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Abstract

We construct a peer effects model where mean expenditures of consumers in one’s peer

group affect utility through perceived consumption needs. We provide a novel method

for obtaining identification in social interactions models like ours, using ordinary survey

data, where very few members of each peer group are observed. We implement the

model using standard household-level consumer expenditure survey microdata from

India. We find that each additional rupee spent by one’s peers increases perceived

needs, and thereby reduces one’s utility, by the equivalent of a 0.25 rupee decrease in

one’s own expenditures. These peer costs may be larger for richer households, meaning

transfers from rich to poor could improve even inequality-neutral social welfare, by

reducing peer consumption externalities. We show welfare gains of billions of dollars per

year might be possible by replacing government transfers of private goods to households

with providing public goods or services, to reduce peer effects.
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1 Introduction

There are substantial peer effects in income and consumption. People’s evaluation of

their own income depends on the income of their peers (Kahneman 1992; Luttmer 2005;

Clark, Frijters, and Shields 2008). Their consumption choices also depend on those of their

peers (Gali 1994; Boneva 2013; de Giorgi, Frederiksen, and Pistaferri 2016), and the perceived

value of individual goods or brands depends on the consumption of those goods in relevent

reference groups (Rabin 1998, Kalyanaram and Winer 1998, Chao and Schor 1998).

Despite the strong evidence of peer effects in consumption choices, there has been much

less work evaluating the resulting welfare impacts of these effects. In this paper we study the

impact of changes in peer mean expenditures on utility, asking how much one’s own expen-

diture would have to increase to compensate for a unit increase in peer group expenditures.

One way to measure the welfare impacts of peer effects would be to directly regress

an observed utility measure (i.e., stated well-being) on own and peer expenditures, as in

Luttmer (2005). This has the drawback of relying on coarse self-reports of well-being, which

generally suffer from lack of interpersonal comparability, framing biases, measurement er-

rors and problems of interpretation. Most empirical studies of consumption peer effects

instead regress individual consumption on mean peer group consumption and other covari-

ates (Chao and Schor, 1998; Boneva, 2013). Such regressions reveal behavioral responses to

peer expenditures, but do not reveal the welfare implications of these peer effects.

To study the welfare effects of peer consumption, we propose a “keeping up with the Jone-

ses” type structural model that exploits revealed preference based links between consumption

and utility to recover the welfare implications of peer expenditures on consumption behavior.

In our model, one’s perceived required expenditures, or “needs,” depend on, among other

things, the mean expenditures of one’s peer group. The higher are these perceived needs,

the more one must spend to attain the same level of utility. Consistent with other empirical

evidence, we find that consumers lose utility from feeling poorer when their peers get richer,

and so consumers feel they must spend and consume more when their peers consume more

(Luttmer 2005, Ravina 2007, Clark and Senik 2010). In contrast to those papers, which use

direct data on reported well-being, we identify the money-metric costs of peer consumption

from ordinary consumer demand data.

In estimating peer effects, much progress has been made in overcoming the endogeneity

of peer data, and allowing for fixed or random peer group effects, by using detailed social

network information. For example, de Giorgi, Frederiksen and Pistaferri (2016) instrument

for peer consumption with friend-of-friend consumption. However, in our application we use

only standard cross-section expenditure survey data, of the type that is commonly collected
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by governments all over the world. As a result, we cannot make use of network information

or variation in peer group sizes (as in Lee 2007) to obtain identification.

We estimate our model using consumption survey data from India.1 Our groups are de-

fined at a very local geographic level; roughly a small neighborhood. Within neighborhoods,

we also group people by religion and caste. This results in groups comprised of a few hundred

members, but we only observe ten or fewer of the members in each group. This gives rise to

some unusual econometric obstacles that must be overcome.

One such obstacle is that we cannot consistently estimate within-group mean expendi-

tures, because so few members of each group are observed. Another is identifying the impact

of group level peer effects while allowing for unobserved heterogeneity in group behavior, in

the form of group level fixed effects or random effects. A third is coping with nonlinearities

associated with maximization of empirically plausible utility functions. We propose some

novel identifying moments to obtain model identification despite these obstacles, and provide

an associated GMM estimator. These innovations in the econometric identification of peer

effects could prove useful in other applications of social interactions models.

Empirically, we find that dealing with the peer group mean measurement error issue

is particularly important. Failing to account for these errors leads to attentuation biases

so large that the estimated peer effects are reduced by up to 90% in some specifications.

Chandrasekhar and Lewis (2011) also document mean biases of 90% due to incomplete

measurement of some networks.

Our empirical results show that an increase in spending by one’s peers of one rupee has

the same effect on one’s utility as a decrease in one’s own expenditures of about one fourth

of a rupee. We also find some evidence that peer effects are smaller for lower socio-economic

status groups.

These results have important implications for tax and redistribution policy. First, they

suggest that personal taxes may be less costly in terms of social welfare than is implied

by standard demand models, which ignore peer effects. Since peer effects are a negative

consumption externality, the reduction in consumption caused by taxes does not reduce

welfare as much it would in the absence of that externality.

Second, if the utility associated with public goods or government services are not subject

to these peer effects (or engender smaller peer effects), then governments can increase welfare

by substituting the provision of public goods for the provision of private goods. This effect

can be very large: we perform a rough calculation which shows that replacing India’s food

subsidy program with more generous provision of public goods and services, such as public

sanitation or cleaner air, could potentially increase money metric welfare by up to 180 billion

1A number of studies find significant peer effects in India, e.g., Banerjee, et. al. (2013).
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rupees (2.5 billion US dollars) per year at no additional cost, by reducing peer effects.

Third, the finding that poorer households may have smaller peer effects suggests that

transfers from higher to lower status groups can increase total welfare, by reducing peer

externalities. The usual argument for transfers of money from rich to poor is the assumption

of declining social marginal welfare (meaning society benefits more by giving the poor an

additional dollar than it loses by taking away a dollar from the rich, ceteris paribus). In

contrast, our results give a reason why progressive taxation can increase social welfare, even

if all consumers have the same marginal utility of money, and even if one’s social welfare

function is inequality-neutral.

Consider a model where each consumer, indexed by i, is a member of a peer group,

indexed by g. Let qi be the vector of (continuous) quantities of goods that consumer i

consumes. We specify and estimate utility derived demand functions, which express qi as a

function of prices, a total expenditure budget xi, and demographic characteristics. Consumer

i is a member of a peer group g. Let qg be the expected value of the quantity vector q among

all the members of group g.2 The peer effects in our model have demand functions that also

depend, nonlinearly, on qg. There is a long history, going back to Samuelson (1947), of

modeling needs in utility and demand functions as analogous to fixed costs or overheads in

production. In our model, these needs depend on qg, and qi in turn depends on needs.

Given estimates of our demand functions, and hence (by revealed preference theory)

ordinal utility functions, we can answer the question: If peer spending qg increases, how

much poorer does consumer i feel? More precisely, how much more would consumer i need

to spend (i.e., how much would his or her budget xi need to increase) to give that consumer

the same level of utility she had before qg increased? This is the fundamental welfare question

our analysis seeks to answer.

Our system of demand functions is an example of a social interactions model, since it

includes the vector of group means qg as covariates. Our model differs from standard social

interactions models (e.g., Manski 1993, 2000; Brock and Durlauf 2001; Lee 2007; Blume et

al. 2010) in a variety of ways. First, our model is nonlinear and vector-valued while most

such models are linear and scalar-valued. This nonlinearity complicates some aspects of

identification, but it helps overcome other issues, such as allowing us to include group-level

fixed effects in the model (in a linear model, differencing or demeaning to remove fixed effects

would also remove qg).

A second difference is that most social interactions models make use of network informa-

2Letting qg be the expected value rather than the average of qi among all group members mitigates some
technical issues, such as the reflection problem, and it means members don’t need to consider the effect of
their own decisions on qg.
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tion for identification, but we cannot. Examples of such network information include the use

of exogenous variation in group composition or size (e.g., Lee 2007; Carrell, Fullerton and

West 2009; and Duflo, Dupas and Kremer 2011), or the use of detailed network structure

like intransitive triads, where data on friends of friends provides instruments for identifica-

tion (e.g., Bramoullé, Djebbari and Fortin 2009; De Giorgi, Pellizzari, and Redaelli 2010;

Jochmans and Weidner 2016; or de Giorgi, Frederiksen, and Pistaferri 2016). In contrast,

our model uses consumer expenditure survey data, of the type that many countries collect for

constructing consumer price indices. Since such surveys do not contain social network infor-

mation, we can only define peer groups based on demographic characteristics and geography,

and we therefore cannot exploit any network structure to help identification.

A third difference from most social interactions applications is that, having survey data,

we only observe a small number of the members in each peer group. Our peer groups each

have a few hundred members or more in the population, but we observe at most 10 members

of each group in our sample. As a result, we cannot consistently estimate group means qg. For

each group g, we can at best construct an estimate q̂g by averaging across the small number

of members that we do observe in each group. This greatly complicates identification and

estimation of our model, because replacing qg with q̂g introduces group level measurement

error into the model, and this measurement error q̂g−qg is both endogenous and correlated

with other components of the model. These problems are further exacerbated by nonlinearity

of the demand function, resulting in interaction terms like the measurement error q̂g − qg

multiplied by xi (the budget of consumer i).

Section 3 below illustrates our general procedure for dealing with these econometric

issues, in the context of a simple generic quadratic model. This procedure should be of

independent interest to others wishing to estimate peer effects using survey data. In some

Appendices, we provide a sequence of theorems proving that our identification method and

associated proposed estimators yield consistent estimators and valid inference, both for the

simple quadratic generic model (with some extensions), and for our general utility derived

demand model.

The remainder of this paper proceeds as follows. In Section 2 we expand on the structural

model of utility, demand and peer effects introduced above. Section 3 summarizes our general

results on identification and estimation. Our empirical estimates are presented in Section 4,

with policy implications provided in Section 5. Section 6 then concludes.
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2 Utility and Demand With Peer Effects in Needs

There is a long literature that connects utility and well-being to peer income or consump-

tion levels (see, e.g., Frank 1999, 2012). The Easterlin (1974) paradox asserts an empirical

connection between well-being and national average incomes. Though the strength of this

connection is debated (Stevenson and Wolfers 2008), the correlation between utility and

national-level consumption, ceteris paribus, appears negative. Ravina (2007) and Clark and

Senik (2010) regress self-reported utility on own budgets and national average budgets, and

other correlated aggregate measures like inequality, and find that this negative correlation

still stands. Similar results hold for much smaller reference groups, e.g., Luttmer (2005) finds

that an increase of the average income in one’s neighbors reduces self-reported well being.

The possible mechanisms for this correlation are varied. Veblen (1899) effects make

consumers value consumption of visible status goods. Reference-dependent utility functions

hinge preferences on own-endowments (Kahneman and Tversky 1979). More recent work

on these models has led to reference-dependence that is “other-regarding,” where utilities

depend on reference points that are driven by other agents’ decisions or endowments. Models

of “keeping up with the Joneses” have one’s own consumption feel smaller when one’s peers

consume more. Surveys of this literature include Kahneman (1992) and Clark, Frijters, and

Shields (2008).

Taken together, this literature suggests that the utility of consumer i should depend on

both qi and qg, and that utility is increasing in qi and decreasing in qg.
3,4,5 If we could

observe utility and consumption quantities of individuals and groups, we could directly test

this. Luttmer (2005) estimates an approximation of this relationship, by regressing a crude

measure of utility (reported life satisfaction on a coarse ordinal scale) not on qi and qg, but

on xi and its group mean xg. Separate from our main empirical application, we estimate a

similar regression, using data from India and groups that are roughly comparable to those in

our main empirical analysis. The results agree with Luttmer (2005) and support our main

model’s underlying assumption that increases in peer expenditures decrease rather than

increase utility. Our main model does not depend on crude utility measures, but instead

3It is of course possible that peer group expenditures matter in other ways than just though group means
qg. We only consider group means here because of data limitations and other econometric issues discussed
later.

4One could imagine utility positively correlated with qg, for example, through happiness for the success
of one’s peers. But the empirical evidence, including our own results, suggest that the correlation is negative.

5Our groups are defined (in the main) by geography. This implies a substantial risk of misspecifying how
consumers are assigned to peer groups. We mitigate this risk in part by constructing very small groups,
since defining groups that are too small creates inefficiency but not bias. We also show how misspecification
of groups will generally leads to downward bias in peer effects estimates, so our estimated effects are likely
to be conservative, and we perform some specification tests regarding group definitions.
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identifies comparable structural parameters obtained from utility-derived demand functions

via revealed preference.

A number of papers relate consumption choices to peer consumption levels, although

these analyses are essentially nonstructural (Chao and Schor 1998, Boneva 2013, de Giorgi,

Frederiksen and Pistaferri, 2016). All these papers suggest that the magnitudes of peer effects

in consumption choices are large. In our notation, these papers use empirical approaches

analogous to regressing qi on xi and qg. However, establishing how much consumption qi

changes when peer consumption qg changes does not answer the welfare question of how qg

affects utility, and hence how much one would need to increase xi to compensate for the loss

of utility from an increase in qg. Answering this type of welfare question requires linking

expenditures to utility, which is what our structural model does.

2.1 The Utility-Derived Demand Model

Our model is that each consumer, indexed by i, is a member of a peer group, indexed

by g. Note that g should have a subscript i, denoting the particular group that contains

consumer i, but we drop this subscript to avoid notational clutter. Let qi be the vector of

(continuous) quantities of goods that consumer i consumes. Utility is given by Ui = U(qi−fi),

where Ui is the attained utility level of consumer i, U is a utility function (ignoring taste

heterogeneity for now), and fi is a vector of the needs of consumer i.

Needs fi is a quantity vector, with elements equal to the minimum quantities that con-

sumer i must consume of each good before he or she starts to get any utility. In the context

of a linear model, Samuelson (1947) defines the quantity vector fi as the “necessary set” of

goods. The Stone (1954) and Geary (1949) linear expenditure system is just a Cobb-Douglas

utility function U with needs equalling a constant vector f . Gorman (1976) analyzed the gen-

eral form Ui = U(qi− fi) for arbitrary utility functions U , letting fi depend on demographic

variables and taste shifters zi.

Let overbars indicate true within-group means, and hats indicate sample averages. We

extend Gorman (1976) by letting needs fi also depend on qg, the expected value of the

quantity vector q among the members of consumer i’s peer group g. The model therefore

has fi = f
(
zi,qg

)
for a vector valued needs function f . Let p be the price vector corresponding

to qi, and let xi be consumer i’s budget (total expenditures). Consumer i chooses the vector

qi to maximize his or her utility

Ui = U
(
qi − f

(
zi,qg

))
(1)

under the linear budget constraint p′qi ≤ xi.
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One can equivalently represent preferences using an indirect utility function, defined as

the maximum utility attainable with a given budget xi when facing prices p. Gorman (1976)

shows6 that for any regular utility function in this form, there exists a corresponding indirect

utility function V such that

Ui = V
(
p, xi − p′f(zi,qg)

)
. (2)

Indirect utility functions of this form can be shown to have many desirable properties for

welfare calculations.7 Blackorby and Donaldson (1994) and Donaldson and Pendakur (2006)

show that the function f (without qg) is uniquely identified up to location from consumer

demand functions. We show later that we can also uniquely identify how f depends on qg.

Luttmer (2005) regresses a self-reported measure of happiness on zi, yi, and ŷg (where

for Luttmer, yi is the income of consumer i, and ŷg is the observed within-group average

income). We can interpret his regression as a simplified and linearized version of equation (2),

where self-reported happiness is assumed to proxy for Ui, income yi replaces xi, and all the

effects of qg are subsumed by ŷg. Table 1 (column 3) in Luttmer (2005) gives endogeneity-

corrected estimates of the coefficients of ŷg and yi of −0.296 and 0.361, respectively. The

negative ratio of these is 0.82, meaning that a 100 dollar increase in group-average income

has the same effect on reported happiness as an 82 dollar reduction in own-income. We later

estimate an object that has a comparable interpretation to this relative coefficient. But

instead of assuming that Ui equals an observed happiness measure that can be compared

across individuals and regressed on covariates, we let Ui be unobserved. We instead derive

demand equations from equation (2), and then recover the implied peer effects on utility.

The demand functions that result from maximizing our utility function can be obtained

by applying Roy’s (1947) identity to the indirect utility function of equation (2). These

demand functions have the form qi = h(p, x− p′fi) + fi, where fi = f(zi,qg) and the vector

valued function h is defined by h(p, x) = −∇pV (p, x)/∇xV (p, x). See, e.g., Pollak and

Wales (1981) and Pendakur (2005).

To allow for unobserved heterogeneity across consumers, we append the error term vg+ui

to these demand functions, so

qi = h
(
p, xi − p′f

(
zi,qg

))
+ f

(
zi,qg

)
+ vg + ui, (3)

6His version did not include qg.
7Blackorby and Donaldson (1994) show that indirect utility functions Ui = V (p, xi − p′fi) satisfy Ab-

solute Equivalence Scale Exactness (AESE). For preferences that satisfy AESE, one can define equivalent
income as xi − p′fi and show that the sum of equivalent income across consumers is a valid money-metric
based social welfare function.
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where vg is a J−vector of group level fixed or random effects and ui is a J−vector of

individual specific error terms that are assumed to have zero means conditional on xi, zi,

and p. This model can alternatively be interpreted as including vg + ui additively in fi but

imposing the (somewhat peculiar) restriction that p′ (vg + ui) = 0. If vg +ui is a component

of needs vg+ui, then the restriction p′ (vg + ui) = 0 would be needed to keep each individual

on their budget constraint, and it makes these errors drop out of h.

The difference between interpreting vg+ui as a departure from utility maximization or as

unobserved preference heterogeneity is irrelevant for identification and estimation. However,

the difference can affect whether it is appropriate to include vg + ui in welfare calculations

or not. However, all of the welfare analyses we perform are based on changes in utilities

and in fixed costs, rather than levels, so these terms, if they were included in our welfare

measures, would just get differenced out anyway. Note that we will control for, but not

actually estimate, the fixed or random effects vg.

In the fixed effects model, vg can be correlated in unknown ways with regressors includ-

ing p, x and qg. The random effects model imposes the additional restriction that vg be

independent of regressors. As a result, the random effects model will be much more efficient,

but at the cost of imposing these possibly questionable independence restrictions.

We take the needs function f
(
zi,qg

)
to be linear, so

fi = Aqg + Czi (4)

for some matrices of parameters A and C. Linearity of fi in zi is commonly assumed in

empirical demand analysis, so we extend that linearity to the additional variables qg.The

vector of demand functions given by equation (4) then reduce to

qi = h(p, xi − p′Aqg − p′Czi) + Aqg + Czi + vg + ui. (5)

2.2 Utility and Demand Functions

To obtain equations we will estimate, we need to specify the indirect utility function V ,

which then determines the vector-valued function h. Based on a long empirical literature,8

8Many studies of commodity demands have found that observed demand functions are close to polynomial.
See, e.g. Lewbel (1991), Banks, Blundell, and Lewbel (1997), and references therein. Gorman (1981) shows
that any polynomial demand system has a maximum rank of three. Lewbel (1989) provides the tractable
classes of indirect utility functions that yield rank three polynomials. The most commonly assumed rank
three models in empirical practice are quadratic (see the above references and the Quadratic Expenditure
System of Pollak and Wales 1978). The resulting class of indirect utility functions that yield rank three,
quadratic in x demand functions are those given by equation (6).
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we assume

V (p, x) = − (x−R (p))−1B (p)−D (p) (6)

for some differentiable functions R, B and D. Applying Roy’s identity to obtain the function

h and equation (5) yields demand equations

qi =
(
xi −R (p)− p′(Aqg + Czi)

)2 ∇D (p)

B (p)
(7)

+
(
xi −R (p)− p′(Aqg + Czi)

) ∇B (p)

B (p)
+∇R (p) + Aqg + Czi + vg + ui.

Rationality (consistency with utility maximization) requires that R (p) and B (p) be

homogeneous of degree 1 in p and that D (p) be homogeneous of degree 0 in p. Standard

functions that satisfy these conditions and yield price-flexible (in the sense of Diewert 1974)

demand functions are R (p) = p1/2′Rp1/2 where R is a symmetric matrix, lnB (p) = b′ ln p

with b′1 = 1, and D (p) = d′ ln p with d′1 = 0. See, e.g., Lewbel (1997).9

For each good j, the resulting demand model is

qji = Qj

(
p, xi,qg, zi

)
+ vjg + uji, (8)

where each Qj function is given by

Qj

(
p, xi,qg, zi

)
=
(
xi − p1/2′Rp1/2 − p′Aqg − p′Czi

)2
e−b

′ lnpdj
pj

+
(
xi − p1/2′Rp1/2 − p′Aqg − p′Czi

) bj
pj

+Rjj +
∑
k 6=j

Rjk

√
pk/pj + A′jqg + C′jzi. (9)

Here A′j is row j of A and C′j is row j of C. These quantity demand functions are quadratic

in the budget xi.
10

In our data, prices vary geographically by state, but are fixed within each group, so we

can subscript prices by g11. More generally, our model would permit observing groups in

multiple time periods, with prices varying by time instead of, or in addition to, varying

9To avoid multicollinearity, in our application we restrict R to be diagonal. Since J ≤ 3, our model
remains Diewert-flexible in own and cross price effects.

10There is one straightforward extension to the demand model that we consider in some of our estimates,
but do not include above to save on notation. We allow a few discrete group-level characteristics (such as
religion dummies) to interact with qg, thereby allowing A to vary with these characteristics. Identification
follows immediately from identification of the model with A constant, since the the same assumptions used
to identify the above model with fixed A can be applied separately for each value of these characteristics.

11More generally, our model would permit observing groups in multiple time periods, with prices varying
by time instead of, or in addition to, varying geographically. In the Appendix we derive results at this added
level of generality, including t subscripts for time and price regimes.
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geographically. In the Appendix we derive results at this added level of generality, including

t subscripts for time and price regimes.

As is standard in the estimation of continuous demand systems, we only need to estimate

the model for goods j = 1, ..., J − 1. The parameters for the last good J are then obtained

from the adding up identity that qJi =
(
xi −

∑J−1
j=1 pjqji

)
/pJ . While we report some results

using J = 3 goods, most of our analyses will be based on J = 2, with the two goods being

food and non-food. In this case J − 1 = 1 so we only need to estimate the demand equation

for one good, which we choose to be food. Most of our analyses will also assume A is

diagonal. With these simplifications, equation (9) reduces to the single equation

Q1

(
pg, xi,qg, zi

)
= X2

i e
−(b1 ln p1g+(1−b1) ln p2g)d1/p1g +Xib1/p1g +R11 + A11qg1 + C′1zi,

where

Xi = X(pg, x,qg, zi) = xi−R11p1g−R22p2g−
(
A11qg1 + C′1zi

)
p1g−

(
A22qg2 + C′2zi

)
p2g. (10)

As is common in empirical work in demand analysis, we recast quantity demand equa-

tions as spending equations by multiplying by price. Substituting the above into (8) and

multiplying by p1g yields our primary estimation model:

p1gq1i = X2
i e
−(b1 ln p1g+(1−b1) ln p2g)d1+Xib1+R11p1g+A11p1gqg1+C′1p1gzi+p1gv1g+p1gu1i (11)

The goal will be estimation of the set of parameters {A, C, R, d, b}. In particular, A

embodies the impact of peer effects on needs, and hence on social welfare.

3 Identification and Estimation: Econometric Issues

There are many obstacles to identifying and estimating our model. These issues stem

from: 1) model nonlinearity (which arises from utility maximization); 2) identifying the

effect of a group level variable qg in the presence of group level fixed or random effects

vg; 3) the possible absence of an equilibrium among group members; 4) endogeneity of

qg (as in the Manski 1993 reflection problem); and, 5) qg not being directly observed nor

consistently estimated, because the data only contain a small number of members of each

group. Although we solve all 5 issues, most of our econometric novelty relates to how we

deal with issue 5, measurement error in the group means.

To illustrate how we overcome these econometric issues, we first consider a very simple

model that suffers from all these same problems. Below we show informally how we identify
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and estimate this simple generic model. In the Appendix we provide formal proofs of our

identification method and associated estimator asymptotics, for both a multivariate extension

of this generic model, and for our full consumer demand model given by equation (11).

Our model starts with cross section data, where each observed individual i is assumed

to be in a peer group g ∈ {1, ...G}. The number of peer groups G is large, so we assume

G → ∞. In our data we will only observe a small number ng of the individuals who are

actually in each peer group g, so asymptotics assuming ng →∞ (or assuming that ng grows

to the total number of people in each group) are inapplicable. We therefore assume ng is

fixed and does not grow with the sample size.

The generic model relates a scalar outcome yi for person i in group g to yg, where

yg = E (yj | j ∈ g), so yg is the population mean value of yj over all people j in person i’s

peer group g. For simplicity, assume there’s a single scalar covariate xi that affects yi (we

extend the generic model to vectors of yi and xi in the appendix).

A typical peer specification with such data would be linear, e.g., yi = yga+xib+ui, where

ui is an error term uncorrelated with xi, and the pair of constants (a, b) are parameters to

estimate (see, e.g., Manski 1993, 2000 and Brock and Durlauf 2001). However, to account

for the nonlinearity and heterogeneity issues associated with our demand model, consider

the more general specification

yi =
(
yga+ xib

)2
d+

(
yga+ xib

)
+ vg + ui, (12)

where the term vg is a group level fixed or random effect, and the constants (a, b, d) are

the parameters to identify and estimate. We are not claiming that the functional form of

equation (12) is in some way fundamental. Rather, it’s just a simple nonlinear specification

that nests the standard linear model as a special case, resembles our full demand model, and

can be used to demonstrate all the issues (and solutions) associated with identification and

estimation of our demand model. Equation (12) differs from the linear model both by the

squared index term and by including a group-level fixed or random effect vg.

We only have survey data with a modest number of observations for each group, so we

do not assume we can observe the true yg even asymptotically. We therefore replace yg with

an estimate ŷg making equation (12) equal to

yi = (ŷga+ xib)
2 d+ (ŷga+ xib) + vg + ui + εgi, (13)

where the difference between ŷg and yg results in the additional error term εgi. By construc-

11



tion, εgi is given by

εgi =
(
y2g − ŷ2g

)
a2d+ 2

(
yg − ŷg

)
xiabd+

(
yg − ŷg

)
a. (14)

Inspection of equations (13) and (14) shows many of the obstacles to identifying and

estimating the model parameters a, b, and d. First, with either fixed or random effects, vg

could be correlated with ŷg. Second, since ng does not go to infinity, if ŷg contains yi then

ŷg will correlate with ui. Third, again because ng is fixed, εgi doesn’t vanish asymptotically,

and is by construction correlated with functions of ŷg and xi. We can think of
(
yg − ŷg

)
and

(
y2g − ŷ2g

)
as measurement errors in yg and y2g, leading to the standard problem that

mismeasured regressors are correlated with errors in the model.

The primary obstacle to identification and estimation is dealing with the above correla-

tions between covariates and the unobservables vg, ui, and εgi. In contrast, two additional

problems that are common in social interactions and network models will be more readily

overcome. One is the Manski (1993) reflection problem, which does not arise here primarily

because the group mean of xi does not appear in the model.12 Another possible problem is

that the model might not have an equilibrium. For example, it could be that some members

increasing their spending by one dollar would cause others to spend more by two dollars,

making the original members feel the need to increase further to three dollars, etc. In the

Appendix we show that a single inequality ensures existence of an equilibrium. Roughly, an

equilibrium exists as long as the peer effects are not too large.

We employ two somewhat different methods for identifying and estimating this model,

depending on whether each vg is assumed to be a fixed effect or a random effect. For each

case, we construct a set of moment conditions that suffice to identify the coefficients, and

are used for estimation via GMM.

3.1 Generic Model Estimation With Group Level Fixed Effects

In the fixed effects model, we make no assumptions about how vg may correlate with

other covariates (incluing yg) or about how vg might vary over time. Identification and

estimation will therefore require removing these fixed effects in some way. As a result,

identification will depend on the nonlinearity of demand, and so we must assume that d 6= 0.

In contrast, our later random effects model will make additional assumptions regarding vg,

12The group mean xg does not appear in our model because our underlying utility theory of revealed
preference with needs only gives rise to inclusion of group quantities (corresponding to yg in the generic
model). When vg is a fixed effect the reflection problem could still arise, in that vg could be correlated with
xg, but in that case we exploit the nonlinear structure of our model to overcome this issue. See the Appendix
for details.
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but will be applicable to any linear or quadratic specification.

To remove the fixed effect vg, we begin by differencing the outcomes of two consumers

i and i′ observed in in the same group g (and, if we have time variation, in the same time

period). In addition, to remove some correlation issues, we define the leave-two-out group

mean estimator

ŷg,−ii′ =
1

ng − 2

∑
l∈g,l 6=i,i′

yl.

This ŷg,−ii′ is just the sample average of y for everyone who is observed in group g in the

given time period, except for the individuals i and i′. Replacing ŷg in equation (13) with

ŷg,−ii′ , and differencing equation (13) between the individuals i and i′ gives

yi − yi′ = 2ŷg,−ii′ (xi − xi′) abd+
(
x2i − x2i′

)
b2d+ (xi − xi′) b+ ui − ui′ + εgi − εgi′ , (15)

where

εgi − εgi′ = 2
(
yg − ŷg,−ii′

)
(xi − xi′) abd. (16)

We can then show that, with some standard regression assumptions (see Theorem 1 in the

Appendix), that

E (ui − ui′ + εgi − εgi′ | xi, xi′) = 0, (17)

which we can then use to construct some of the moments needed for estimation of equation

(15).

The intuition for this result can be seen by reexamining the obstacles to identification

listed earlier. The correlation of vg with yg and hence with ŷg,−ii′ doesn’t matter because vg

has been differenced out. The leave-two-out average ŷg,−ii′ does not correlate with ui or ui′

because individuals i and i′ are omitted from the construction of ŷg,−ii′ . Finally, εgi − εgi′ is

linear in xi − xi′ , with a coefficient that can be shown to be conditionally mean zero.

Equation (15) contains functions of ŷg,−ii′ , xi, and xi′ as regressors, and equation (17)

shows that we can use functions of xi and xi′ as instruments. However, we still require an

instrument for ŷg,−ii′ , because of its correlation with εgi−εgi′ . Since each y depends on x, an

obvious candidate instrument for an average of y’s in a group (that is, ŷg,−ii′) would be an

average of x’s in the group, that is, some estimate x̂g of the mean group value xg. However,

although E (εgi − εgi′ | xi, xi′) = 0, the error εgi − εgi′ will in general be correlated with xl

for all observed individuals l in the group other than the individuals i and i′. Note that this

problem is due to the assumption that ng is fixed. If it were the case that ng → ∞, then

we’d have εgi − εgi′ → 0, and this problem would asymptotically disappear.

To overcome this final obstacle to identification in the fixed effects model (finding an
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instrument for ŷg,−ii′), we require some other source of group level information. One possible

source is repeated cross section data, which are typically available in consumption surveys.

Usually the same consumers are not sampled more than once (so no panel data is available),

but we may have observations of other consumers in the same group from different time

periods. It doesn’t matter that these other consumers may or may not have the same fixed

effects vg or the same mean expenditures yg as in our main sample. All we need is an

exogeneity assumption that each xi is independent of the idiosyncratic error ui′ of every

person i′ in person i′s group, and that the sample group averages x̂g are autocorrelated

over time (see the derivation of Theorem 1 in the appendix for details). We can then take

functions of these observations of x̂g from other time periods to be our instruments for the

corresponding functions of ŷg,−ii′ that are in our model.

If survey data are only available for a single cross section, another possibility is to further

subdivide ŷg,−ii′ into averages of two disjoint subgroups of group members, replacing ŷg,−ii′ in

equation (15) with one subgroup, and then using the other as an instrument.13. Alternatively,

even if survey data is only available for a single cross section, other data sets could provide

the required group level instruments. For example, if xi is a demographic variable, then

instead of observing individuals from the same group in another time period, we could use

census data to provide an estimate of x̂g. Similarly, if xi is a consumption budget as in our

application, then average group level income data from wage or income surveys could suffice.

It is not even necessary that we observe the exact same groups in other time periods or

surveys. All we need is some overlap between the group definition in our main data and in

the data used to construct the instrument, and some correlation between the variable used

to construct the instrument and x.

Let rg denote a scalar or vector of the above described group level instruments. Let rgii′

denote the vector of xi, xi′ , rg, and squares and cross products of these variables. We then

obtain the unconditional moments

E
[(
yi − yi′ − 2ŷg,−ii′ (xi − xi′) abd−

(
x2i − x2i′

)
b2d− (xi − xi′) b

)
rgii′
]

= 0. (18)

Based on equation (18), the parameters a, b, and d can now be estimated using Hansen’s

(1982) GMM estimator. Each observation consists of a pair of individuals observed in a

given group, so our sample becomes all such pairs i and i′. The estimator is equivalent to

linearly regressing each pair yi−yi′ on the variables ŷg,−ii′ (xi − xi′), (x2i − x2i′), and (xi − xi′),
13We thank the editor for suggesting this possibility. We do not pursue it further here because of the

added complexity it entails, and because, unlike the use of x̂g from other time periods, this alternative does
not extend to the random effects model, both because of the presence of the squared y term, and because
the instrument in this case would be invalid by correlating with the random effect.
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using GMM with instruments rgii′ , and then recovering the parameters a, b, and d from the

estimated coefficients. By construction, the errors in this model are correlated across the

pairs of individuals within each group, so we must cluster standard errors at the group level

to obtain proper inference.

Theorem 1 in Appendix A.2 describes these results formally, including extending this

model to allow for vector xi, providing formal conditions for proving that an equilibrium

exists, and showing that the parameters of the model are identified by GMM using these

moments. We then further extend this result in Appendix A.3 to allow for a J vector of

outcomes yi, replacing the scalar a with a J by J matrix of own and cross equation peer

effects. Theorem 2 in Appendix A.5 then gives a final extension of these results, showing

identification, consistent estimation, and inference of our full utility-derived demand model,

given by equations (8) and (9) for each good j.

3.2 Generic Model Estimation With Group Level Random Effects

A drawback of the fixed effects estimator is that differencing across individuals, which

was needed to remove the fixed effects, results in a substantial loss of information. In this

section we add the additional assumptions that vg is homoskedastic and independent of

xi, and develop a more efficient random effects estimator that does not entail differencing.

This random effects estimator does not require nonlinearity for identification, and so is still

consistent when d = 0.

To describe the random effects estimator it will be convenient to rewrite equation (12)

as

yi = y2ga
2d+ (a+ 2xiabd) yg +

(
xib+ x2i b

2d
)

+ vg + ui. (19)

As before, we need to replace the unobserved yg with some estimate, and this replacement

will add an additional epsilon term to the errors. However, in the fixed effects case, when

we pairwise differenced this model, the quadratic term y2g dropped out. Now, since we are

not differencing, we must cope not just with estimation error in yg, but also in y2g.

To obtain valid moments for identification now, we employ a variant of the method we

used before. Again let i′ denote an individual other than i in group g, construct ŷg,−ii′ as

before, and again replace yg with ŷg,−ii′ . The problem now is that the term ŷ2g,−ii′ − y2g in

εgi is not differenced out, and this term would in general be correlated with xl for every

individual l in the group, including i and i′.

To circumvent this problem, we replace the linear term yg with the estimate ŷg,−ii′ as

before, but we now replace the squared term y2g with ŷg,−ii′yi′ . This latter replacement

might seem problematic, since a single individual’s yi′ provides a very crude estimate of yg.
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However, we repeat this construction for every individual i′ (other than i) in the group,

and use the GMM estimator to combine the resulting moments over all individuals i′ in g,

thereby once again exploiting all of the information in the group. With this replacement,

equation (19) becomes

yi = ŷg,−ii′yi′a
2d+ (a+ 2xiabd) ŷg,−ii′ +

(
xib+ x2i b

2d
)

+ vg + ui + ε̃gii′ ,

where by construction the error ε̃gii′ has the form

ε̃gii′ =
(
y2g − ŷg,−ii′yi′

)
a2d+ (a+ 2xiabd)

(
yg − ŷg,−ii′

)
In Appendix A.4 we show that E(ε̃gii′ |xi, rg) = −da2V ar (vg) and so equals a constant. Our

constructions in estimating the group mean eliminates correlation of the error ε̃gii′ with xi.

But ε̃gii′ still does not have conditional mean zero, because both ŷg,−ii′ and yi′ contain vg, so

the mean of the product of ŷg,−ii′ and yi′ includes the variance of vg.

It follows from these derivations that

E
[
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2i b

2d
)
− v0 | xi, rg

]
= 0, (20)

where v0 = E (vg)− da2V ar (vg) is a constant to be estimated along with the other parame-

ters, and rg are the same group level instruments we defined earlier. Letting rgi be functions

of xi and rg (such as xi, rg, x
2
i , and xirg), we immediately obtain unconditional moments

E
[(
yi − ŷg,−ii′yi′a2d− (a+ 2xiabd) ŷg,−ii′ −

(
xib+ x2i b

2d
)
− v0

)
rgi
]

= 0, (21)

which we can estimate using GMM exactly as before, treating every pair of individuals in

each group as observations and clustering standard errors at the group level.

The fixed effects model is not identified d = 0, that is, if the model is linear. In contrast,

with random effects, if d = 0 then the model is still identified, and the above estimator

(including estimation of d) will still be consistent. However, if we know a priori that d = 0,

then a much simpler estimator could be used instead. If we know and impose that d = 0,

then in the random effects model observations can just be individuals rather than pairs, one

may simply take ŷg to be the observed within group sample average, and use xi and rg as

instruments for identification and estimation.

As with the fixed effects model, in the Appendix we extend the above quadratic random

effects model to allow for a vector of covariates xi, and to allow for a J vector of outcomes

yi, replacing the scalar a with a J by J matrix of own and cross equation peer effects.
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Appendix A.4 provides the formal proof of identification and associated GMM estimation

for the random effects generic model as discussed above (and for the extension to multiple

equations), and Appendix A.6 proves that this identification and estimation extends to our

full utility-derived demand model with random effects.

4 Empirical Results

4.1 Data

For our main empirical analysis, we use household consumption data from the 61st

round of the National Sample Survey (NSS) of India, which was conducted from July 2004

to June 2005. This survey contains information on household demographics and spending

for a representative sample of the country.

To define appropriate peer groups, we exploit a property of multi-stage sampling, which

is a standard feature of the NSS and other consumption surveys. To cut down on surveying

costs, consumers are sampled from small geographic areas like villages and neighborhoods.

These areas are particularly small and relevant in urban areas, where they’re constructed to

be compact and bounded by well-defined, clear-cut natural boundaries whenever possible,

and so generally correspond to recognizable neighborhoods (NSS, 2019). Households in the

same neighborhood are likely to be similar to each other in observable and unobservable ways

because of assortative geographic selection, and are likely to be in at least indirect contact.

This makes them appropriate candidates for defining our groups, and crucially are available

as a byproduct of the sampling design in many consumption surveys.

We restrict our attention to urban households, where the geographic sampling areas

are particularly small. Each sub-block, the smallest geographic unit available in the data,

has a population of roughly 150 to 400 households. In each sub-block in our data, up to 10

households are sampled. We call this level of geography the neighbourhood. To reflect the fact

that much social activity is within religion and caste groups, we interact the neighborhoods

with indicators of religion (Hindu or not) and caste (NSS scheduled caste/tribe or not). We

refer to these groups defined by neighborhood, religion, and caste as neighborhood-subcastes,

and use them as the peer groups in our analysis.14

Our sample includes all urban households in groups where we observe at least three

households, the minimum required for our method of identification and estimation. To avoid

expenditure outliers, we include only households that are between the 1st and 99th percentiles

14The NSS contains information on whether the household is in a scheduled caste or tribe, but not the
exact subcaste. However, since subcastes are typically geographically concentrated, we expect that the
neighborhood-religion-scheduled caste groups will mostly capture subcastes as well.
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of household expenditure in each state. We also restrict our sample to households with 12

or fewer members, whose head is aged 20 or more. Together, these restrictions drop roughly

4% of the sample.

Table 1 shows summary statistics for our sample. The number of observed households

in each group averages around 5 (with a range from 3 to 10), which is a small share of the

several hundred households that comprise each group in the population. These small within

group samples illustrate the importance of showing identification and consistent estimation

without assuming that many of the members of each group are observed.

For our main sample, we have a total of 4,599 distinct groups, and 24,757 distinct house-

holds. Our estimators use all unique household-pairs within each group, and we have a total

of 128,640 such pairs.

The NSS collects item-level household spending and quantities for a large number of

items. We consider only nondurable consumption items, and compute total expenditure xi

as the sum of spending on these goods. Our main results use a two-good demand system of

food and non-food. On average 47% of nondurable expenditure is on food. An alternative

specification we consider uses a three-good demand system of food, fuel, and other.

For instruments, we use three other survey rounds (the 59th, 60th, and 62nd) to construct

neighbourhood average expenditure in other years, x̂g,−t, where −t denotes years (survey

rounds) other than the one that our model is estimated using. We use functions of x̂g,−t

as instruments for neighbourhood average food and non-food consumption ŷg,−ii′ . However,

since the neighbourhood identifiers in the NSS are not consistent over time (and are not

linked to external information like neighborhood name), we cannot identify the exact same

neighborhoods in other years. For each group g we therefore construct x̂g,−t using all obser-

vations from other years in the same district as g. As discussed earlier, these remain valid

as instruments as long as they include some other members from the group g in other years.

Our groups are spread across 535 districts, which are subunits of 20 states.

We construct prices of our demand aggregates at the state level, following Deaton (1988).

We first compute state-item average unit-value prices for the subset of items for which we

have quantity data. Then, in a second stage, we aggregate these state-item-level unit value

prices into state-level food and non-food prices using a Stone price index, with weights given

by the overall sample average spending on each item. 15

We condition on 7 demographic variables z. These are household size minus 1 divided

by 10; the age of the head of the household divided by 120; an indicator that there is a

15In a typical state, these prices are computed as averages of roughly 2000 observations. Given this
relatively large number of observations, we do not attempt to instrument for possible remaining measurement
errors in these constructed price indices.
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married couple in the household; the natural log of one plus the number of hectares of land

owned by the household; an indicator that the household has a ration card for basic foods

and fuels; and indicators that the highest level of education of the household head is primary

or secondary level (equalling zero for uneducated or illiterate household heads).

Table 1 shows summary statistics at the level of the household, and at the level of the

household-pairs used for estimation. Total expenditures and the spending components are

expressed in units of average household expenditure. Only 26% of households have at least

a high school education, and almost all households have married household heads. Roughly

14% of households have ration cards entitling them to subsidized basic foods.

4.2 Generic model

Our demand model assumes that the effects of peer expenditures on utility have observ-

able implications in the corresponding demand functions (via Roy’s identity). This could be

violated if, e.g., utility were additively separable in qg and q.

Before proceeding with our main structural results, we implement the simpler generic

model of equation (15) to examine these key assumptions. Details of the data construction

and empirical results of these preliminary data analyses are given in Appendix B. Here we

just briefly summarize our main findings from these empirical analyses.

We use the same data and group definitions as in our main analysis, and similarly let yi

equal expenditures on food and xi equal total household expenditure. We report the main

results of this analysis in Table A3 in the Appendix. We confirm that that peer-average food

expenditures significantly affects demand for food, and that both linear and quadratic terms

in the budget xi are statistically significant. The estimated peer effects in the generic fixed

effects model are relatively imprecise, in part because the generic model does not exploit

all the restrictions inherent in the structural demand model. We discuss these preliminary

results in full in Appendix Section B.1.

4.3 Baseline Model

Our baseline structural model is a 2-good demand system (food vs other nondurable

expenditure), as given by equation (11), and estimated by GMM using the associated moment

conditions (18) and (21) for fixed- and random-effects, respectively. Both models use pairwise

data based on all unique pairs of observations within each group, with standard errors

clustered at the district level to obtain valid inference.16

16The fact that we use pairwise estimation within-groups implies that we should cluster no smaller than
the group level. However, because the instruments are computed at the district level, we cluster at the larger
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Our fixed-effects approach involves substituting the leave-two-out within-group sample

average quantity q̂gj,−ii′ for the within-group mean qgj, and differencing across people within

groups. Thus, we substitute q̂gj,−ii′ for qgj in the definition of Xi (eq. (10)) to create X̂i as

X̂i = xi −R11p1g −R22p2g − (A11q̂g1,−ii′ + C′1zi) p1g − (A22q̂g2,−ii′ + C′2zi) p2g,

and substitute q̂gj,−ii′ for qgj and X̂i for Xi in the demand equation (11). Then, we differ-

ence the demand equation across individuals within groups to generate a moment condition

analogous to (18):

E[(p1gq1i−p1gq1i′−(X̂2
i −X̂2

i′)e
−(b1 ln p1g+(1−b1) ln p2g)d1−(X̂i−X̂i′)b1+C′1p1g (zi − zi′))rgii′ ] = 0.

(22)

Notice that, as in the generic model, many group-varying terms, including A11p1gqg1, drop

out as a result of this differencing. Further, since
(
X̂i − X̂i′

)
= xi − xi′ −C′1 (zi − zi′) p1g −

C′2 (zi − zi′) p2g, such variables are present only in the quadratic term
(
X̂2

i − X̂2
i′

)
via inter-

actions between group-average quantities qg1 and other elements of X̂i (e.g., xi). The formal

derivation of these moments for GMM estimation is given in Appendix A.5.

Our random-effects approach, derived in Appendix A.6, involves substituting the within-

group sample average quantity and another group member’s quantity for the within-group

means. We use the above definition of X̂i for the linear term in the demand equation (11)

and compute a new variable X̃ii′ for the squared term as follows:

X̃ii′ = X̂i[xi −R11p1g −R22p2g − (A11qg1i′ + C′1zi) p1g − (A22qg2i′ + C′2zi) p2g].

Finally, we substitute q̂g1,−ii′ for qgj, X̂i for Xi and X̃ii′ for X2
i in the demand equation

(11) to generate a moment condition analogous to (21):

E[(p1gq1i−X̃ii′e
−(b1 ln p1g+(1−b1) ln p2g)d1−X̂ib1−R11p1g−A11p1g q̂g1,−ii′−C′1p1gzi−p1gv0)rgi] = 0.

(23)

These moments use pair-specific instruments that differ between our fixed- and random-

effects models. As discussed earlier, to instrument for q̂gj, we construct group-averages

at the district level from other time periods. Recall that the subscript −t indicate av-

erages from all other time periods. For both the fixed- and random-effects models, we

create a group-level instrument q̌gj equal to the OLS predicted value of q̂gj conditional on

x̂g,−t, x̂2g,−t,
√
x̂g,−t, x̂

2
g,−t, ẑg,−t.

17

level of the district. Typical districts contrain about 10 groups.
17We do this instead of using all the separate variables as instruments for qg to reduce the dimensionality
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Let z̃i and z̃g be, respectively, the individually-varying and group-level subvectors of

zi. In our baseline model, z̃i includes all covariates; however, when we consider additional

heterogeneity in peer effects, we will additionally include group-level covariates in z̃g. Letting

· denote element-wise multiplication, our complete instrument list for the fixed-effects model

is:

rgii′ =
(
x2i − x2i′

)
, (xi − xi′) · (1,pg · q̌g,pg · z̃g) ,pg · (z̃i − z̃i′) · (1,pg · q̌g) , xipg · (z̃i − z̃i′) .

Our instrument list for the random-effects model is:

rgi = (1,pg,pg · q̌g,pg · zi) , xi · (1,pg, xit,pg · q̌g,pt · zig) ,pg · pg.

The last term provides instruments for v0 in equation (20).

Our primary focus is on the peer effects given by elements of the matrix A. We start

with the simplest and most interpretable version of this structural model, where A = aIJ is

a diagonal matrix with the scalar a replicated in each element of the main diagonal. In this

specification, an increase in the group-average food quantity of δ increases needs for food by

aδ, and an increase in the group-average non-food quantity of δ increases needs for non-food

nondurables by the same aδ. Also, having A be diagonal means that group-average food

quantities have no effect on needs for non-food nondurables (and vice versa). We relax these

restrictions later.

In this restricted version of the model, the welfare implications of peer effects simplify.

Needs are given by fi = Aqg + Czi and group-average expenditure is given by xg = p′qg,

so when A = aIJ , the cost of needs, p′fi, simplifies to p′fi = axg + p′Czi. Consequently,

the scalar a equals the increase in the rupee cost of needs, p′fi, of a one rupee increase in

group-average expenditure xg.

4.4 Baseline Estimates and Alternative Group Sizes

Table 2 gives estimates of the scalar a. In our baseline model, groups are defined by

neighborhood-subcastes, that is, a group is people who live in the same neighborhood, are

of the same religion (either Hindu or not), and are of the same caste status (either scheduled

caste or not). For comparison, we also consider two larger group sizes: people who live in the

same neighborhood regardless of religion and caste, and people who live in the same district

regardless of religion and caste.

of our instrument vector. This dimension reduction is needed for feasibility of our GMM estimator, because
q̌g is multiplied by the demographic controls to generate the final instrument vector.
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Note that neighborhoods have populations of roughly 150 to 400 households, of which

at most 10 are observed in our sample. Districts are much larger than neighborhoods,

with populations of roughly 500,000 to 3,000,000 households. In our data, we observe 5.4

households from the average neighborhood-subcaste, while with the larger group definitions

we average 6.9 and 53.1 observed households per group, respectively.

We report results for two samples. The upper half of Table 2 (Panel A) uses all the data

available for each of the three group definitions, and so ends up with somewhat different

samples for each. Panel B holds the sample constant across the group definitions, using only

the observations from our baseline model (the smallest group definition).

Table 2 reports both random effects (RE) and fixed effects (FE) estimates of the scalar

a, for all three group sizes. Columns (1) to (3) give RE, Columns (4) to (6) give FE, and

columns (7) to (9) give the difference RE minus FE.

A key implementation question is how to define our groups. If we define them at too

large a level, we should expect the estimated peer effects to be biased towards zero, because

our estimate of group consumption q̂gj,−ii′ will be mismeasured by including consumption

from non-peers. We should similarly expect the significance level of the estimates to fall if

the defined groups are too large. In contrast, if we define our groups at too small a level,

the estimator will likely be consistent but inefficient, because although we are grouping only

households that do indeed have peer effects on each other, in each group we will be leaving

out some informative peers who were placed in another group.

For both RE and FE, we find that the larger group sizes have estimates that are closer

to zero and have lower t statistics than our baseline, suggesting that our baseline groups,

while quite small, are the most appropriate size (the largest group size FE estimate actually

flips sign to negative, but is not statistically significant). We therefore focus our remaining

analyses on the baseline neighborhood-subcaste group definition, reported in columns (3)

and (6), and the difference between them in column (9).18

As expected, the RE estimates have far lower standard errors than the FE estimates,

because they are based on much stronger assumptions, and do not lose information from

differencing. The RE point estimate of 0.606 in column (3) also turns out to be much larger

than the FE estimate of 0.266 in column (6), and we reject equality of the coefficients (column

(9)).

18If our groups are appropriately defined, then household demands should not be strongly correlated with
the average spending of individuals in other groups. We assess this by considering a placebo experiment
where we randomly permute individuals into other peer groups. This is analogous to the strategy on sharp
tests in network settings (Athey, Eckles and Imbens (2018)). Using the FE estimator, the mean of the
placebo distribution of a is −0.064, and the upper 95th percentile of that distribution 0.083. This is far
closer to zero than our baseline estimates even if de-meaned (our FE baseline estimate is 0.266). These
placebo test results are consistent with our model having appropriately defined and relevant groups.
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Random effects imposes strong restrictions on unobserved heterogeneity that may not

be valid, and that fixed effects do not impose, potentially biasing the RE estimates. In

particular, our estimated positive difference between RE and FE estimates is consistent with

group-level preferences for food consumption vgj being correlated with group expenditure

levels, causing upward bias in the RE peer effects estimates. This is easiest to see in a

simplified version of equation (13). Suppose that the true model was linear (so d = 0),

and we instrumented for ŷg only with other-period group consumption x̂g,−t. Then, positive

correlation between group expenditure and group tastes (conditional on xi) would result in

upwards bias in the estimated peer effects for normal goods like food.

In applications like ours where RE has much lower variance than FW (as indicated by

standard errors) and is likely to be biased, to reduce mean squared errors it is common to

employ shrinkage estimators. These are constructed as weighted averages of RE and FE

estimates, trading off the bias of RE with the higher variance of FE (a recent example is

Armstrong, Kolesár, and Plagborg-Møller 2020). We report both the RE and FE estimates in

our remaining empirical analyses, so one may implement such shrinkage if desired. However,

for simplicity in our later policy discussions, we will focus on the smaller FE coefficients

as conservative estimates of the magnitude of peer effects. Below we consider a number of

robustness checks and alternative specifications. Most yield larger (but less significant) effects

than our baseline FE estimate of a = 0.266, which we therefore take to be a conservative

estimate of the magnitude of peer effects.

To interpret our estimate of a, imagine first that just one household in a group had,

ceteris paribus, an additional s rupees to spend. Compare this to the case where everyone

in the group each had an additional 1000 rupees to spend. What s would give the household

in the first case the same utility as in the second case? The answer must be less than a 1000

rupees, because in the second case, peer effects reduce the utility of the increased spending.

By our model, the answer is s = 1000(1− a), which is 734 rupees in the FE model.

Economic theory requires that a lie between zero and, roughly, one. It is greater than

zero because our model is one of peer effects increasing perceived needs that take the form

of costs, and it is less than about one to ensure that an equilibrium exists.19 An encouraging

feature of our estimates (both RE and FE) is that they lie well within this required range,

without any such constraint being enforced in estimation.

19The exact value that is necessary to ensure that an equilibrium exists has a complicated expression which
we derive in the Appendix, but this value is near one.
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4.5 Measurement Error in Group Means

The neighborhood-subcaste groups in our baseline analysis each have between 3 and 10

observed households, out of an average of around 200 households in the population. This

suggests that the group mean measurement errors q̂gj−qgj are likely to be substantial. Much

of the complexity in our GMM estimator entails constructing moments that remain valid in

the presence of these measurement errors. Table 3 considers the impact of our measurement

error corrections on the estimated values for a in both the RE and FE models. We should

expect that, the smaller are the group definitions, the larger are the measurement errors in

the estimates of each qgj, and hence the larger should be the effect of correcting for these

measurement errors.

Regarding the direction of bias, one might expect measurement error in q to induce the

usual attenuation (i.e., bias towards zero) that is standard in linear models with measurement

error. However, the nonlinearity of our models and our estimators could cause bias in either

direction. A priori, we expect standard attenuation bias to play a larger role in the RE

model, because in that model the parameter a is primarily identified as the coefficient of the

estimate of q itself (as in linear models), while in the FE model, due to differencing, a is

identified only off of differences of interactions between q and other covariates.

To assess the impact of our corrections for measurement error, we replace the instruments

in our models with stronger instruments that would be valid in the absence of measurement

error. In particular, instead of instrumenting q̂gj with district level-averages from other

time periods, we instrument q̂gj with group-level averages from the current time period. So

everywhere that x̂g,−t and ẑg,−t appear in our estimators, we replace them with x̂g and ẑg.

As a result, the total number and types of moments remains exactly the same as in our

baseline estimates.

Table 3 is analogous to columns (1) to (6) of Table 2, but is estimated with the instruments

that do not correct for measurement error. This should be compared to the corresponding

entries in Table 2. Columns (3) and (6) are still our preferred group size specifications.

Both the RE and FE estimates show considerable differences between estimates with and

without the measurement error correction. As expected, the smaller the group sizes, the

larger the differences between the corrected and uncorrected estimates.

In the RE models, we see standard attenuation bias dominating, and the magnitude of

the bias appears very large: uncorrected estimates are about half the size of the corrected

estimates for the largest group size, attenuating all the way to about one tenth the size of the

corrected estimate for our baseline, which is the smallest group size. The measurement error

corrected RE estimates also have larger standard errors than the uncorrected estimates, due

to the fact that the instruments are less informative in the former case. Since both estimators
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would be consistent in the absence of measurement error, we can form a Hausman test to

compare the estimators, and the uncorrected estimators are rejected.

The direction and size of bias is different for the FE estimator. Here, at all three group

sizes, the uncorrected estimates are about twice as large as the corrected, suggesting a

significant impact of nonlinearity and differencing on the size and direction of bias in the

FE models. As with the RE models, the uncorrected FE estimates have smaller standard

errors than the corrected estimates, and Hausman tests reject the uncorrected estimates.

We conclude that our corrections for measurement errors due to small within group sample

sizes are empirically justified and important.

4.6 Alternative Specifications and Robustness Checks

4.6.1 Peer effects by demographic groups

In Tables 2 and 3, the peer effect parameter a is restricted to be the same for all types

of households. In Table 4, we allow a to vary with observed household characteristics. In

columns (1) and (5), we replicate columns (3) and (6) from Table 2, where the group is

defined at the neighborhood-subcaste level, for the RE and FE models, and a is a fixed

value. In columns (2) and (6), we allow a to depend on whether the household is Hindu

or not, and whether they come from a scheduled (disadvantaged) caste. In columns (3)

and (7), we define groups at the neighborhood-subcaste-landownership level, and allow a to

depend on the landownership indicator variable. In columns (4) and (8), we define groups

by neighborhood-subcaste-high-school attainment, and allow a to depend on the high-school

attainment indicator.20

Columns (2) and (6) show estimated differences in peer effects across Hindu vs non-

Hindu and scheduled vs non-scheduled tribe/caste. The left-out category (picked up by the

constant) is non-scheduled Hindu. The RE estimates show some significant differences in

peer effects, but the FE estimates do not, and most of estimated differences have the opposite

sign in the FE vs RE models.

Columns (3) and (7) allow a to depend on the household level land-ownership indicator.

Both the FE and RE models show landowners having larger peer effects than landless house-

holds, but the magnitudes differ dramatically, with RE estimates implying a small difference,

while FE showing the landless having almost no peer effects. As before, the standard errors

on the FE models are all much larger than the RE standard errors.

Columns (4) and (8) allow a to depend on a household level high-school attainment

20As the groups become smaller, the number of groups actually declines, because we can include only
groups with at least 3 members.
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indicator, defined to equal to 1 if the household head has at least high school education and

zero otherwise. Here the FE and RE models disagree, with the FE model showing the more

educated households having larger peer effects, while the RE model shows the opposite.

Particularly when focusing on the FE estimates, our estimated peer effects are larger for

higher socio–economic status groups. A possible explanation is that the poorest households

in India are close enough to subsistence that it is more costly to engage in status competitions.

This is similar to Akay and Martinsson’s (2011) finding for very poor Ethiopians.

4.6.2 Cross Group Peer Effects

Our baseline estimates allow only for within-group consumption peer effects. However, con-

ceptually, it is possible that needs could depend on consumption levels of other “nearby”

peer groups. Our baseline grouping structure is neighbourhood-subcaste, so that in a given

neighbourhood, there could be several groups defined by varying religion and caste. In this

subsection, we consider the possibility that peer effects may be relevant between groups,

and that, in particular, needs may be “upward-looking” or aspirational, in the sense that

perceived needs are affected by the consumption behaviour of our betters in the social hi-

erarchy. We operationalize this by focusing on a subset of 564 groups that are low-caste

Hindu, and allowing for both within-group peer effects and for peer effects which depend on

the consumption of upper-caste Hindus in the same neighbourhood. In this model, the cost

of needs of lower-caste households is p′fi = alxl,g + auxu,g + p′Czi, where al gives the effect

of own-group (lower-caste) spending in the neighbourhood, xl,g, and au gives the effect of

upper-caste spending in the same neighbourhood, xl,g. We present RE and FE estimates of

this model in Table 5.

As with the baseline estimates, the RE estimates of within-group peer effects are much

larger than the FE estimates. The RE estimate of the within-group peer effect, al, for these

lower-caste households is 0.802, which is similar to the baseline RE estimate. The FE esti-

mate of al is 0.445, which is somewhat higher than the baseline estimate of 0.266, but given

the estimated standard error of 0.138, it is close in terms of its sampling distribution. (As

with the baseline estimates, the RE model is rejected against the FE alternative.) Turning

to the cross-group (within neighbourhood) peer effects, these are small and statistically in-

significant for both the RE and FE models. The estimated value of the cross-group effect

is 0.052 and 0.011 in RE and FE models, respectively. Given that these cross group effects

are relatively small in magnitude and statistically insignificant, we conclude that our model

with just within-group and not cross-group peer effects appears to suffice.
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4.6.3 Peer Effects with Alternative Specifications of the A Matrix

Next, Table 6 considers what happens when we relax the restriction that A = aIJ for a

scalar a. Since needs are given by fi = Aqg +Czi, the money cost of the part of needs driven

by peer effects is given by p′Aqg. In the previous subsections, with A = aIJ , this cost of

needs due to peer effects is p′Aqg = a
(
p1q1g + p2q2g

)
= axg, and so is proportional to group

mean total expenditures xg. When we allow A to be an unconstrained diagonal matrix,

this cost of needs becomes p′Aqg = a11p1q1g + a22p2q2g. This allows for the possibility that

group-average food expenditure, p1q1g, and group-average non-food nondurable expenditure,

p2q2g, have different effects on needs. Finally, when A is completely unrestricted, we get

p′Aqg = a11p1q1g + a21p2q1g + a12p1q2g + a22p2q2g.

In columns (3) and (6) of Table 2, we reproduce columns (3) and (6) of Table 6, reporting

the estimate of the scalar a where A = aIJ . In Columns (2) and (5) of Table 6, we let A

be an unconstrained diagonal matrix, and report its two estimated diagonal elements, a11

and a22. And in columns (1) and (4) of Table 6, we give estimates of all four elements

of A where A is completely unrestricted. For these estimates, we again define groups as

neighborhood-subcaste.

The main difficulty in estimating these more general models is multicollinearity. As

people’s income rises, they tend to spend more on both food and non-food items. As a

result p1q1g and p2q2g (group average food and nonfood expenditures, respectively) in the

diagonal A model tend to be highly correlated across groups. This problem is worse still in

the unrestricted A model, where p1q1g, p2q1g, p1q2g, and p2q2g are all highly multicollinear,

both because group-average quantities of food and nonfood are positively correlated with

each other, and because prices are positively correlated with each other across states.

Considering first the RE estimates with an unrestricted diagonal A matrix (column (2) of

Table 6), we see estimated values of 0.639 and 0.572 for a11 and a22, respectively. These are

similar in magnitude to each other, and similar to the estimated value of 0.606 for a in the

baseline RE model. Although the two values are similar in magnitude, they are estimated

precisely enough to reject the hypothesis that they are identical. Turning to the RE estimates

with an unrestricted A matrix, column (1), we again find the estimated magnitudes of a11

and a22 are similar to each other (though lower than before), and the difference between them

is now statistically insignificant. The off diagonal elements of this unrestricted A matrix are

both statistically insignificant.

Taken together we interpret these results as evidence that imposing the restrictions a11 =

a22 and a12 = a21 = 0, as in our baseline model, is at least a reasonable approximation.

In contrast to the RE model, we see evidence that the above discussed multicollinearity

overwhelms the FE model. Column (5) shows infeasibly large estimates of a11 and a22 with
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opposite signs and greatly increased standard errors, and even more extreme estimates in

column (4) where all four elements of A have impossibly large magnitudes and varying signs.

These are all common hallmarks of substantial positive multicollinearity.

We should expect that the multicollinearity issues among the pjqkg terms would be much

more severe in the FE model, and not just because it is based on a weaker set of assumptions.

The identification of A in the FE estimator comes only from interaction terms between each

pjqkg and the budget xi. This is due to the fact that the level terms for each pjqkg get

differenced away. In contrast, the identifying variation for A in the RE estimator comes

from both the level terms pjqkg and their interactions with xi.

We take from these results that the multicollinearity of group-average expenditures is

too severe in our data to get trustworthy estimates of variation in the elements of A in our

preferred fixed effect specification, however, our baseline restriction A = aIJ appears to be

reasonable and adequate.

4.6.4 A Three Goods Model

All the models presented so far have been demand systems with J = 2 goods (food and

non-food). When J = 2, we only need to estimate a single demand equation (since the

other is determined by the restriction that consumers exhaust their budget). However, our

theorems show identification of peer effect parameters in demand systems where J is any

number of goods. In Table 7, we present estimates of a J = 3 equation demand model,

having two equations we need to estimate. The 3 goods are taken to be food, fuel and other

nondurable goods. The former non-food category is now divided into fuel and other, so total

expenditures xi for each household remains the same as before.

We report estimates for the RE and FE models, with an unrestricted diagonal A matrix

in columns (1) and (3) of Table 7, and with the restriction that A = aIJ in columns (2) and

(4). As before, groups are defined at the neighborhood-subcaste level.

In the RE models, a in column (2) and the varying diagonal elements of A in column

(1) are all significant and larger than before, ranging from 0.740 to 0.938. Since adding

more goods should not increase the magnitude of the overall peer effects, we take this as

additional evidence that the restrictions imposed by the RE model may not hold, and are

likely inducing an upward bias. We also perform a Hausman test of the RE model against

the FE model, and again reject the additional restrictions imposed by the RE model.

In the FE model, we again see evidence of multicollinearity in column (3), with two

elements of the estimated A diagonal being extremely large and positive, and one being

extremely large and negative. However, in column (4), we obtain a statistically significant

estimate of a of 0.296, which agrees very well with the FE estimate of 0.266 we had in the
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two goods baseline model. We take this as additional evidence in favor of the FE model with

A = aIJ .

4.6.5 Alternative Classifications of Goods

Previous research on peer effects in consumption has emphasized the possibility that such

externalities may be more relevant for types of consumption that are: a) signals of status or

wealth (e.g., Veblen 1899); or b) easily observed (e.g., Charles et al 2009; Heffetz 2011; Roth

2014). Our baseline results consider a two-good model with demands for food and non-food

consumption. In this subsection, we consider three different alternative two-good models,

based on the whether or not the expenditures observed in the NSS are necessities or luxuries

and whether they are are more vs less visible components of consumption. For the former

distinction, we classify roughly 100 fine-grained consumption categories reported in the NSS

as luxuries if their budget elasticity exceeds one and as necessities if less than or equal to

one. In this classification, food is split, with food at home classified as a neccessity and food

out classified as a luxury. For the latter distinction (visible consumption or not), we use

the classification of Roth (2014, Table 4). Both food at home and food out are classified as

visible.

In Table 8, we present RE and FE estimates for three 2-good models: luxuries vs ne-

cessities (cols 1 and 4); visible vs invisible (cols 2 and 5); and visible luxuries vs not visible

luxuries. We show estimates of a in a model where A = aI2. In this table, groups are defined

as our baseline neighbourhood-caste level (as in columns 3 and 6 in Table 2).21 We do not

present estimates of models with different peer effects for different goods (e.g., where A is

diagonal with different elements on the main diagonal), because, as before, the FE estimates

of such models are very imprecise.

Looking first at the RE estimates, we see that the main difference between these and our

baseline results is that the estimates in Table 8 are dramatically less precise. Although the

point estimates are in the ballpark of the baseline estimate of 0.606, the estimated standard

errors are roughly three times as large. That the peer effects are estimated with reduced

precision suggests that these classifications of goods may yield demands that are noisier than

our baseline food vs nonfood classification.

Turning to the FE estimates, we see that the point-estimates are larger than in the

baseline specification, and they are much closer to the RE point estimates. In fact, the

Hausman test no longer rejects these RE specifications.

21A (much) earlier version of this paper considered these classifications of goods. But, those estimates used
a different, and much larger, definition of the group (district*education). Consequently, those point-estimates
were quite different from the the ones presented here.
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Note that “visible” is dominated by food (because food-at-home and food-out together

make up the single-largest expenditure component, and all food expenditures are classified as

visible expenditures), whereas “luxury” and “visible luxury” are dominated by food-out. For

the FE models, the point-estimates for “visible” are (not surprisingly) similar to our baseline

based on food. Models based on “luxury” or “visible luxury” give point-estimates of a that

are larger than those for “visible”. The most precisely estimated of these FE models is that

which contrasts visible to invisible expenditures. Here, the point-estimate of a is 0.418, with

an estimated standard error of 0.115. This is roughly one standard error above our baseline

estimate of 0.266.

We draw three conclusions from these alternative specifications of the classification of

goods. First, the demand system we choose to estimate does make a difference when it

comes to the magnitude of the estimated peer effect. Second, even with these quite different

classifications of goods, we find large and statistically significant peer effects for all of them.

Third, given the large estimated standard errors for FE models, the general picture we obtain

is similar between the baseline specification and these alternatives. Overall, our baseline FE

model appears to give a conservative significant estimate of peer effects at a = 0.266.

4.7 Are Peer Expenditures Really Negative Externalities?

Our findings suggest that higher peer expenditures makes consumers behave, at the

margin, as if they were poorer. We take this to mean that, in a welfare sense, they feel

poorer. While peer expenditures may in theory have both positive and negative effects, our

model estimates therefore imply they are, on average, negative externalities. However, in

theory, peer consumption could have alternatively incresed rather than decreased the utility

of the goods one consumes. An example could be something like a phone, which becomes

more valuable (via network effects) when other consumers also have phones.

We address this concern by directly estimating the effect of peer expenditure on an

observed measure of subjective well-being data, and confirm that, conditional on household

income, higher levels of peer group expenditures are associated with lower satisfaction on

average. We take this as confirmation that our demand estimates do indeed reflect lower

welfare resulting from increasing peer expenditures. The full analysis is in Appendix B.2,

but we provide a brief summary below.

For this exercise we use data from the Indian modules of the World Values Surveys

(WVS).22 The WVS asks respondents about their subjective well-being, and codes the re-

sponse on a five-point likert scale. The WVS also includes information on household income

22We use the 4th (2001), 5th (2006), and 6th (2014) waves.
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quintiles. Since the same granular geographic identifiers are not available in the WVS, we

define groups using the intersection of state and religion, and identify average expenditure

for each group using the NSS data.

Interpreting ordinal self-reported well-being as a crude measure of utility, we regress this

self-reported well-being on one’s own income bin and on the average expenditure in one’s

group. The results are reported in Table A2 in the Appendix. We find that the resulting

coefficient estimates have signs that are consistent with our theory: higher income increases

self reported well being, but higher group expenditure decreases it. A 1,000 rupee increase

in peer group expenditure (relative to a mean of 5,554, with standard deviation of 2,580)

decreases self reported well being by 15% of a standard deviation, which is in line with the

welfare effects we found using our structural model.23 As we discuss in Appendix B.2, these

effects of peer expenditure are similar throughout the distribution of own income, consistent

with our linear index structure for peer effects.

5 Implications for Tax and Transfers Policy

Our finding that perceived needs rise with peer group average consumption has sig-

nificant implications for policies regarding redistribution, transfer systems, public goods

provision, and economic growth. In this section we provide some crude, back of the envelope

calculations that illustrate the rough magnitudes that our estimated peer effects have on

policy questions.

Our model is one where consumption has negative externalities on one’s peers. Boskin and

Shoshenski (1978) consider optimal redistribution policies in models with general consump-

tion externalities. They show that distortions due to negative externalities from consumption

onto utility can generally be corrected by optimal taxation. In particular, their results imply

that negative consumption externalities make the marginal cost of public funds lower than

it would otherwise be. Here we apply the same logic to our estimated consumption peer

effects, and in particular show how large free lunch gains may be possible.

A potentially peculiar attribute of our model is that it could be social welfare improving

23In principle, one could use self reported well being data to estimate a, the effect of peer expenditure in
money-metric terms. There are three issues with this approach. First, self reported well being is generally
crudely measured and may not be interpersonally comparable. Second, few if any existing datasets record
both consumption and self reported well being. Third, this approach (as well as that of other papers in
the literature, such as Luttmer (2005), that apply this approach) relies on a random-effects assumption that
expenditures are uncorrelated with other determinants of self reported well being. A key advantage of our
utility-derived demand model is that the FE approach allows identification even when group preferences are
correlated with group expenditures. Given these issues, we take the self reported well being results here
only as evidence of negative consumption externalities, and do not attempt to use them to back out other
measures of the welfare cost of peer effects.
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to transfer income from someone with poor peers to someone else of equal income who

has rich peers. This is not a specific feature of our model; similar implications can arise

as long as peer spending negatively affects individual utility. As a practical matter, we

rule out such transfers, by only considering tax and transfer programs that are based on

personal income rather than peer group membership. Many of our conclusions then follow

from the observation that the demographics that determine peer group membership (e.g.,

education and neighborhoods) strongly correlate with income. So, e.g., transfers from high to

low income households will on average transfer resources from higher socio-economic status

groups to lower status groups.

As discussed in Section 2, the sum (over households) of income minus the sum of spending

on needs (as we define them) is a valid money-metric social welfare index. This means that

if needs go down, all else equal, social welfare goes up. Consider the money metric costs

in lost utility of, say, an across-the-board tax increase. This tax increase lowers average

expenditures by households, which in turn lowers perceived needs, thereby offsetting some

of the utility that was lost by having to pay the tax.

For simplicity, round our conservative baseline estimate of a = 0.266 to 1/4. Suppose

you experience a 4 rupee tax increase, and for simplicity let your marginal propensity to

consume be 100%. If your peers also have their taxes increase by the same amount, then

your loss in utility will only be equivalent to that of a 3 rupee tax increase. The reason is

that although your net income, and therefore expenditure, will have dropped by 4 rupees,

so will have that of your peers. Consequently, your needs will have dropped by 1/4 ∗ 4 = 1

rupee, so that your net loss in money-metric utility is only 3 rupees.

However, to fully evaluate the effect of this tax increase, we must also consider potential

peer effects in how the government uses the additional tax revenue. If the money is trans-

ferred to other groups of consumers who also have peer effect spillovers of a = 1/4, then

the welfare gains from reduced expenditures on needs by the taxed consumers will be offset

by the welfare losses associated with increased perceived needs by the recipients of those

transfers.

There are two ways we can reduce or eliminate these offsetting welfare losses, thereby

exploiting the potential free lunch associated with the reduced perceived needs from taxing

peers. One way is to transfer the tax revenues to individuals in groups that have smaller

peer effects, and the other could be to spend the tax revenue on public goods or government

services.

We found some evidence that the size of the peer effects may be smaller for poorer and less

educated groups than for other consumers. If so, then transfers from higher income to lower

income individuals will lead to an overall increase in social welfare, by reducing the total neg-

32



ative consumption externalities of peer effects. This is true even with an inequality-neutral

social welfare function. Similarly, our estimates suggest social welfare gains to progressive

vs flat taxes, even if the marginal utility of money was the same for all consumers.

An alternative way to exploit the potential free lunch associated with reduced perceived

needs from taxing peers is to spend the resulting tax revenues on public goods or government

services. To the extent that jealousy or envy are the underlying cause of the peer externalities

we identify, public goods and services may not invoke those effects (or at least induce smaller

peer effects), because by definition public goods are consumed by all members of the group.

This suggests that public goods and services may provide at least a partially free lunch.

To illustrate the magnitude of these potential welfare gains, we consider just one existing

transfer program in India. This is the Public Distribution System (PDS), which is estimated

to cost roughly 1.35% of GDP when fully implemented (Puri 2017; Ministry of Consumer

Affairs 2018). The PDS aims to provide subsidized cereals to roughly 75 per cent of Indian

households. Our estimates imply that the resulting increased consumption would result in

increased perceived needs, and so would not raise utility as much as an alternative policy

that did not induce these negative externalities. Such alternatives could be the provision

of public goods or services that provide utility to the poor but are equally available to all

households. Such public goods and services might include clean water, public sanitation,

better air quality, or improved fire or police protection.

A back-of-the-envelope calculation of the magnitude of these potential gains proceeds as

follows. The entitlement of rice under the PDS is up to 5 kg per month per person at 3

rupees per kg. Suppose the market price of rice is 15 rupees per kg (as it was in 2016).

Then, the public cost of providing 5kg of rice at the subsidized price of 3 rupees per kg is 60

rupees per month per person. Ignoring waste, the private consumption of recipient therefore

increases by 60 Rupees per month per person. Using a = 1/4, this implies that needs rise

by 15 Rupees per month per person. Thus the government’s expenditures of 60 rupees only

increases money metric utility by 45 rupees per person per month. This is in contrast to a

benefit of up to 60 rupees per person per month that might be obtained by provision of public

goods. The PDS program targets roughly 1 billion people, yielding potential money-metric

welfare gains (of switching from rice subsidies to a public goods program) of up to roughly

180 billion rupees (over 2 billion US dollars) per year.

This crude, toy calculation comes with many caveats,24 and is therefore not a rigorous

24Some caveats are that the benefits of this alternative might be reduced to the extent that some households
derive less utility from the public good than others, or if the public good also generates negative peer effects,
or if households in total derive less utility from the public good than it costs to provide. The effects might
also be reduced to the extent that households given ration cards, who are therefore relatively poor, may have
smaller than average peer effects, and some are likely to be at subsistence levels where few such effects are
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analysis of alternatives to the PDS. It is only intended to illustrate the potentially enormous

impacts that accounting for peer effects could have on the evaluation of tax and transfer

policies.

6 Conclusions

We show identification and consistent GMM estimation of peer effects in a model where

most members of each peer group are not observed. The model allows for peer group level

fixed or random effects, and allows the number of observed individuals in each peer group to

be small and fixed asymptotically. This means we obtain consistent estimates of the model

even though peer group means cannot be consistently estimated. Unlike most peer effects

models, our model can be estimated from standard cross section survey data where the vast

majority of members of each peer group are not observed, each member is only observed

once, and detailed network structure is not available. We obtain these results both for a

generic quadratic model, and for a utility-derived demand model. The methods we use to

identify and estimate these effects could potentially have broad application to other social

network models.

Our estimator is designed to estimate peer effects from survey data in the absence of

network information. However, components of our methodology could be useful even when

network data is observed. In Appendix A.7, we show how our estimator could be applied

to data where, instead of groups, each person has their own set of friends, a small subset

of whom are observed. Further extensions of this type would be a useful area for future

research. Another possibility for future work, especially with larger group sizes, would be

to consider the possibility that peer effects are functions of statistics other than the mean

(such as the variance and/or quantiles) of the within-group quantities.

We propose a utility-derived consumer demand model where a consumer’s perceived

needs for each good depends in part on the average consumption of goods among the other

members of the consumer’s peer group. We show how this model can be used for welfare

analyses, and in particular to identify what fraction of total expenditure increases are spent

on “keeping up with the Joneses” type peer effects.

We apply the model to consumption data from India, and find large peer effects. Our

estimates imply that an increase in group-average spending of 100 rupees would induce an

increase in needs of about 26 rupees or more in most peer groups. This means that the

increase in utility you experience if you and everyone else in your peer group spends 100

possible. On the other hand benefits could also be increased to the extent that people in groups that did
not qualify for or take up the rice entitlement might benefit from provision of the public good.
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more rupees (say, because of a tax cut) is the same as the increase in utility you would get

from spending only 100 − 26 = 74 more rupees if no one else in your peer group increased

their spending.

These results can at least partly explain the Easterlin (1974) paradox, in that income

growth over time, which increases people’s consumption budgets, results in lower utility

growth than is implied by standard demand models that ignore peer effects.

These results also suggest that income or consumption taxes can have far lower negative

effects on consumer welfare than are implied by standard models. This is because a tax that

reduces my expenditures by 100 rupees will, if applied to everyone in my peer group, have

the same effect on my utility as a tax of only 74 rupees that ignores the peer effects. This

implies that about a fourth of the money people might get back from an across the board

tax cut doesn’t increase utility, but instead is spent on increased perceived needs due to peer

effects. The larger these peer effects are, the smaller are the welfare gains associated with

tax cuts or mean income growth. We show this is particularly true to the extent that taxes

are used to provide public goods or government services (that are less likely to induce peer

effects themselves) rather than transfers.

We provide some calculations showing that the magnitudes of these peer effects on social

welfare calculations, which are ignored by standard models of government tax and spending

policies, can be very large. For example, we find potential welfare gains of hundreds of

billions of rupees could be available in just a single existing government transfer program in

India. We find similarly that the welfare gains in transfers from richer to poorer households

(and more generally from progressive vs flat taxes) may be much larger than previously

thought, to the extent that poorer households do indeed have smaller peer effects than

richer households.

References

Akay, A., and P. Martinsson, (2011), “Does relative income matter for the very poor?

Evidence from rural Ethiopia,” Economics Letters, 110(3), 213-215.

Armstrong, T. B., M. Kolesár, and M. Plagborg-Møller (2020), " Robust Empirical Bayes

Confidence Intervals," Unpublished manuscript, Yale and Princeton Universities.

Banks, J., R. Blundell, and A. Lewbel, (1997), “Quadratic Engel curves and consumer

demand,”Review of Economics and Statistics, 79(4), 527–539.

35



Banerjee, A., Chandrasekhar, A. G., Duflo, E., and Jackson, M. O. (2013), "The Diffu-

sion of Microfinance," Science, 341, #6144.

Blackorby, C. and D. Donaldson, (1994), “Measuring the Costs of Children: A Theoreti-

cal Framework,” in R. Blundell, I. Preston, and I. Walker, eds., The Economics of Household

Behaviour (Cambridge University Press) 51-69.

Blume, L. E., W. A. Brock, S. N. Durlauf, and Y. M. Ioannides., (2010) “Identification

of Social Interactions,” Economics Series 260, Institute for Advanced Studies.

Boneva, T. (2013), “Neighbourhood Effects in Consumption: Evidence from Disaggre-

gated Consumption Data,” Cambridge Working Papers in Economics 1328.

Boskin, M.J. and Sheshinski, E., (1978), “Optimal redistributive taxation when indi-

vidual welfare depends upon relative income,” The Quarterly Journal of Economics, 92(4),

589-601.
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7 Tables

Table 1: Summary statistics for consumption data

Observations Pairs
(N=24,757) (N=128,640)

Mean SD Min Max Mean SD Min Max

xi .99 .59 .072 4.7 1 .59 .072 4.7
qi food .44 .21 0 2 .44 .21 0 2
qi non-food .44 .33 .0069 2.7 .44 .32 .0069 2.7
q̂g,ii′ food .44 .15 .027 1.7
q̂g,ii′ non-food .44 .24 .02 2.4
p food 1.1 .08 .94 1.3 1.1 .083 .94 1.3
p non-food 1.2 .11 .94 1.5 1.2 .12 .94 1.5
(Household size -1)/10 .38 .21 0 1.1 .38 .21 0 1.1
Age (household head, in 10 years) .39 .11 .17 .82 .4 .11 .17 .82
Household head married .84 .36 0 1 .84 .36 0 1
Log land owned .15 .35 0 2.3 .16 .35 0 2.3
Ration card .14 .35 0 1 .13 .34 0 1
Literate but no HS .46 .5 0 1 .47 .5 0 1
High school or greater .26 .44 0 1 .26 .44 0 1

Table reports summary statistics for estimation sample.
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Table 2: Estimated peer effects by group definition

RE FE Difference

District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: All data

A (group consumption) 0.334∗∗∗ 0.558∗∗∗ 0.606∗∗∗ -0.228∗ 0.088 0.266∗∗ 0.562∗∗∗ 0.470∗∗∗ 0.341∗∗∗

(0.044) (0.036) (0.036) (0.138) (0.121) (0.119) (0.131) (0.115) (0.114)

J overid stat 14138.36 1264.97 653.76 22426.79 2130.89 1305.88
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 3,761,688 195,282 128,640 3,761,688 195,282 128,640 3,761,688 195,282 128,640
N households 30,184 29,462 24,757 30,184 29,462 24,757 30,184 29,462 24,757
N groups 568 4,282 4,599 568 4,282 4,599 568 4,282 4,599
Average group size 53.14 6.88 5.38 53.14 6.88 5.38 53.14 6.88 5.38

Panel B: Consistent sample

A (group consumption) 0.367∗∗∗ 0.568∗∗∗ 0.606∗∗∗ -0.284∗ 0.156 0.266∗∗ 0.651∗∗∗ 0.412∗∗∗ 0.341∗∗∗

(0.045) (0.034) (0.036) (0.153) (0.133) (0.119) (0.147) (0.128) (0.114)

J overid stat 9877.93 985.24 653.76 16108.87 1583.52 1305.88
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 2,564,578 150,184 128,640 2,564,578 150,184 128,640 2,564,578 150,184 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757 24,757 24,757 24,757
N groups 564 3,941 4,599 564 3,941 4,599 564 3,941 4,599
Average group size 43.90 6.28 5.38 43.90 6.28 5.38 43.90 6.28 5.38
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Selected estimates for structural demand model. Controls include household size, age, marital status, land owned,
ration card indicator, education, religion, and group size. Standard errors clustered at the district level. ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Estimated peer effects by measurement error correction

RE FE

District Neighborhood

Neighbor-
hood-
caste District Neighborhood

Neighbor-
hood-
caste

(1) (2) (3) (4) (5) (6)

Panel A: Naive (no correction)

A (group consumption) 0.143∗∗∗ 0.038∗∗ 0.054∗∗∗ 0.470∗∗ 0.559∗∗∗ 0.529∗∗∗

(0.031) (0.017) (0.016) (0.215) (0.089) (0.090)

J overid stat 11354.53 1340.51 1013.93 17386.44 1651.41 1300.67
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 2,564,578 150,184 128,640 2,564,578 150,184 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757
N peer groups 564 3,941 4,599 564 3,941 4,599
Average group size 43.90 6.28 5.38 43.90 6.28 5.38

Panel B: Baseline

A (group consumption) 0.367∗∗∗ 0.568∗∗∗ 0.606∗∗∗ -0.284∗ 0.156 0.266∗∗

(0.045) (0.034) (0.036) (0.153) (0.133) (0.119)

Hausman H 49.15 314.55 295.21 . 16.71 11.48
p-value 0.000 0.000 0.000 . 0.000 0.001

J overid stat 9877.93 985.24 653.76 16108.87 1583.52 1305.88
p-value 0.000 0.000 0.000 0.000 0.000 0.000

N pairs 2,564,578 150,184 128,640 2,564,578 150,184 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757
N peer groups 564 3,941 4,599 564 3,941 4,599
Average group size 43.90 6.28 5.38 43.90 6.28 5.38
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Selected estimates for structural demand model, Controls include household
size, age, marital status, land owned, ration card indicator, education, religion, and group size. Standard errors
clustered at the district level. ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Peer effects by demographic group

RE FE

(1) (2) (3) (4) (5) (6) (7) (8)

Constant 0.606∗∗∗ 0.606∗∗∗ 0.600∗∗∗ 0.694∗∗∗ 0.266∗∗ 0.255∗∗ 0.078 0.145
(0.036) (0.035) (0.057) (0.041) (0.119) (0.121) (0.125) (0.143)

Scheduled non-Hindu 0.168∗∗ 0.130
(0.066) (0.237)

Scheduled Hindu 0.247∗∗∗ -0.285
(0.087) (0.330)

Non-scheduled non-Hindu 0.179∗∗∗ -0.075
(0.055) (0.153)

Owns land 0.031 0.446∗∗∗

(0.054) (0.136)
High school or greater -0.186∗∗∗ 0.454∗∗∗

(0.057) (0.163)

p-value heterogeneity 0.00 0.56 0.00 0.68 0.00 0.01
N pairs 128,640 128,640 100,756 84,052 128,640 128,640 100,756 84,052
N households 24,757 24,757 21,696 20,233 24,757 24,757 21,696 20,233
N peer groups 4,599 4,599 4,452 4,446 4,599 4,599 4,452 4,446

Selected estimates for structural demand model, Controls include household size, age, marital status, land owned,

ration card indicator, education, religion, and group size. A (group consumption) represents the structural effect

of group consumption on own consumption, constrained to be the same for all goods. Standard errors clustered

at the district level. ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Peer effects of own-group and out-group spending

RE FE

(1) (2) (3) (4)
Own-group Upper caste Own-group Upper caste

A (group consumption) 0.802∗∗∗ 0.052 0.445∗∗∗ 0.011
(0.070) (0.039) (0.138) (0.302)

Number of pairs 8,962 8,962 8,962 8,962
Number of groups 564 564 564 564

Dependent variable is household food spending. Individual controls include household
size, age, marital status and amount of land owned. All models include price controls.
Analysis is restricted to scheduled castes and tribes in FSUs with at least 3 non-scheduled
caste or tribe households. Own-group columns display the peer effects of own-group
expenditure; Upper caste columns display the peer effect of the neighbor upper caste
household expenditure. Standard errors in parentheses and clustered at the group level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Peer effects by A matrix specification

RE FE

(1) (2) (3) (4) (5) (6)

A (group food on food consumption) 0.411∗∗ 0.639∗∗∗ 0.606∗∗∗ 9.741∗∗∗ 2.228∗∗∗ 0.266∗∗

(0.171) (0.036) (0.036) (2.066) (0.382) (0.119)
A (group non-food on non-food consumption) 0.452∗∗∗ 0.572∗∗∗ 0.606∗∗∗ 5.400∗∗∗ -0.911∗∗∗ 0.266∗∗

(0.171) (0.034) (0.036) (1.577) (0.276) (0.119)
A (group food on own non-food consumption) -0.397 -7.695∗∗∗

(0.275) (1.828)
A (group non-food on own food consumption) -0.095 -6.383∗∗∗

(0.102) (1.860)

p-value equality 0.896 0.001 0.000 0.000
p-value diagonal 0.002 0.000
N pairs 128,640 128,640 128,640 128,640 128,640 128,640
N households 24,757 24,757 24,757 24,757 24,757 24,757
N peer groups 4,599 4,599 4,599 4,599 4,599 4,599

Selected estimates for structural demand model, Controls include household size, age, marital status, land owned,

ration card indicator, education, religion, and group size. Standard errors clustered at the district level. ∗∗ p < 0.05,
∗∗∗ p < 0.01

46



Table 7: Estimated peer effects in a three-good demand system

RE FE

(1) (2) (3) (4)

A (group food on food consumption) 0.848∗∗∗ 0.932∗∗∗ 2.393∗∗∗ 0.296∗∗∗

(0.023) (0.014) (0.426) (0.100)
A (group fuel on own fuel consumption) 0.938∗∗∗ 0.932∗∗∗ 2.820∗∗∗ 0.296∗∗∗

(0.018) (0.014) (0.913) (0.100)
A (group other on own other consumption) 0.740∗∗∗ 0.932∗∗∗ -1.387∗∗∗ 0.296∗∗∗

(0.023) (0.014) (0.334) (0.100)

Hausman H 42.151 41.701
p-value 0.00 0.00

p-value equality 0.000 0.000
N pairs 128,640 128,640 128,640 128,640
N households 24,757 24,757 24,757 24,757
N peer groups 4,599 4,599 4,599 4,599

Selected estimates for structural demand model, Controls include household size, age, marital

status, land owned, ration card indicator, education, religion, and group size. Standard errors

clustered at the district level. ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 8: Peer effects in spending, by consumption categorizations

RE FE

(1) (2) (3) (4) (5) (6)
Lux Visible Vis. lux Lux Visible Vis. lux

A (group consumption) 0.546∗∗∗ 0.401∗∗∗ 0.581∗∗∗ 0.758∗∗∗ 0.418∗∗∗ 0.654∗∗∗

(0.079) (0.084) (0.132) (0.207) (0.115) (0.132)
Number of pairs 128,974 128,974 128,974 128,974 128,974 128,974
Number of groups 4,607 4,607 4,607 4,607 4,607 4,607

Dependent variable is varies by column. Individual controls include household size, age,
marital status and amount of land owned. All models include price controls. Lux columns
divide expenditure into luxuries and necessities; Visible columns into visible and invisible
consumption; and Vis. lux into visible luxury vs other. Standard errors in parentheses
and clustered at the group level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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