimates below.

The fixed- and varying-coefficients models differ only in their treatment of compensated

price effects. In the varying-coefficients model, these effects may differ over log-real

expenditure. The Slutsky symmetry restriction likewise only concerns compensated

price effects. Thus, we begin with a discussion of estimated compensated price effects
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and of symmetry tests, and then proceed to discuss estimated Engel curve functions.

5.1 Compensated Price Effects and Symmetry

In the following tables and figures, we present estimates for iterated models using 6

iterations past the pre-estimation step. In practise, the estimates numerically converged

after about 3 iterations. Simulated standard errors are provided in italics below each

estimate. In Table 2, we present the symmetry-unrestricted estimate of A.

In Table 3, we present symmetry-restricted estimates of the matrix of compensated price

effects. As one might expect, the simulated standard errors for off-diagonal terms are

much smaller than those reported in Table 2 because when they are true, the symmetry

restrictions are quite informative.

The estimate of A reported in Table 2 does not appear to satisfy symmetry. A Wald

test of symmetry based on the joint hypothesis that all off-diagonal terms equal their

symmetric partner rejects the hypothesis. The test statistic is τSYM = α
>
Σ−1
α α, where

α is the sample estimate of the difference between off-diagonal terms equal under sym-

metry, and Σ−1
α is their covariance estimated via the bootstrap. The sample value of the

test statistic is 424, which is larger than 48, the 1 percent critical value of the χ2
28, so we

reject the hypothesis of symmetry in the fixed coefficient model.4 The failure of symme-

4One could alternatively bootstrap the entire test statistic to account for possible small-sample

bias. However, given the fast convergence in the partially-linear model, it is not surprising that this

alternative approach also yields a very strong rejection of symmetry.
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try could be due to the presence of unobserved behavioural heterogeneity as noted by

Lewbel (2001) and Matskin (2005). Alternatively, it could be due to the restriction that

the matrix of compensated price effects A is independent of utility. Below, we argue

that this latter possibility may be true.

We estimated the varying-coefficients version of the model as described above. This

model can encompass the partially-linear model if A(xR) is independent of xR, so it is

natural to test whether or not this additional flexibility is necessary. Using symmetry-

unrestricted varying-coefficients estimates, we constructed a matrix-valued function of

deviations ÂD(xRt ) = Â(xRt )− 1
T

∑T
t=1 Â(xRt ) over a grid of T equispaced points in the

range of xR. Since Â is asymptotically normal, so too is its deviation from its mean

over T points in log-real expenditure. Under the null hypothesis of a fixed-coefficient

model, these deviations should be zero. Thus, we constructed the (M ×M × T )-vector

λ as the vectorisation of ÂD(xRt ) over all T points, and simulated its variance, denoted

Σλ, under the null that the partially-linear model is true. Our test statistic is then

τPLM = λΣ−1
λ λ which is distributed asymptotically as a χ2

M2(T−1). One could compare

the sample value of τPLM to its asymptotic distribution. However, in practice, because

the A matrix converges more slowly in the varying-coefficients model than in the fixed-

coefficients model, we accounted for possible sample bias by bootstrapping the entire

statistic. Using T = 9, the value of our test statistic is 876, and the 1 percent critical

value of its simulated distribution under the null is 124. Thus, for these data, we reject

the hypothesis that the matrix of compensated price effects A is independent of utility,
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and may comfortably use the varying coefficients model.

As noted above, in the fixed-coefficients model, we reject symmetry. We constructed a

test statistic for symmetry in the varying-coefficients model analogous to that used in

the fixed-coefficients model. In the varying-coefficients model, the vector α depends on

xR, so we denote this vector-function as α(xR), and evaluate it at a grid of T equispaced

points in the range of xR. Thus, we may construct pointwise tests of symmetry as

τSYMt = α>(xRt )Σ−1
α(xR

t )
α(xRt ) for t = 1, ..., T . Using sample values of α>(xRt ) and a

bootstrap estimate of Σ−1
α(xR

t )
, each of these tests is asymptotically χ2

28 with a 1 percent

critical value of 48. However, to account for possible small-sample bias, we bootstrap

the entire statistic. Figure 1 shows 90 percent confidence bands for the test statistic

under the null of symmetry on the grid of 9 points. For T = 9, we find no pointwise

rejection of symmetry. That symmetry is rejected in the partially-linear model, but not

rejected in the varying-coefficients model, could be due to one of two factors. First, the

utility-independence restriction on A could be false, which leads to a false rejection of

symmetry in the partially-linear model. Alternatively, it may be that symmetry is false,

but the relative imprecision of the estimated A(xR) in the varying-coefficients model

yields a test with low power, so that symmetry is not rejected even though it is false.

Below, we consider the latter possibility.

In Table 4, we present estimates of compensated price effects in the symmetry-unrestricted

varying-coefficients model, evaluated at the median log real-expenditure level of 9.30.

The data are densest near the median, so this is where the varying-coefficients model
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is estimated most precisely. Simulated standard errors are given in italics below each

estimate. Clearly, the precision of the estimates is lower than in the fixed-coefficients

model (Table 2). Most elements of A(xR) are estimated with about half the precision

of the corresponding estimates in the partially-linear model, and some with much less

precision. This suggests that the non-rejection of symmetry in the varying-coefficients

model may be due to the imprecision of the estimated coefficients: we should treat this

non-rejection of symmetry with caution.

Consumer surplus calculations are unique only if estimated demands satisfy symmetry.

We take the non-rejection of symmetry in the varying-coefficients model as licence to use

symmetry-restricted varying-coefficients estimates in a consumer-surplus exercise below.

In Table 5, we present estimates of compensated price effects for the symmetry-restricted

varying-coefficients model evaluated at the median of log-real expenditure.

The differences between the models are most easily seen graphically. In Figures 2 to 4,

we depict estimated values of selected elements of Â(xR) at 39 equispaced points in the

range of log-real expenditure. The displayed elements correspond to own-price effects for

food-in and rent, and the cross-price effects of food-out on food-in and vice-versa. In each

figure, black and grey lines indicate varying- and fixed-coefficients estimates, respectively.

Quadratic almost-ideal (QAI) estimates (see, e.g., Banks, Blundell, and Lewbel, 1997)

are presented with dark dotted lines. Simulated 90 percent uniform confidence bands

for the symmetry-restricted varying-coefficients estimates are indicated with crosses at

9 equispaced points in the range of log real-expenditure.
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The median and average of log real-expenditure are 9.30 and 9.27. In this part of the

distribution, it is clear that the fixed-coefficients model does fairly well in capturing the

compensated price effects. In addition, the fixed-coefficients model gives estimates of

compensated price effects very similar to those of the quadratic almost-ideal model. This

is because although the QAI model has compensated semi-elasticities that depend on

expenditure, there is (typically) only one matrix of parameters governing price effects,

so that QAI price effects are not flexible over expenditure.

Over much of the middle of the distribution, the compensated price effects shown in

Figures 2 and 3 essentially overlap under the fixed- and varying-coefficients models.

However, even in the middle of the distribution, one can see in Figure 4 that the esti-

mated rent compensated own-price effect is poorly approximated by the fixed coefficients

and QAI models. The fixed-coefficients model estimates are too low, and lie outside the

uniform confidence band of the varying-coefficients model estimates.

The fixed-coefficients model performs poorly far from the middle of the distribution of

log real-expenditure. For example, the food-in compensated own-price effect is large

and positive at the bottom of the distribution, but small and negative throughout the

middle of the distribution. This means that although middle-income individuals are able

to substitute away from food when its price rises, poorer individuals are not able to do

so. Thus, use of the fixed-coefficients model would bias welfare analysis in potentially

important ways, as we shall show below.
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5.2 Engel Curve Functions

In Figures 5 to 12, we depict estimated Engel curve functions for the estimated models

Since w(p, xR) = β
(
xR
)

at the base price vector, the Engel curves β
(
xR
)

give the esti-

mated expenditure share at the base price vector. Expenditure shares are evaluated at

39 equally-spaced points over the middle 95 percent of the implied log real-expenditure

distribution. In each figure, black and grey lines indicate varying- and fixed-coefficients

estimates, respectively. Thick and thin lines indicate symmetry-restricted and unre-

stricted estimates, respectively. Simulated 90 percent uniform confidence bands for the

symmetry-restricted varying-coefficients estimates at 9 equally-spaced points are shown

with crosses. QAI estimates are shown with dark dotted lines.

Figures 5 to 12 show estimated shares for food at home, food out, rent, household

operation, household furnishing/equipment, clothing, private transportation operation

and public transportation, respectively. The left-out expenditure share is personal care.

The expenditure-share equations for food-in and food-out are roughly linear, as is found

in nonparametric investigations of the shape of Engel curves; see, e.g., Banks, Blundell,

and Lewbel (1997). Not surprisingly, all models have roughly the same estimated Engel

curve functions for these almost linear expenditure-share equations. Rent shares are

roughly ‘U-shaped’ as found in previous work, and there is some evidence of rank greater

than 2 at the extremes of the expenditure distribution. For rent shares, the QAI model

performs poorly. For example, the estimated rent share at the bottom decile cutoff of

xR = 8.6 is almost 2 percentage points higher given the QAI model than given the
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varying-coefficients model. In this part of the distribution, the fixed-coefficients model

also performs relatively poorly, driven in large measure by the falseness of the fixed-

coefficients assumption at the bottom of the distribution, as seen in Figure 3.

Some expenditure share equations appear to be ‘S-shaped’ as noted in previous work on

Engel curves; see Blundell, Chen, and Kristensen (2003). The curvature of the private

transportation operation expenditure-share equation varies greatly over expenditure and

suggests rank greater than 2. In particular, expenditure shares are nearly flat for the

bottom quintile of the population, rising steeply through the middle of the distribution,

and falling for the top quintile. The complexity of this Engel curve is difficult to capture

in a quadratic specification. For this reason, the QAI estimate of the private trans-

portation share is fairly distant from both the varying- and fixed-coefficients estimates

throughout the distribution of expenditure.

5.3 Cost-of-Living Experiment

We assess the economic significance of our models with a cost-of-living experiment. In

Canada, rent is not subject to sales taxes, which can amount to 15 percent for goods such

as food-out and clothing. Consider the cost-of-living index associated with subjecting

rent to a 15 percent sales tax for people facing the base price vector. The log cost-of-

living index for this change is given by {N(p, x)−x}, where N is the nominal expenditure

function, and p = [0, 0, log(1.15), 0, ..., 0]>, the new price vector. Using estimated values,
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this is

p>β̂ (x) +
1

2
p>Âp= = β̂rent(x) log(1.15) +

ârent,rent

2
log(1.15)2

for the fixed-coefficients model and

p>β̂ (x) +
1

2
p>Â(x)p =β̂rent(x) log(1.15) +

ârent,rent(x)

2
log(1.15)2

for the varying-coefficients model.

In Figure 13, we illustrate how the cost-of-living index varies over expenditure for this

hypothetical price change given estimates from symmetry-restricted fixed- and varying-

coefficients models, as well as estimates from the (symmetry-restricted) QAI model.

Here, neither the fixed-coefficients model nor the QAI perform very well in approximating

the estimated cost-of-living impact indicated by the varying-coefficients estimates. In

the lower part of the distribution, the first two models overstate the cost-of-living impact.

For example, at the bottom decile of the real expenditure distribution (xR = 8.6), the

QAI and fixed-coefficients estimates of the cost-of-living impact are 7.4 percent and

7.0 percent, respectively, but the varying-coefficients estimate is 6.4 percent. In the

upper part of the distribution, the fixed coefficients model performs better, but the QAI

again overstates the cost-of-living impact of the price increase. The reason for these

patterns can be seen in Figures 3 and 6. Both the fixed-coefficients and the QAI models

have inflexible compensated price effects, and Figure 3 suggests that this inflexibility is

most costly at the bottom of the distribution of real-expenditure, which is where both

models perform poorly. In addition, the QAI faces the restriction that Engel curves are

quadratic, which results in a poor fit in comparison to the nonparametric Engel curve
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functions at both ends of the distribution.

We conclude from this investigation that our approach yields insights about the shape

of expenditure-share equations that may be hard to see in a ‘traditional’ Engel-curve by

Engel-curve nonparametric regression approach. In particular, our approach allows the

investigator to estimate a complete demand system wherein expenditure-share equations

may be arbitrarily complex in their relationship with real-expenditure. Further, in the

varying-coefficients version of our model, the investigator may include price effects that

vary with real-expenditure. Our empirical work suggests that the varying-coefficients

extension is both statistically significant and economically important.

6 Appendix

Proof of Theorem 3:

As the local-linear estimator has been well studied – see Fan and Gijbels (1996) – we show

here only how the bias and variance terms change when a nonparametrically generated

regressor is used. Because the matrix A is estimated with the parametric rate, it is

clear that the randomness caused by its estimation can be neglected when looking at

the asymptotics of our nonparametric estimator. Furthermore, it will be seen in the

proof that it is sufficient to do the explicit calculations for only one of the M equations.

For notational parsimony, we let Yi denote W j
i −ajP i and b denote βj, ε(Xi,P i) denote

εji with variance function σ2
ε (Xi,P i) for an arbitrary j = 1, . . . ,M . Further, we write

BX and σ2
X as functions of xR and recall assumption [X1]. Then, for ξi between xR and
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XR
i we have

Yi = b(xR) + b′(xR)(XR
i − xR) +

b′′(ξi)

2
(XR

i − xR)2 + ε(xi,pi) . (19)

The estimator for b (and b′) in xR is defined by b̂(xR)

b̂′(xR)

 =

 N11 N12

N12 N22


−1 Z1

Z2

 , (20)

where

 N11 N12

N12 N22

 =




1 X̂R

1 − xR

...
...

1 X̂R
n − xR



>

diag
{
Kh(X̂

R
i − xR)

}n
i=1


1 X̂R

1 − xR

...
...

1 X̂R
n − xR





−1

 Z1

Z2

 =


1 X̂R

1 − xR

...
...

1 X̂R
n − xR



>

diag
{
Kh(X̂

R
i − xR)

}n
i=1
Y .

Combining (19) with (20) we see that for calculating bias it is sufficient to consider N11 N12

N12 N22


−1 M1

M2

 (21)

with vector (M1,M2) =
1 X̂R

1 − xR

...
...

1 X̂R
n − xR



>

diag
{
Kh(X̂

R
i − xR)

}n
i=1


b′(xR)(XR

1 − xR) + b′′(ξ1)
(XR

1 −xR)2

2

...

b′(xR)(XR
n − xR) + b′′(ξn) (XR

n −xR)2

2

 .
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We first calculate the inverse matrix in equation (20)

N11 =
n∑
i=1

Kh(X̂
R
i − xR) = n

∫ {
BX(v)

h2
K ′
(
v − xR

h

)
+ o(h)

}
f(v)dv + nf(xR)

= nf(xR) + o(n)

due to the rate assumptions on BX , σ2
X and because K ′ integrates to zero. Further,

N12 =
n∑
i=1

(X̂R
i − xR) Kh(X̂

R
i − xR) = n

∫ {
hv −BX(xR + hv)

}
K(v)f(xR + hv)dv

+n

∫ {
hv −BX(xR + hv)

} BX(xRvh)

h
K ′(v)f(xR + hv)dv + o

{
nBX(xR)

}
= nBX(xR)f(xR){µ1(K

′)− 1}+ o
{
nBX(xR)

}
N22 =

n∑
i=1

(X̂R
i − xR)2 Kh(X̂

R
i − xR)

= n

∫ {
hv −BX(xR)

}2
[
K(v) +

BX(xR)

h
K ′(v) + o

{
BX(xR)

h

}]
f(xR + hv)dv

= nµ2(K)h2f(xR) + no(h2)

For the vector (M1,M2) we have basically to repeat calculations as we have done for

N11 (when calculating M1) and N12 (when considering M2) and get.

M1 = nf(xR)

{
−b′(xR)BX(xR) + h2µ2(K)

b′′(xR)

2

}
+ o

(
nh2
)

M2 = nb′(xR)B2
X(xR)f(xR){1− µ1(K

′)} .

Putting this into (21) yields the bias stated in the theorem.

For the variance one has to consider the expectation of N11 N12

N12 N22


−1 M ′

1

M ′
2


 M ′

1

M ′
2


> N11 N12

N12 N22


−1

(22)

43



with vector

(M ′
1,M

′
2) =


1 X̂R

1 − xR

...
...

1 X̂R
n − xR



>

diag
{
Kh(X̂

R
i − xR)

}n
i=1
×


b′(xR)(XR

1 − xR) + b′′(ξ1)
(XR

1 −xR)2

2
+ ε1

...

b′(xR)(XR
n − xR) + b′′(ξn) (XR

n −xR)2

2
+ εn

 .

Looking at the last vector in the definition of (M ′
1,M

′
2) it is clear that the matrix

(M ′
1,M

′
2)
> (M ′

1,M
′
2) can be decomposed additively in four symmetric matrices, one

containing only the b′ (denoted by C1 ), one only containing the b′′ (denoted by C2),

one with with both (denoted by C3), and one with only the error terms εi (denoted by

C4). Under expectation, the other terms either vanish or are obviously of higher order.

We start with C1. For some ξi between XR
i and xR we get:

E[C1
11] = E

[
n∑
j=1

n∑
i=1

b′
2
(xR){BX(XR

i ) + ui}{BX(XR
j ) + uj}εiεj

{
Kh(X

R
i − xR) +

BX(XR
i ) + ui
h

K ′h(ξi)

}{
Kh(X

R
j − xR) +

BX(XR
j ) + uj

h
K ′h(ξi)

}]
= n2f 2(xR)B2

X(xR)b′
2
(XR

0 ) + o{n2B2
X(xR)} ,
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where νk =
∫
vkK2(v)dv. Further,

E[C1
12] = E

[
n∑
j=1

n∑
i=1

b′
2
(xR){BX(XR

i ) + ui}{BX(XR
j ) + uj}εiεj

{XR
i − xR +BX(XR

i ) + ui}
{
Kh(X

R
i − xR) +

BX(XR
i ) + ui
h

K ′h(ξi)

}
{
Kh(X

R
j − xR) +

BX(XR
j ) + uj

h
K ′h(ξi)

}]
= n2f 2(xR)B3

X(xR)b′
2
(XR

0 ) + o{n2B3
X(xR)}

E[C1
22] = n2f 2(xR)B4

X(xR)b′
2
(XR

0 ) + o{n2B4
X(xR)} .

Similarly, for some ζi between XR
i and xR we have:

E[C2
11] = E

[
n∑
j=1

n∑
i=1

b′′(ζi)

2
(XR

i − xR)2 b
′′(ζj)

2
(XR

j − xR)2
{
Kh(X

R
i − xR)+

BX(XR
i ) + ui
h

K ′h(ξi)

}{
Kh(X

R
j − xR) +

BX(XR
j ) + uj

h
K ′h(ξi)

}]

=
n2h4

4
f 2(xR)b′′

2
(XR

0 )µ2
2(K) + o(n2h4)

E[C2
12] =

n2h5

4
f 2(xR)b′′

2
(xR)µ2(K)µ3(K) + o(n2h5)

E[C2
22] =

n2h6

4
f 2(xR)b′′

2
(xR)µ2

3(K) + o(n2h6) .

Next, considering the mixture of b′ and b′′ we have

E[C3
11] = E

[
n∑
j=1

n∑
i=1

b′(xR){BX(XR
i ) + ui}

b′′(ζj)

2
(XR

j − xR)2
{
Kh(X

R
i − xR)+

BX(XR
i ) + ui
h

K ′h(ξi)

}{
Kh(X

R
j − xR) +

BX(XR
j ) + uj

h
K ′h(ξi)

}]

=
n2h2

2
f 2(xR)b′′(XR

0 )b′(XR
0 )µ2(K){−BX(xR)}+ o

{
n2h2BX(xR)

}
E[C3

12] =
n2h3

2
f 2(xR)b′′(XR

0 )b′(XR
0 )µ3(K){−BX(xR)}+ o

{
n2h3BX(xR)

}
E[C3

22] =
n2h4

2
f 2(xR)b′′(XR

0 )b′(XR
0 )µ4(K){−BX(xR)}+ o

{
n2h4BX(xR)

}
.
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Finally, for C4 we have

E[C4
11] =

n

h
f(xR)σ2

ε (x
R)ν0 + o(

n

h
)

E[C4
12] =

n

h
f(xR)σ2

ε (x
R)ν1h+ o(n)

E[C4
22] =

n

h
f(xR)σ2

ε (x
R)ν2h

2 + o(nh) .

For more details of the calculations see Sperlich (2008).

Plugging this results in equation (22) yields the variance we have stated in the theorem.

�

Proof of Theorem 4:

Also, the local-linear varying-coefficients estimator has been well studied; see, for exam-

ple, Cleveland, Grosse, and Shyu (1991) as well as Fan and Zhang (1999) or Cai, Fan,

and Li (2000). The calculations to incorporate the additional bias and variance arising

because of the use of a generated regressor are basically the same as for Theorem 3. Note

that, now, skipping the index j = 1, . . . ,M of W and of the functions ak , k = 0, . . . ,M

for the ease of notation,

Wi =
M∑
k=0

P k
i

{
ak(x

R) + a′k(x
R)(XR

i − xR) +
a′′k(ξi)

2
(XR

i − xR)2

}
+ ε(xi,pi) .

The estimator of ak in xR is defined then by the (2k + 1)th element of

(
R>KR

)−1
R>KW
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where

R =


P 0

1 P 0
1 (X̂R

1 − xR) . . . PM
1 PM

1 (X̂R
1 − xR)

...
...

. . .
...

...

P 0
n P 0

n(X̂R
n − xR) . . . PM

n PM
n (X̂R

n − xR)


K = diag

{
Kh(X̂

R
i − xR)

}n
i=1

.

It is clear that this leads to the same equations as in proof of Theorem 3 but now

always with P k
i P

l
j , k, l = 0, . . . ,M , i, j = 1, . . . , n inside the (double) sums. Taking the

expectation with respect to XR = xR this leads to the elements of matrix Ω−1 which

cancel in the bias but not for the variance; see Theorem 3 of Fan and Zhang (1999). For

more details of the matrix calculations we also refer to their paper. �
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Table 1: The Data

Min Max Mean Std Dev

expenditure shares food-in 0.02 0.62 0.17 0.09

food-out 0.00 0.64 0.08 0.08

rent 0.01 0.95 0.40 0.13

clothing 0.00 0.53 0.09 0.06

operation 0.01 0.63 0.08 0.05

furnish/equip 0.00 0.65 0.04 0.06

private trans 0.00 0.59 0.08 0.09

public trans 0.00 0.35 0.04 0.04

log-expenditure 6.68 10.95 9.16 0.60

log-prices food-in -1.41 0.34 0.13 0.45

food-out -1.46 0.53 0.26 0.51

rent -1.32 0.37 -0.03 0.42

clothing -0.87 0.43 0.23 0.33

operation -1.40 0.32 0.12 0.46

furnish/equip -0.94 0.20 0.13 0.32

private trans -1.53 0.53 0.01 0.52

public trans -1.14 0.69 0.14 0.63

51



Table 2: Estimated Compensated Price Effects, Â

food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.035 -0.009 -0.088 -0.040 -0.037 0.032 0.058 -0.064

0.026 0.020 0.007 0.027 0.027 0.017 0.008 0.009

food-out 0.054 -0.022 0.018 -0.008 0.061 -0.053 0.008 -0.026

0.026 0.020 0.007 0.028 0.025 0.016 0.008 0.009

rent -0.073 0.107 0.100 0.075 -0.104 0.036 -0.054 0.080

0.038 0.029 0.010 0.039 0.039 0.023 0.011 0.013

clothing 0.001 0.013 -0.002 0.044 -0.023 0.010 -0.028 0.022

0.015 0.012 0.004 0.016 0.016 0.008 0.004 0.005

hh oper 0.055 -0.047 0.002 -0.023 -0.048 0.007 -0.002 -0.018

0.019 0.014 0.005 0.019 0.020 0.012 0.006 0.007

furn/equ 0.023 -0.085 -0.016 -0.054 0.086 -0.005 0.029 0.000

0.020 0.014 0.005 0.021 0.020 0.012 0.006 0.007

priv tr -0.018 0.075 -0.032 0.027 0.003 -0.003 -0.013 0.002

0.029 0.023 0.008 0.030 0.030 0.018 0.008 0.009

pub tr -0.026 -0.023 0.029 0.007 0.017 0.011 0.002 0.003

0.015 0.011 0.004 0.015 0.016 0.009 0.004 0.005
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Table 3: Estimated Symmetry-Restricted Compensated Price Effects

food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.073 0.053 -0.088 0.002 0.057 0.019 0.039 -0.043

0.020 0.013 0.007 0.011 0.010 0.009 0.007 0.006

food-out -0.050 0.059 0.020 -0.011 -0.052 0.012 -0.031

0.014 0.006 0.008 0.011 0.008 0.005 0.005

rent 0.071 -0.001 -0.028 -0.027 -0.027 0.054

0.010 0.004 0.005 0.005 0.006 0.003

clothing 0.038 -0.020 0.001 -0.031 0.026

0.012 0.009 0.006 0.004 0.004

hh oper -0.051 0.035 -0.012 -0.012

0.014 0.009 0.005 0.005

furn/equ 0.039 0.008 0.000

0.007 0.005 0.013

priv tr 0.012 0.003

0.008 0.003

pub tr -0.001

0.003
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Table 4: Compensated Price Effects, VCM, median xR

food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.018 -0.082 -0.014 -0.071 0.049 0.032 -0.046 -0.018

0.030 0.011 0.042 0.041 0.025 0.012 0.015 0.030

food-out -0.013 0.007 0.003 0.059 -0.040 0.014 -0.031 -0.013

0.027 0.009 0.034 0.029 0.019 0.011 0.011 0.027

rent 0.099 0.138 0.026 -0.058 -0.013 -0.057 0.090 0.099

0.040 0.013 0.049 0.049 0.029 0.016 0.016 0.040

clothing 0.011 -0.007 0.032 -0.013 0.002 -0.026 0.022 0.011

0.015 0.005 0.016 0.018 0.010 0.005 0.006 0.015

hh oper -0.042 -0.003 -0.027 -0.042 0.002 -0.002 -0.023 -0.042

0.021 0.007 0.027 0.025 0.015 0.006 0.009 0.021

furn/equ -0.089 -0.022 -0.054 0.103 0.001 0.035 0.002 -0.089

0.020 0.007 0.028 0.027 0.017 0.008 0.009 0.020

priv tr 0.076 -0.044 0.053 -0.057 0.015 -0.006 -0.014 0.076

0.036 0.013 0.041 0.045 0.026 0.012 0.014 0.036

pub tr -0.016 0.030 0.013 0.032 0.015 0.003 -0.001 -0.016

0.015 0.006 0.020 0.021 0.013 0.006 0.006 0.015
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Table 4: Compensated Price Effects, VCM, median xR

food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.018 -0.082 -0.014 -0.071 0.049 0.032 -0.046 -0.018

0.030 0.011 0.042 0.041 0.025 0.012 0.015 0.030

food-out -0.013 0.007 0.003 0.059 -0.040 0.014 -0.031 -0.013

0.027 0.009 0.034 0.029 0.019 0.011 0.011 0.027

rent 0.099 0.138 0.026 -0.058 -0.013 -0.057 0.090 0.099

0.040 0.013 0.049 0.049 0.029 0.016 0.016 0.040

clothing 0.011 -0.007 0.032 -0.013 0.002 -0.026 0.022 0.011

0.015 0.005 0.016 0.018 0.010 0.005 0.006 0.015

hh oper -0.042 -0.003 -0.027 -0.042 0.002 -0.002 -0.023 -0.042

0.021 0.007 0.027 0.025 0.015 0.006 0.009 0.021

furn/equ -0.089 -0.022 -0.054 0.103 0.001 0.035 0.002 -0.089

0.020 0.007 0.028 0.027 0.017 0.008 0.009 0.020

priv tr 0.076 -0.044 0.053 -0.057 0.015 -0.006 -0.014 0.076

0.036 0.013 0.041 0.045 0.026 0.012 0.014 0.036

pub tr -0.016 0.030 0.013 0.032 0.015 0.003 -0.001 -0.016

0.015 0.006 0.020 0.021 0.013 0.006 0.006 0.015
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Table 5: Symmetry-Restricted Compensated Price Effects, VCM, median xR

food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.081 0.059 -0.088 0.018 0.040 0.024 0.023 -0.033

0.018 0.016 0.009 0.014 0.013 0.011 0.008 0.007

food-out -0.045 0.049 0.016 -0.002 -0.058 0.016 -0.035

0.019 0.008 0.010 0.011 0.010 0.008 0.007

rent 0.106 -0.004 -0.028 -0.033 -0.032 0.055

0.013 0.004 0.005 0.005 0.009 0.005

clothing 0.023 -0.010 -0.006 -0.027 0.026

0.014 0.012 0.008 0.005 0.004

hh oper -0.045 0.036 -0.015 -0.015

0.017 0.010 0.006 0.006

furn/equ 0.043 0.012 0.002

0.008 0.005 0.005

priv tr 0.021 0.003

0.013 0.005

pub tr -0.006

0.004
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Figure 1: Pointwise Tests of Symmetry  in the 
Varying Coefficients Model, simulated 90% confidence intervals
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Figure 2: Compensated Semi-elasticities:  
Food-In own-price effect
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Figure 3: Compensated Semi-elasticities:  
Food-In, Food-out cross-price effect
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Figure 4: Compensated Semi-elasticities:  Rent own-price effect
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Figure 5: Estimated Food-in Shares
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Figure 6: Estimated Food-Out Shares
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Figure 7: Estimated Rent Shares
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Figure 8: Estimated Household Operation Shares
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Figure 9: Estimated Household Furnish/Equip Shares
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Figure 10: Estimated Clothing Shares
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Figure 11: Estimated Private Transportation Shares
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Figure 12: Estimated Public Transportation Shares
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Figure 13: Cost-of-Living Change: 15% Rent increase
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