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SUMMARY

This paper considers the implementation of semiparametric methods in the empirical analysis of consumer
demand. The application is to the estimation of the Engel curve relationship and uses the British Family
Expenditure Survey. Household composition is modelled using an extended partially linear framework. This
is shown to provide a useful method for pooling non-parametric Engel curves across households of di�erent
demographic composition. # 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Consumer demand presents an important area for the application of semiparametric methods.
In the analysis of the cross-section behaviour of consumers, non-parametric analysis of the Engel
curve relationship is now common place (see Bierens and Pott-Buter, 1990; HaÈ rdle and Jerison,
1991; Banks, Blundell, and Lewbel, 1997, for example). The contribution of the present paper is
to extend this work in two directions. First, we consider the semiparametric speci®cation of
demographic composition to the non-parametric Engel curve relationship. Second, we test some
popular parametric speci®cations for Engel curves against these semiparametric alternatives.

As a baseline speci®cation we work with the Working±Leser or Piglog speci®cation in which
budget shares are linear in the log of total expenditure (see Muellbauer, 1976; Deaton and
Muellbauer, 1980a). This form for the Engel curve relationship also underlies the popular Almost
Ideal and Translog demand models of Deaton and Muellbauer (1980a) and Jorgenson, Lau,
and Stoker (1980). Moreover, it provides a useful parametric null hypothesis for the non-
parametric alternative. Recent attention has focused on Engel curves which have more variety of
curvature than is permitted by the Piglog. This re¯ects growing evidence from a series of empirical
studies that suggest quadratic logarithmic income terms are required for certain budget share
equations (see, for example, Atkinson, Gomulka, and Stern, 1990; Hausman et al., 1991;
Hausman, Newey, and Powell, 1995; HaÈ rdle and Jerison, 1991; Lewbel, 1991; Blundell and
Duncan, 1998; and Blundell, Pashardes, and Weber, 1993). Consequently we use both the Piglog
and quadratic logarithmic speci®cations as null parametric speci®cations for designing tests
against a non-parametric alternative.

There are many reasons why it is important to recover an accurate speci®cation of the Engel
curve relationship. First, accurate speci®cation is important in modelling consumer responses to,
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and the welfare impact of, policy reforms. Second, for estimating the impact of demographic
change and equivalence scales, the shape of Engel curves is critical. As a ®nal motivation for Engel
curve analysis we can point to the importance of measuring expansion paths. That is the e�ect of
changes in overall budget on the relative demand for commodities. This plays a central role in the
modern analysis of revealed preference on micro-data (see, for example, Blundell, Browning, and
Crawford, 1997).

Restrictions from consumer theory are not innocuous both on the form of the Engel curve
relationship and on the way in which observable heterogeneity (demographics in our case) can
enter. In a non-linear Engel curve, if demographics are to enter in a partially linear semi-
parametric speci®cation, then they must in general also scale total expenditure on the right-hand
side of the budget share regression. This is equivalent to translating the log of total expenditure
that appears as the regressor in the non-parametric generalizations of the Working±Leser
speci®cation. Therefore, if we wish to interpret the demographic composition variables as `taste
shifters' in a preference-consistent way, the popular partially linear speci®cation of Robinson
(1988) has to be generalized.

The simple generalization, achieved by scaling total expenditure, corresponds to the `base-
independent' (or `equivalence scale exactness') method of introducing demographics in demand
analysis (see Blackorby and Donaldson, 1994, for example). Interestingly this partially linear
`translation' has the same form considered in the pooling of `shape invariant' non-parametric
regression curves of HaÈ rdle and Marron (1990) and Pinkse and Robinson (1995), recently
explored in the context of equivalence scales by Pendakur (1998).

The shape of Engel curves and consistency with consumer theory is a topic investigated in
great detail by Gorman (1981). In general there is no restriction on the shape of Engel curves
provided relative prices and demographics are allowed to enter in a completely ¯exible way.
However, if we have in mind to restrict the way prices (or demographics) come in through some
parametric speci®cation, then the form of the Engel curve is also restricted through the
homogeneity and Slutsky symmetry conditions which tie the expenditure shares and the price
and expenditure derivatives closely together. For example, Banks, Blundell, and Lewbel (1997),
using the results of Gorman (1981), show that if we consider budget share Engel curves that are
additive in a constant, a linear logarithmic term and some function of total expenditure then
the demand system is restricted to the quadratic logarithmic family. In general the Working±
Leser speci®cation which has shares linear in log total expenditure has been found to provide a
close approximation for some goods. In this paper we show that, if demographic composition
enters the budget share Engel curves in an additive way, as in the partially linear framework,
then consistency with homogeneity and Slutsky symmetry imposes strong restrictions.
In particular, if any one good has a Working±Leser Engel curve then all goods are restricted
to be Working±Leser. This is a strong restriction that is relaxed in our extended partially linear
model.

In the empirical analysis of Engel curves a further important issue is the endogeneity of total
expenditure. Since total expenditure may well be jointly determined with expenditure shares it
is likely to be endogenous. If total expenditure is endogenous for individual commodity
demands, then the conditional mean estimated by non-parametric regression will not identify the
`structural' Engel curve relationship. That is, the `statistical' Engel curve will not recover the
shape necessary for the analysis of consumer preferences, equivalences scales or expansion
paths. However, given the two-stage budgeting of choices under separability, the system of
budget shares and total expenditure forms a triangular or recursive system and is open to fairly
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simple estimation techniques. To account for endogeneity we adapt the Holly and Sargan (1982)
augmented regression approach to semiparametric regression context. We also consider the
Newey, Powell, and Vella (1995) extension to additive recursive structures.

To compare these semiparametric speci®cations with the Working±Leser and quadratic
logarithmic parametric speci®cations we implement a recently developed speci®cation test by
AõÈ t-Sahalia, Bickel, and Stoker (1994) for this hypothesis (see also HaÈ rdle and Mammen,
1993; Ellison and Ellison, 1992; and Zheng, 1996). This analysis shows a strong rejection of the
Working±Leser or Piglog form for some budget shares, even after adjusting for demographic
di�erences and endogeneity. However, the quadratic logarithmic model is not rejected. We also
test the shape invariance of budget shares across demographic types. For this we implement the
smooth conditional moment bootstrap method of Gozalo (1997).

The structure of the paper is as follows. Section 2 takes a look at the shape of Engel curves for a
subsample of households in the British Family Expenditure Survey. Section 3 goes on to consider
the speci®cation for demographic composition in budget share Engel curves and investigates the
restrictions that result from the homogeneity and Slutsky conditions. We consider the shape-
invariant extension to the partially linear semiparametric Engel curve model that relaxes the
restrictions placed on preferences by the additive structure of demographic and income terms in
the partially linear model. Section 4 considers suitable corrections for endogeneity of total
expenditure and then applies these ideas to the Engel curve analysis and reports results for the test
of Piglog and quadratic logarithmic speci®cations against semiparametric alternatives. Section 5
concludes.

2. THE SHAPE OF ENGEL CURVES

2.1 The Working±Leser Speci®cation

For most of our analysis we will be concerned with assessing and generalizing the simple
relationship between budget shares and total expenditure. These models have the structure

wij � gj�ln xi� � eij �1�

where wij is the budget share of the jth good for individual i, ln xi is the log of total expenditure
and the unobservable eij is assumed to satisfy E�eij j xi� � 0. Choosing to model budget shares in
terms of the log of total outlay follows from the original statistical analysis of budget shares by
Leser (1963) and Working (1943). It is also motivated by the popular Almost Ideal and Translog
demand models of Deaton and Muellbauer (1980a) and Jorgenson, Lau, and Stoker (1980)
which also have the `Piglog' speci®cation in which shares are linear in log total outlay. This form
of the Engel curve is commonly refered to as the Working±Leser speci®cation.

2.2 Data Used in this Study

In our application we consider six broad categories of goods; food, domestic fuel, clothing,
alcohol, transport, and other goods. We draw data from the 1980±1982 British Family Expendi-
ture Surveys (FES) and, for the purposes of our study, we select only households with one or two
children. Total expenditure and income are measured in £ per week. In order to preserve a degree
of demographic homogeneity in all aspects other than the number of children in the household, we
select from the FES a subset of married or cohabiting couples with an employed head of
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household living in Greater London or south-east England. All those who are self-employed,
retired or in full-time education are excluded from the sample. This leaves us with 1519
observations, including 925 couples with two children. Table I gives brief descriptive statistics for
the main variables used in the empirical analysis.

2.3 Some Picture of the Expenditure Share±Log Total Expenditure Relationship

In Figures 1 to 6 we present kernel regressions of the Engel curves for the six budget shares in our
FES sample. Each ®gure presents unrestricted non-parametric Engel curves for the reference
demographic group (couples with one child) and the second group (couples with two children),
together with 80% bootstrap con®dence bands at the decile points in the log expenditure
distribution for the reference group. In all cases we present Kernel regressions for the Gaussian
kernel, using leave-one-out cross-validation methods to automate the choice of bandwidth in
each non-parametric regression.1 Data were trimmed to exclude the top and botton 21

2% in each
sample. When evaluating bootstrap con®dence bands we employ the Smooth Conditional
Moment (SCM) method of Gozalo (1997) as a generalization of the Golden Section bootstrap of
HaÈ rdle and Mammen (1993) to generate 500 bootstrap samples.2

Table I. Descriptive statistics for budget share data

Variable

Couple with one child Couple with two children

Means Std deviations Means Std deviations

Food share 0.343 0.109 0.365 0.101
Fuel share 0.093 0.053 0.090 0.051
Clothing share 0.106 0.098 0.108 0.093
Alcohol share 0.067 0.069 0.056 0.059
Transport share 0.138 0.109 0.129 0.102
Other good share 0.253 0.104 0.252 0.103
Total expenditure 94.74 45.84 101.22 41.12
Total net income 134.22 70.45 137.46 54.28
Log total expenditure 4.46 0.41 4.55 0.37
Log net income 4.81 0.40 4.86 0.36
Age of household head 35.70 9.40 35.83 6.52

Sample size 594 925

1 Let f�ln xi;wij�gNi�1 represent a sequence of observations on log expenditure ln xi and budget share wij for the jth good.
Further, let Kh��� � hÿ1K��=h� for some symmetric kernel weight function K( . ) which integrates to one, given some
bandwidth h for which h! 0 and nh!1 as n!1. We may write the unrestricted Nadaraya±Watson kernel
regression estimator of the jth share equation as m̂jh�ln x� � �1=N�SiWih�ln x� � wij . where Wih�ln x� � Kh�ln x ÿ
ln xi�=f̂h�ln x� and f̂h�ln x� � �1=N�SiKh�ln x ÿ ln xi�. See Blundell and Duncan (1998) for a survey.
2 To implement the Gozalo SCM bootstrap method to generate con®dence bands for a kernel estimator of the function
wij � gj�ln xi� � eij , ®rst form residuals êij � wij ÿ m̂jh�ln x� from the original sequence of observations f�ln xi, wij�gNi�1
based on some estimator m̂jh�ln x� of gj�ln xi�. Then evaluate smooth conditional second and third moments at each data
point using kernel estimators ŝ2jh�ln x� � �1=N�SiWih�ln x� � ê2ij and m̂3jh�ln x� � �1=N�SiWih�ln x� � ê3ij respectively. Next,
draw bootstrap residuals e*ij with replacement from a two-point distribution F̂ e

ij de®ned such that Pr(e*ij � aij� � gij and
Pr(e*ij � bij� � 1 ÿ gij , where Tij � ��m̂3jh�ln x��2 � 4�ŝ2jh�ln x��3�1=2, aij � �m̂3jh�ln x� ÿ Tij �=�2ŝ2jh�ln x��, bij � �m̂3jh�ln x� �
Tij �=�2ŝ2jh�ln x�� and gij � �1=2� � �1 ÿ m̂3jh�ln x�=Tij��. Finally, form w*ij � m̂jh*�ln x� � e*ij at each stage, where m̂jh*�ln x� is
an oversmoothed kernel estimator of gj�ln xi�. Re-estimate m̂*

jh�ln x� for each bootstrap sample f�ln xi, w*ij�gNi�1 using the
original h, and form empirical quantiles of the bootstrap estimates at a collection of points to generate con®dence bands.
We use a bandwidth h* which exceed the cross-validated value by 30%. See Gozalo (1997, pp. 359±363) for a full
discussion of the properties of the bootstrap con®dence bands, bias and choice of bandwidth.
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In the lower panels of Figures 1 to 6 we present 80% uniform con®dence bands evaluated at the
nine decile points for the reference demographic group. There are two asymptotic bands: the
Bonferroni band that uses asymptotic pointwise bands to construct a joint interval assuming
independence and the simultaneous band that accounts for the dependence in the pointwise
asymptotic distribution.3 Finally, we present SCM bootstrap con®dence intervals. As expected,
the two asymptotic bands yield similar results with the simultaneous band, marked by the
diamond, generally slightly narrower re¯ecting dependence across intervals. The bootstrap
bands, marked with a cross, are larger re¯ecting additional ®nite sample imprecision.

These regressions would appear to demonstrate that the Working±Leser linear logarithmic
(Piglog) formulation is a reasonable approximation for some budget share curves (for example,
food and fuel). For other shares, in particular alcohol and other goods, a more non-linear
relationship between share and log expenditure is evident. For the alcohol share a quadratic
logarithmic share model would seem to ®t quite well. These results are consistent with those of

Figure 1. Food Engel curves

3 Both formulae can be found in HaÈ rdle (1990, section 4.3).
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Banks, Blundell, and Lewbel (1997), although we ®nd less evidence of non-linearity in the
clothing Engel curve.4

It is interesting to note how similar are the shapes of the Engel curves for our two demographic
groups. In Figure 1, for example, we see a broadly parallel shift in the food Engel curve, with
couples with two children spending around 4%more of their budget on food thatn couples with a
single child (the `reference' demographic group) at the same (unequivalized) level of total
expenditure. For alcohol and transport, on the other hand, Engel curves for couples with two
children shift down relative to the reference group (see Figures 4 and 5 respectively).5 There is no
strong evidence of demographic variability in clothing, fuel and other good shares.

Figure 2. Fuel Engel curves

4 The two studies di�er in that we analyse the consumption patterns of couples with one or two children, whereas Banks,
Blundell, and Lewbel (1997) restrict attention to a more homogeneous group of childless couples. Nevertheless, it is an
instructive demonstration of the potential demographic variability in consumption behaviour.
5 Notice, however, that the two alcohol share curves peak at di�erent log expenditure levels, suggesting that demographic
shifts in behaviour combine both horizontal and vertical translations. We shall return to this issue later.

440 R. BLUNDELL ET AL.

# 1998 John Wiley & Sons, Ltd. J. Appl. Econ., 13, 435±461 (1998)



3. SHAPE RESTRICTIONS AND CONSUMER THEORY

3.1 Semiparametric Speci®cations for Demographic Composition

The partially linear model
In Engel curve analysis it is important to account for household composition. For example, in

the analysis of equivalence scales di�erences in Engel curves across demographic types are used to
construct equivalent income adjustments. In general, knowledge of the way income e�ects di�er
across household types is critical in understanding the impact of tax and welfare programmes on
expenditure patterns. Any method for incorporating demographic variation must acknow-
ledge this variety in behaviour. One method to account for observed di�erences in household
type is to stratify the sample and implement non-parametric regression within each group. At
some point, however, it may be useful to pool across demographic types and to parameterize the
way demographic characteristics enter the conditional mean speci®cation. For example, we may
be willing to analyse families with and without children separately but may wish to pool our
analysis of families with children across di�erent numbers of children in a semiparametric
framework.

Figure 3. Clothing Engel curves
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A popular approach to semiparametric estimation is to use the following partially linear
regression for each expenditure share equation

wij � a0jzi � gj�ln xi� � eij �2�

in which a0jz represents a linear index in terms of a ®nite vector of observable exogenous
regressors zi and unknown parameters aj. Here we will assume E�eij j z, ln x� � 0 and
Var(eij j z, ln x� � s2j �z, ln x). Following Robinson (1988), a simple transformation of the
model can be used to give an estimator for aj. Taking expectations of (2) conditional on ln x, and
subtracting from the resulting expression from (2) yields

wij ÿ E�wij j ln xi� � a0j�zi ÿ E�zi j ln xi�� � eij �3�

The terms E�wij j ln xi� and E�zi j ln xi� can be replaced by their non-parametric estimators,
denoted m̂w

jh(ln x) and m̂z
h(ln x) respectively, which converge at a slower rate than

���
n
p

. The
ordinary least squares estimator for aj is

���
n
p

consistent and asymptotically normal.

Figure 4. Alcohol Engel curves
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The estimator for gj(ln x) is then simply

ĝjh�ln x� � m̂
w
jh�ln x� ÿ â0m̂z

h�ln x� �4�

Since aj converges at
���
n
p

, but m̂w
jh(ln x) and m̂z

h(ln x) converge at a slower rate, the asymptotic
distribution results for ĝjh(ln x) remain una�ected by estimation of aj and follows from the
distribution of m̂w

jh(ln x)ÿ a0jm̂
z
h(ln x).6

Demographic speci®cation and restrictions on consumer preferences
The partially linear model appears to be an attractive method for parsimoniously pooling non-

parametric regressions across households with di�erent demographic composition z. However,
one may ask under what circumstances equation (2) is consistent with consumer theory. From
Shepard's lemma (see Deaton and Muellbauer, 1980b, for example), the budget share equation is

Figure 5. Transport Engel curves

6 In an interesting recent paper, Heckman et al. (1995) show this asymptotic distribution result can provide a poor
approximation even in moderately sized samples. They implement bootstrap methods which seem to perform well in
Monte Carlo comparisons. These techniques are also used in our application below.
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simply the log price derivative of the consumers expenditure function. Since total expenditure is
identical to total costs, this places restrictions on the semiparametric speci®cation. Note that the
Engel curve describes the relationship between the expenditures or expenditure shares for a
particular value of relative prices.

First we need some de®nitions: let P � [P1 , . . . , PN �0 be an N-vector of prices and
p � (ln(P1), . . . , ln(PN��0; de®ne u as utility; and de®ne the cost function, c(p, u, z), as giving
the minimum expenditure necessary for a household with characteristics z to achieve utility level
u at log-prices p.

Assume that the Engel curve analysis is undertaken in each price regime. That is, the Engel
curve takes place at a particular location and time t so that prices can be assumed constant.
We write wit as the expenditure share on commodity j for observation t with total budget xt and
the log price N-vector pt. We suppress the individual household subscript i throughout this
discussion of preference restrictions. As above, demographic composition is represented by zt. In
the partially linear model the local average budget share for good j is given by

E�wjt j zt; pt; ln xt� � a0j � pt� � a1j � pt�0zt � gj�zt; pt; ln xt� �5�

Figure 6. Other goods Engel curves
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If preferences are consistent with a regular utility-maximizing framework then these shares are
consistent with the log price derivatives of the log cost function. From Shepard's Lemma budget
shares satisfy

wjt �
@ ln c�zt; pt; ut�

@ ln pjt

where the cost function c(zt, pt, Ut� is some smooth function concave in the n-vector of
(unlogged) prices Pt and increasing in ut. We should also note that ln x� ln c� p, u, z).

The following lemma shows that if at least one good has shares that are linear in ln x, for
example food shares, then introducing demographics as in the PLM restricts all demands to have
shares linear in ln x. Preferences are therefore constrained to be in the Piglog class (see Blundell,
Browning and Crawford (1997).

Lemma 3.1 Suppose budget shares have the additive form (which includes the PLM (5)):

wj � a0j � p� � a1j � p; z� � gj�ln x; p� �6�

and assume one good has gj�ln x, p) � ln xÿ ln a(p) then all goods are PIGLOG.

Proof From the de®nitions of the cost function and budget shares, equation (6) can be rewritten

@ ln c� p; u; z�
@pj

� a0j � p� � a1j � p; z� � gj�ln c� p; u; z�; p�

Taking the derivative with respect to the lth log-price pl for l 6� j we reproduce the Slutsky terms:

@2 ln c� p; u; z�
@pj@pl

� @a
0
j � p�
@pl

� @a
1
j � p; z�
@pl

� @gj�ln c� p; u; z�; p�
@pl

� @gj�ln c� p; u; z�; p�
@c

wl �7�

Now we consider the partial derivative of equation (7) with respect to z, given p and holding
ln c� ln x constant. Assuming Slutsky symmetry, we have

@2a1l � p; z�
@pj@z

� @gl�ln x; p�
@ ln x

@wj

@z
� @

2a1j � p; z�
@pl@z

� @gj�ln x; p�
@ ln x

@wl

@z
for l 6� j �8�

Note that, given the additively separable structure of equation (6) in z and ln x, conditional on
ln x and p, @wl=@z and �@2a1l � p, z��=�@pj@z� are independent of ln x. The partial derivatives of
equation (8) with respect to ln x, conditional on z, of order s4 1 are

@sgl�ln x; p�
@ ln xs

@wj

@z
� @

sgj�ln x; p�
@ ln xs

@wl

@z
for s4 1

or for any @wl=@z 6� 0

@sgj�ln x; p�
@ ln xs

� @wj

@z

@sgl�ln x; p�
@ ln xs

@wl

@z

for all j and s4 1:
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Note that if @wj=@z � 0 for any good for which �@sgj�ln x, p��=�@ ln xs� 6� 0 then @wl=@z � 0 for
all goods with �@sgl�ln x, p��=�@ ln xs� 6� 0. Finally, if there exists one good l for which

@sgl�ln x; p�
@ ln xs

� 0 for s4 1

then

@sgj�ln x; p�
@ ln xs

� 0 for s4 1

and all goods are Piglog.j

The importance of this lemma is in showing the restrictiveness of the partially linear method
applied to demographic composition in budget share Engel curves. It says that if for any single
good there are restrictions on the shape of the Engel curve, then this will induce restrictions across
all goods. We now consider an alternative semiparametric method for pooling across demo-
graphic types that relaxes these restrictions.

An extended partially linear model for demographic composition
Consider log-cost functions that are additively separable into a function of prices and demo-

graphics and a function of prices and utility as follows:

ln c� p; u; z� � a� p; z� � ln �c� p;c�u; z�� �9�

where c(u, z) is a z-speci®c monotonic transformation of u and z0 represents the demographic
characteristics vector of a reference household type. Normalize a( p, z) so that a( p, z0) � 0
and c(u, z) so that c(u, z0) � �c(u). Due to these normalizations, ln c( p, u, z0) � ln �c� p,
c(u, z0)) � ln �c� p, �c(u)), so that ln �c� p, �c(u)) is the log-cost function for the reference household
type.

To explore this form of preferences further we de®ne a( p, z) � exp(a( p, z)) and �c� p, �c(u)) as
the cost function of the reference household type and write the cost function as:

c� p; u; z� � a� p; z� �c� p; �c�u�� �10�

Note that c(p, u, z) satis®es homogeneity if and only if a( p, z) is homogeneous of degree zero in
prices. Assuming that the cost function of the reference household type has symmetric negative
semide®nite Hessian, the cost function for any other household type, c(p, u, z), satis®es the
Slutsky conditions only if �@a( p, z)/(@Pi@Pj� is a symmetric negative semide®nite matrix.7 Thus, if
�c� p;c(u)) satis®es the Slutsky conditions, then c(p, u, z) satis®es the Slutsky conditions if and
only if a( p, z) is weakly concave and homogeneous of degree zero in P.

If c(u, z) � c(u), then equation (9) reduces to the conditions for the existence of a base-
independent equivalence scale discussed by Lewbel (1989) and Blackorby and Donaldson (1993)

7 The Hessian of this cost function with respect to prices, �@2c� p, u, z))/�@Pi@Pj�, is given by:

@2a� p; z�
@Pi@Pj

� @a� p; z�
@Pi

@ �c� p; �c�u��
@Pj

� @a� p; z�
@Pj

@ �c� p; �c�u��
@Pi

� @
2 �c� p; �c�u��
@Pi@Pj

Since both a(p, z) and �c� p, c(u, z)) are homogeneous, the middle two terms are singular matrices.
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and recently explored in the context of semiparametric estimation by Pendakur (1998). In this
case, we can rewrite equation (10) as

a� p; z� � c� p; u; z�
�c� p; �c�u�� �11�

so that a(p, z) is the equivalence scale that relates expenditure needs across household types.
Inverting equation (9), we can write the dual indirect utility function as:

V� p; ln x; z� � cÿ1� �V� p; ln x ÿ a� p; z��; z� �12�

where �V� p, x) is the indirect utility function of the reference household type.
Noting that the monotonic transformation cÿ1( . ) does not a�ect observed share equations,

and de®ning �wi� p, ln x) as the Marshallian share equations of the reference household type, we
apply Roy's Identity to get

wj� p; ln x; z� � @a� p; z�
@pj

� �wj� p; ln x ÿ a� p; z�� �13�

For each commodity, the share equations are related across household types by both a vertical
translation, �@a� p, z))/@pi, which is commodity-speci®c and a horizontal translation, a(p, z),
which is commodity-independent. We will refer to the restrictions given by equation (13) as the
Extended Partially Linear Model (EPLM).

This discussion can be summarized in the following lemma which states that although the
EPLM restricts the way in which demographics a�ect demands, unlike the PLM it does not place
any further restrictions on preferences.

Lemma 3.2 If budget shares have the EPLM form:

wj � aj� p; z� � gj�ln x ÿ a�z; p�� �14�

then, if the reference share equations

wj � gj�ln x; p� �15�

are consistent with consumer theory and a(p, z)� exp(a(z, p)) is weakly concave and homo-
geneous of degree zero in P, budget shares given by equation (14) are also consistent with
consumer theory.

If we assume that f�@a� p, z��=@pkg are linear functions of z, then equation (13) has the same
vertical translation as the PLM given by equation (6). However, the EPLM also has a horizontal
translation in the share equations given by a(p, z). Thus, the EPLM requires that Engel curves
exhibit shape-invariance across household types.

In the context of non-parametric estimation, where the researcher estimates Engel curves for
a single price vector, we do not estimate f@a� p, z))/@pkg as functionals of a( p, z). Instead, the
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researcher assumes that f@a� p, z))/@pkg are the deratives of a(p, z) at the price vector of estimation.
In particular, one could assume that

a� p; z� � f�z� �
YN
k�1

ak�z�pk �16�

with prices normalized so that PN
k�1ak�z�pk � 0 at the price vector of estimation. Thus the

researcher directly estimates f(z) and fak�z�g, which correspond to a(p, z) and f�@a� p, z))/@pkg in
equation (13).

If the EPLM holds and the reference share equations are loglinear in total expenditure, then
unique f(z) and fak�z�g cannot be recovered. Indeed, Blackorby and Donaldson (1994) show that
in this situation, there are an in®nite number of [a(p, z); f�@a� p, z))/@pkg� that would ®t the
observed share equations. In this case, semiparametric estimation under the PLM would ®nd the
unique fak�z�g under the restriction that f(z) � 0. Essentially, if reference share equations are
loglinear, the PLM can ®t the data by mixing the vertical and horizontal translations. With any
other shape for the reference household share equations imposing the PML restriction f(z) � 0
will restrict preferences.8

3.2 Shape-invariant Demands and Demographic Composition

Budget shares (equation (14)) are a generalization of the partially linear model. Interestingly,
equation (14) has precisely the shape-invariance form found in the extension to the partially
linear model considered in the work on pooling non-parametric regression curves by HaÈ rdle and
Marron (1990), Kneip (1994) and Pinkse and Robinson (1995).

Suppose z is binary, z � {0, 1}, and consider data drawn from a single price regime. This is
consistent with our empirical analysis where we consider the di�erences between demands in a
single period for couples with one child and couples with two. In this binary case, we normalize
on the reference type z � 0, so a0j � 0 for all j and f0 � 0. Then, denote aj � a1j and f � f1, so
that aj are scaler parameters for each share equation and f is a single parameter common to all
equations. To estimate we use an approach to pooling in non-parametric regression due to Pinkse
and Robinson (1995) which adapts the idea of HaÈ rdle and Marron (1990). Suppose also that the
unrestricted non-parametric regression has been estimated separately on Nz datapoints for each
subgroup, z � {0, 1}. For each good j de®ne

f̂
z�ln x� � 1

Nz

X
i j z�z

Kh�ln x ÿ ln xi� �17�

8 Gozalo (1997) and Pendakur (1998) have estimated semiparametric demand systems similar to the EPLM, both in the
context of investigating household equivalence scales. Both papers test the shape-invariance restrictions given by the
EPLM on household Engel curves. Gozalo ®nds that if the food price elasticity of the equivalence scale is restricted to be
zero, afood�z� � 0 8z, then shape-invariance is rejected in the data. This amounts to testing the EPLM with all vertical
translations forced to zero. Pendakur (1998) tests the EPLM allowing for both vertical and horizontal translations and
®nds some support in the data for the EPLM.
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and

r̂
z
j �ln x� � 1

Nz

X
i j z�z

Kh�ln x ÿ ln xi�wij �18�

where Kh��� � hÿ1K��=h� for some symmetric kernel weight function K( . ) which integrates to
one, and for some bandwidth h for which h! 0 and nh!1 as n!1. We can write the
Nadaraya±Watson kernel regression estimates for each subgroup as m̂z

j �ln x� � r̂zj �ln x�=f̂ z�ln x�
for z � 0, 1. Here, r̂zj �ln x� are the convolved share data for the two types and f̂ z�ln x� are kernel
density estimates for the two types. The dependence of these functions on the bandwidth, h, is
suppressed.

The restrictions for the EPLM may be written

m̂
1
j �ln x� � aj � m̂

0
j �ln x ÿ f� �19�

or

m̂
1
j �ln x� ÿ m̂

0
j �ln x ÿ f� ÿ aj � 0 �20�

Pinkse and Robinson (1995) suggest multiplying equation (20) by f̂ 1�ln x�f̂ 0�ln x ÿ f� to
obtain

f̂
0�ln x ÿ f�r̂1j �ln x� ÿ f̂

1�ln x�r̂0j �ln x ÿ f� ÿ f̂
1�ln x�f̂ 0�ln x ÿ f�aj � 0 �21�

Since (21) does not contain the division operator present in m̂z
j �ln x�, Pinkse and Robinson (1995)

are able to establish asymptotic convergence results for an estimator of f and fajg that results
from minimizing the integrated squared loss function

L�f; fajg� �
Xn
j�1

Z ln �x

ln x

�Lj�ln x;f; aj��2Oj � d ln x �22�

where ln x and ln �x are integration limits on the log of expenditure,

Lj�ln x;f; aj� � f̂
1�ln x� f̂ 0�ln x ÿ f��m̂1

j �ln x� ÿ m̂
0
j �ln x ÿ f� ÿ aj� �23�

and Oj is an equation-speci®c weighting function.9

9 There are a number of practical di�culties in the minimisation of equation (22). First, the loss function approaches zero
for large negative or positive f, since in either case the product f̂ 1�ln x�f̂ 0�ln x ÿ f� becomes arbitrarily small. We
therefore implement a restricted gridsearch over a reasonable range for f in order to establish a value at which the loss
function attains the relevant local minimum.
The second problem relates to the evaluation of the kernel density and regression terms f̂ 0�ln x ÿ f� and m̂0

j �ln x ÿ f� in
equation (22) as one approaches the boundary of the (common) support for ln x. The practical implementation of the
Pinkse and Robinson (1995) estimator requires an appropriate choice for the integration limits ln x and ln �x on log total
expenditure such that f̂ 0�ln x ÿ f� exists over the (restricted) range ln x 2 flnx; ln �xg given observed data.
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4. SEMIPARAMETRIC ESTIMATION RESULTS

4.1 Speci®cation Testing and Endogeneity

How well does the quadratic logarithmic speci®cation, underlying the QUAIDS, ®t in com-
parison with these semiparametric speci®cations? In this section we use the semiparametric
regression models as an alternative against which to test a parametric quadratic logarithmic null.
Convenient goodness of ®t tests have been proposed by HaÈ rdle and Mammen (1993) and
extended in AõÈ t-Sahalia, Bickel, and Stoker (1994). These studies derive asymptotically normal
statistics for the comparison between a non-parametric estimate ĝjh�ln xi� and some parametric
estimate d�ln xi; b̂j� of a regression curve based on a simple squared error goodness of ®t statistic

Ĝj �
1

n

Xn
i�1
�ĝjh�ln xi� ÿ d�ln xi; b̂j��2w� f̂h�ln xi�� �24�

a linear transformation of which is shown to converge at rate nh1/2 to a limiting normal
distribution with estimable asymptotic bias.10

Our proposed test for shape invariance in the semiparametric model adapts Pendakur (1998)
by comparing the minimized value of the loss function (22) with that which we would expect
under the null of shape invariance. We extend our use of the SCM bootstrap algorithm along the
lines suggested by Gozalo (1997) to generate the empirical distribution of the loss function under
the extended partially linear null.11 Bootstrap p-values are presented alongside the value of the
minimized loss function for each share equation.

To adjust for endogeneity we adapt the popular augmented regression technique (see Holly
and Sargan, 1982, for example) to the semiparametric framework. In particular, suppose ln x is
endogenous in model (1) in the sense that

E�ej j ln x� 6� 0 or E�wj j ln xi� 6� gj�ln x� �25�

In this case the non-parametric estimator will not be consistent for the function of interest. It will
not provide the appropriate counterfactual: how do expenditure share patterns change for some
given change in total expenditure? However, suppose there exists a variable y such that

ln x � y � p � v with E�v j y� � 0 �26�
Moreover, assume the following linear conditional model holds:

wj � gj�ln x� � v � rj � ej �27�

10 An alternative approach by Zheng (1996) uses the kernel method to construct a moment condition which can be used
to distinguish the parametric null from the non-parametric alternative. A test proposed by Ellison and Ellison (1992) has
a structure almost identical to that of Zheng (1996), and di�ers only in the form of the variance estimator.
11 Speci®cally, the sequence of SCM bootstrap samples used to simulate the empirical distribution of equation (22) under
the null derives from resampled budget shares w*ij � âj � m̂jh�ln xi ÿ f̂zi� � e*ij where e*ij are de®ned as for the SCM
bootstrap con®dence band algorithm. Re-estimating the semiparametric â*j � m̂*

jh�ln xi ÿ f̂*zi� for each bootstrap sample
f�ln xi , w*ij�gNi�1 using the original h enables us to build an empirical distribution for the loss function under the null. In
practice this is computationally intensive procedure, given that the loss function needs to be re-minimized for each
bootstrap sample. We base empirical p-values for the loss function on 500 bootstrap samples.
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with

E�ej j ln x� � 0 �28�

Note that

wj ÿ E�wj j ln x� � �v ÿ E�v j ln x��rj � ej �29�

The estimator of gj�ln x� is given by

ĝjh�ln x� � m̂
w
jh�ln x� ÿ m̂

v
h�ln x�r̂j �30�

In place of the unobservable error component v we use the ®rst-stage residuals

v̂ � x ÿ yp̂ �31�
where p̂ is the least squares estimator of p. Since p̂ and r̂j converge at

���
n
p

the asymptotic
distribution for ĝjh�x� follows the distribution of m̂w

jh�ln x� ÿ m̂v
h�ln x�rj. Moreover, a test of the

exogeneity null, H0 : rj � 0, can be constructed from this least squares regression.
Newey, Powell, and Vella (1995) have developed a generalization of this idea for triangular

simultaneous equation systems of the type considered here. They adopt a series approach to the
estimation of the regression of wj on ln x and v. This generalizes the form of equation (27) and
allows an assessment of the additive structure. They also use a non-parametric regression for the
reduced form in place of the linear model (26).

In our application we consider extending model (27) along the lines suggested by Newey,
Powell, and Vella (1995). This is done by including higher-order terms in the residuals v and then
testing the partially linear speci®cation (27) against this more general additive recursive alter-
native. The ®rst-stage residual v̂ in (27) is calculated using the log of disposable income and is
used as the excluded instrumental variable.

4.2 Empirical Results

We report a range of semiparametric estimates for the parameters of share equations which, in
their most general form, may be written as

wj � aj � z � gj�ln x ÿ f � z� � v � rj � ej �32�

The ®rst column in each of the following tables contains results for a simple regression of budget
share on log expenditure with no semiparametric controls (that is, f � 0 and aj � rj � 0 for all
j). Relative to this benchmark, the second column reports results for a model which adjusts for
the number of children in the household �aj 6� 0 for all j) using the partially linear framework of
Robinson (1988). The model that controls for demographics and endogeneity �aj 6� 0, rj 6� 0�
makes up our third speci®cation. The ®nal two speci®cations relate to the shape-invariant
generalizations to the basic Robinson-type model. The fourth model allows for scale shifts in log
expenditure by demographic type �f 6� 0, aj 6� 0 for all j) using the estimation method of Pinkse
and Robinson (1995) and the ®fth in addition introduces controls for endogeneity �f 6� 0; aj 6�
0; rj 6� 0 for all j). Estimation results for these ®ve di�erent semiparametric speci®cations are
presented in Tables II to VII for each of the six share aggregates.
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In these tables b̂isj refers to the average derivative (indirect slope) estimates for non-parametric
function gj��� in equation (32).12 By way of comparison b̂olsj refers to the simple ordinary least
squares estimate of the slope coe�cient under the simple parametric assumption that
gj�ln x ÿ f � z� � b̂j � �ln x ÿ f � z�. The shape-invariant transformation (14) has two parameters
for each share equation; the scaling parameter f in the term ln xÿ fz and an intercept parameter
aj. For the latter two models in each of Tables II to VII we estimate the parameters (f, {ajg)
through minimization of equation (22).13

Shape-invariant parameter estimates
We estimate the scale parameter f common to all six share equations to be 0.2590 with an

SCM bootstrap standard error of 0.0809, giving an estimated equivalence scale of 1.295 for

Table II. Non-parametric and semiparametric estimates: food Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

b̂isj ÿ0.1280 ÿ0.1346 ÿ0.1175 ÿ0.1234 ÿ0.1046
(0.0122) (0.0117) (0.0117) (0.0104) (0.0105)

b̂olsj ÿ0.1288 ÿ0.1348 ÿ0.1178 ÿ0.1267 ÿ0.1081
(0.0083) (0.0081) (0.0081) (0.0084) (0.0083)

â j 0.0338 0.0323 0.0281 0.0273
(0.0051) (0.0052) (0.0048) (0.0048)

r̂j ÿ0.0242 ÿ0.0276
(0.0134) (0.0131)

Loss 0.2295
[0.476]

w 2
v �1� 2.680 0.947

[0.102] [0.330]

H0 : linear parametric form
w2abs�1� 0.422 0.757 0.881 0.798 0.694

[0.516] [0.384] [0.348] [0.372] [0.405]

H0 : quadratic parametric form
w2abs�1� 1.192 0.853 1.103 0.005 0.004

[0.275] [0.356] [0.294] [0.944] [0.950]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).

12 See Stoker (1991) for a full discussion of various Average Derivative estimators and their properties.
13 In practice we use sequential gridsearch methods to estimate the scale parameter f and the shift parameters fajg. Initial
values for fajg are estimated using Robinson's (1988) method. Conditional on fâjg we then gridsearch the loss function to
estimate f. This process is then repeated until convergence is achieved. We generate bootstrap standard errors for f̂
through repetition of this gridsearch process for 500 bootstrap samples, each generated using the SCM algorithm of
Gozalo (1997).
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couples with two children compared with our reference group. This accords quite closely with
estimates reported in Pendakur (1998) for a range of US and UK studies. The parameters âj
speci®c to each share equation are reported in the tables. Having accounted for the scale para-
meter f, we ®nd signi®cant shift parameters for food (positive), alcohol and transport (both
negative), con®rming the initial graphical evidence in Figures 1 to 6.

Average derivative estimates
Compared with the ®rst speci®cation, the average slope of the food Engel curve, estimated by

the indirect average derivative b̂isj in Table II, becomes more negative when controlled for
household size using the shape-invariant model but less so once the correction for endogeneity is
included. Notice how the average marginal e�ect of log expenditure on food share reduces when
one controls more fully for demographic variability using the Extended Partially Linear Model.
Notice also how the inclusion of the scale parameter impacts on the magnitude of the estimate of
the shift parameter aj. In particular we see a lower value for âj in the food share equation once log
expenditure has been equivalized for household size.

Table III. Non-parametric and semiparametric estimates: fuel Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

bisj ÿ0.0516 ÿ0.0513 ÿ0.0235 ÿ0.0472 ÿ0.0206
(0.0045) (0.0045) (0.0046) (0.0042) (0.0043)

b̂olsj ÿ0.0493 ÿ0.0491 ÿ0.0214 ÿ0.0463 ÿ0.0199
(0.0044) (0.0044) (0.0044) (0.0043) (0.0043)

â j 0.0017 ÿ0.0004 ÿ0.0013 ÿ0.0022
(0.0026) (0.0027) (0.0025) (0.0026)

r̂j ÿ0.0350 ÿ0.0382
(0.0068) (0.0068)

Loss 0.0512
[0.298]

w 2
v �1� 2.582 3.571

[0.108] [0.059]

H0 : linear parametric form
w2abs�1� 0.416 0.379 0.686 0.197 1.319

[0.519] [0.538] [0.407] [0.657] [0.251]

H0 : quadratic parametric form
w2abs�1� 0.092 0.095 0.022 0.028 0.656

[0.761] [0.758] [0.882] [0.868] [0.418]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).
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Speci®cation test results
We report empirical p-values (denoted p[Loss]) for tests of the null of shape invariance against

a fully non-parametric alternative for all share equations. We are unable to reject shape
invariance in all cases, even for share relationships (e.g. alcohol) which are less obviously shape
invariant from casual graphical examination. We also report tests of the linear (Working±Leser)
and quadratic logarithmic speci®cations against the semiparametric alternatives for each
semiparametric model in Tables II±VII. For the food share in Table II, in all speci®cations, we
are unable to reject linearity. In contrast, for alcohol share, the Piglog of Working±Leser form is
strongly rejected. In line with Blundell, Pashardes, and Weber (1993), the quadratic logarithmic
speci®cation is not rejected by the data. This result is maintained even after controlling for
demographic variation and the endogeneity of total expenditure.

We ®nd the correction for endogeneity of log total expenditure to be important in most
share equations, most notably food, fuel, clothing and alcohol share. The w2v statistic refers to a
one degree of freedom test of the conditionally linear endogeneity correction (27) against the
inclusion of higher terms in v. Here we simply consider an alternative that includes a second-
order residual. There is little evidence against the conditionally linear correction.

Table IV. Non-parametric and semiparametric estimates: clothing Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

b̂isj 0.0910 0.0914 0.0518 0.0855 0.0473
(0.0083) (0.0083) (0.0081) (0.0087) (0.0083)

b̂olsj 0.0882 0.0885 0.0493 0.0864 0.0485
(0.0083) (0.0083) (0.0082) (0.0083) (0.0082)

â j ÿ0.0049 ÿ0.0014 ÿ0.0018 0.0004
(0.0047) (0.0049) (0.0045) (0.0046)

r̂j 0.0527 0.0555
(0.0129) (0.0127)

Loss 0.0965
[0.096]

w 2
v �1� 5.919 3.591

[0.015] [0.058]

H0 : linear parametric form
w2abs�1� 0.798 0.812 0.774 0.711 0.973

[0.372] [0.368] [0.379] [0.399] [0.324]

H0 : quadratic parametric form
w2abs�1� 0.600 0.611 0.649 0.844 1.260

[0.439] [0.435] [0.421] [0.358] [0.262]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).
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4.3 A Graphical Analysis of Shape Invariance

For a graphical comparison of the alternative speci®cations we consider the shape-invariant
restricted models without endogeneity correction. These correspond to the fourth columns
in Tables II±VII and are presented graphically in Figures 7 to 12. The solid line is the reference
curve (for couples with one child). The hashed line is the unrestricted equivalent kernel regression
curve for families with two children. The dotted lines are the shape-invariant curves using
estimates from Tables II±VII. Note that shape-invariant and unrestricted curves are, in most
cases, quite comparable, and consistent with the bootstrap speci®cation tests of shape invariance
reported earlier.

5. CONCLUSIONS

This paper has been concerned with investigating the `shape' of consumer preferences using
semiparametric methods. By choosing consumers from a point in time and location we have
focused on the Engel curve relationship. As a baseline speci®cation we have worked with the
Working±Leser or Piglog speci®cation in which budget shares are expressed in terms of log total

Table V. Non-parametric and semiparametric estimates: alcohol Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

b̂isj 0.0243 0.0264 0.0119 0.0236 0.0076
(0.0037) (0.0037) (0.0037) (0.0035) (0.0036)

b̂olsj 0.0215 0.0231 0.0087 0.0191 0.0030
(0.0050) (0.0050) (0.0049) (0.0047) (0.0047)

â j ÿ0.0139 ÿ0.0127 ÿ0.0121 ÿ0.0115
(0.0034) (0.0034) (0.0032) (0.0033)

r̂j 0.0198 0.0230
(0.0088) (0.0086)

Loss 0.1483
[0.144]

w 2
v �1� 0.726 0.941

[0.394] [0.332]

H0 : linear parametric form
w2abs�1� 5.146 8.621 8.167 7.887 9.567

[0.023] [0.003] [0.004] [0.005] [0.002]

H0 : quadratic parametric form
w2abs�1� 0.044 0.127 0.083 0.159 0.397

[0.833] [0.721] [0.773] [0.690] [0.529]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).
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Table VI. Non-parametric and semiparametric estimates: transport Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

b̂isj 0.0328 0.0349 0.0188 0.0338 0.0180
(0.0071) (0.0072) (0.0072) (0.0068) (0.0068)

b̂olsj 0.0295 0.0314 0.0152 0.0302 0.0144
(0.0088) (0.0088) (0.0088) (0.0087) (0.0087)

â j ÿ0.0124 ÿ0.0111 ÿ0.0100 ÿ0.0094
(0.0055) (0.0056) (0.0053) (0.0053)

r̂j 0.0204 0.0228
(0.0144) (0.0142)

Loss 0.1360
[0.242]

w 2
v �1� 0.0122 0.231

[0.912] [0.631]

H0 : linear parametric form
w2abs�1� 0.431 0.672 0.595 0.057 0.083

[0.511] [0.413] [0.441] [0.811] [0.773]

H0 : quadratic parametric form
w2abs�1� 0.719 0.707 0.801 0.826 0.935

[0.396] [0.400] [0.371] [0.364] [0.334]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).

Figure 7. Shape-invariant transformation: food share
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Table VII. Non-parametric and semiparametric estimates: other goods Engel curves

f � 0 f � 0.2590 (0.0809)

1
No corrections

2
Demographics

3
Demographics
and endogeneity

4
Demographics

5
Demographics
and endogeneity

b̂isj 0.0329 0.0333 0.0468 0.0313 0.0447
(0.0097) (0.0097) (0.0097) (0.0087) (0.0088)

b̂olsj 0.0358 0.0362 0.0497 0.0337 0.0471
(0.0091) (0.0091) (0.0091) (0.0090) (0.0090)

â j ÿ0.0035 ÿ0.0043 ÿ0.0016 ÿ0.0018
(0.0054) (0.0055) (0.0052) (0.0053)

r̂j ÿ0.0149 ÿ0.0193
(0.0126) (0.0125)

Loss 0.0043
[0.164]

w 2
v �1� 0.0569 0.506

[0.811] [0.477]

H0 : linear parametric form
w2abs�1� 1.933 1.901 4.336 0.591 1.404

[0.164] [0.168] [0.037] [0.442] [0.236]

H0 : quadratic parametric form
w2abs�1� 0.005 0.004 0.140 0.364 0.067

[0.943] [0.947] [0.708] [0.546] [0.796]

Notes: Here and in Tables III to VII data are drawn from the 1980±82 Family Expenditure Surveys. Standard errors in ( )
parentheses and p-values in [ ] parentheses. Non-parametric estimates based on a Gaussian kernel with bandwidths
chosen by cross-validation (cf. HaÈ rdle, 1990). Average derivatives b̂is are indirect slope estimates (cf. Stoker, 1991) for the
non-parametric function gj��� in equation (32). For cross-validation and ADE calculations, data are trimmed to exclude
the smallest 2% of estimated densities. All estimates and speci®cation tests are generated using the GAUSS-based
software package NP-REG (see Duncan and Jones, 1992).

Figure 8. Shape-invariant transformation: fuel share
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expenditure, this being the Engel curve shape underlying the popular AID and Translog demand
models of Deaton and Muellbauer (1980a) and Jorgenson, Lau, and Stoker (1980).

We also consider parametric models which have more variety of curvature than is permitted by
the Piglog. This re¯ects growing evidence from a series of empirical studies that suggest quadratic
logarithmic income terms are required for certain expenditure share equations. Consequently we

Figure 9. Shape-invariant transformation: clothing share

Figure 10. Shape-invariant transformation: alcohol share
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have used both the Piglog and quadratic logarithmic speci®cations as null parametric speci®ca-
tions for designing tests against a non-parametric alternative.

Restrictions from consumer theory have been used to place restrictions on the form the Engel
curve relationship and the way non-parametric Engel curves can be pooled across demographic
types. We have shown that the additive structure between demographic composition and income

Figure 11. Shape-invariant transformation: transport share

Figure 12. Shape-invariant transformation: other goods share
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that underlies the partially linear semiparametric model implies strong and unreasonable
restrictions on behaviour. On the other hand, pooling across demographic types using the shape-
invariant semiparametric framework of HaÈ rdle and Marron (1990) and Pinkse and Robinson
(1995), is shown to provide a preference consistent method for general non-parametric Engel
curves. This speci®cation also appears to work well in application.

In the empirical analysis of Engel curves an important issue turned out to be the endogeneity of
total expenditure. To account for such endogeneity we have adapted the Holly and Sargan (1982)
augmented regression approach to the partially linear regression context. We also considered the
Newey, Powell, and Vella (1995) extension to additive recursive structures. In the application,
using earned income to instrument total expenditure, correcting for endogeneity is found to have
an important impact on the curvature of the Engel curve relationship.

To compare these semiparametric speci®cations with the Piglog and quadratic logarithmic
parametric speci®cations we implement the recently developed speci®cation test by AõÈ t-Sahalia,
Bickel, and Stoker (1994). The Working±Leser or Piglog speci®cation was strongly rejected
for some budget shares but the quadratic logarithmic model seemed to provide an acceptable
parametric speci®cation.
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