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Abstract

Previous papers estimate base-independent equivalence scales and test base-indepen-
dence using strict parametric assumptions on Engel curves and equivalence scale func-
tions. These parametric tests reject the hypothesis of base independence. I construct
a semiparametric estimator of a household equivalence scale under the assumption of
base independence without putting any further restrictions on the shape of household
Engel curves. This estimator uses cross-equation restrictions on a system of estimated
nonparametric engel curves to identify equivalence scale parameters. I test the hypothesis
of base independence against a fully nonparametric alternative and find that preferences
are consistent with the existence of a base-independent equivalence scale for some
interhousehold comparisons. ( 1999 Elsevier Science S.A. All rights reserved.

JEL classification: C14; C43; D11; D12; D63

Keywords: Equivalence scales; Semiparametric estimation; Household demand

1. Introduction

Equivalence scales are used to compare the incomes and expenditures of
different household types. A Household Equivalence Scale is a vector of numbers
such that dividing household expenditure by the appropriate scale number gives
us an equivalent expenditure for the reference household type. If preferences
satisfy base independence, then the household equivalence scale does not
vary across household income levels. This invariance implies a restriction on
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1For example, if welfare benefits to single persons were high relative to benefits an accurate
equivalence scale might indicate, there would be an economic incentive for couples on welfare to
separate in order to better their standard of living.

household preferences across household types and, therefore, implies restric-
tions on the shapes of expenditure share equations across household types. If
preferences do not satisfy base independence, then the conventional and conve-
nient use of base-independent equivalence scales is inappropriate.

Base-independent equivalence scales are useful. First, base-independent
equivalence scales may allow governments to ensure that redistribution is fair by
making sure that each member of the transfer target population ends up with the
same level of well-being. An accurate equivalence scale may allow policy-makers
to design transfer programmes that do not create incentives for programme
participants to change their household type to increase their level of welfare.1
Second, accurate equivalence scales permit social evaluation, such as the con-
struction of inequality indices, on the basis of household data. Third, the
restrictions on preferences imposed by base independence provide a convenient
and integrable way of incorporating demographic information into the non-
parametric estimation of engel curves.

Many econometric studies have estimated equivalence scales using fully
parametric models. A few of these studies have tested whether or not preferences
satisfy base independence, and these parametric tests have rejected base inde-
pendence. In this paper, I estimate equivalence scales semiparametrically with
a model that parameterises the equivalence scale function, but allows household
expenditure share equations to be estimated non-parametrically. I also test the
hypothesis that preferences are consistent with the existence of a base-indepen-
dent equivalence scale, and find some support for this hypothesis in the data.

2. Equivalence scales and preferences

One can view an equivalence scale as a relationship between the expenditure
functions of different types of households. Define the expenditure function,
E(p, u, a), to give the minimum amount of expenditure necessary for a household
of characteristics a to get utility level u at prices p. The vector of household
characteristics, a, may include information such as the numbers and ages of
household members. The expenditures of each household type can be defined in
relation to a reference household type, with characteristics aR. Since an equiva-
lence scale is just a ratio of expenditures at equal utility, I write an equivalence
scale function, D(p, u, a), as follows:

D(p, u, a)"
E(p, u, a)

E(p, u, aR)
. (2.1)
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2The structure required for base independence was explored independently by Lewbel (1989b)
and Blackorby and Donaldson (1989, 1993), who referred to it as Equivalence Scale Exactness. This
structure requires the expenditure function to be multiplicatively decomposable into two functions,
one which depends only on prices and utility, and one which depends only on prices and household
characteristics.

3Discussion of household equivalence scales necessitates some concept of household utility. For
this research, I assume the existence of a household utility function over goods which is maximized
subject to household expenditure constraints, prices and household characteristics. The aggregation
of individual household members’ utilities into a household utility function is potentially very
complicated, and will not be discussed here (see Phipps (1996) for some discussion of these issues).
However, if the household aggregation function is maximin, then equivalent expenditure will equate
well-being across individuals as well as across households; I use this aggregation function to
interpret estimated equivalence scales.

Eq. (2.1) does not impose any restrictions on the expenditure functions of
households; it is simply a ratio. However, Eq. (2.1) is not useful in practice
because D(p, u, a) varies with u, the utility level at which the expenditure
comparison is made. To make the equivalence scale base independent, that is,
invariant with respect to the utility level at which the expenditure comparison is
made, some structure on preferences across household types is required.2

Lewbel (1989b) and Blackorby and Donaldson (1989, 1993) show that if there
exists a base-independent equivalence scale function D(p, a) which varies with prices
p and household characteristics a, then expenditure functions must be related by

E(p, u, a)"E(p, u, aR)D(p, a) (2.2)

Here, D(p, a) must not depend on u. Further, because both reference and
nonreference expenditure functions are homogeneous of degree 1 in prices, the
equivalence scale function must be homogeneous of degree zero in prices.
Blackorby and Donaldson (1989, 1993) express this relationship in terms of the
dual indirect utility functions, »(p, y, a), which give the level of utility of a type
a household with total expenditures of y at prices p:

»(p, y, a)"»Ap,
y

D(p, a)
, aRB. (2.3)

Defining y/D(p, a) as equivalent expenditure, Eq. (2.3) states that if two house-
holds facing the same prices have the same equivalent expenditure, then they are
equally well off.

There are several difficulties associated with the economic implementation of
equivalence scales presented in Eqs. (2.2) and (2.3). First, these specifications for
expenditure and indirect utility functions are not directly based on individual
utility; rather they are functions representing household level maximization and
household utility, presumably based on some kind of aggregation of individual
utilities within households.3 Second, Eqs. (2.2) and (2.3) require an ordinal
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4Note that in Eq. (2.3), two indirect utility functions are related by an equality, which is not
consistent with utility functions satisfying Ordinal Non-Comparability. Blackorby and Donaldson
(1989, 1993) show that smaller information classes are needed, and define Income Ratio Comparabil-
ity (IRC) as the information structure necessary to support Eq. (2.3). IRC requires that equality of
utility be observable (as in Ordinal Full Comparability) at a single level of well being, and
sustainable over income scalings. Once a single point of utility equality is found, the preference
restrictions in Eq. (2.3) ensure that it will be maintained over all scalings of total expenditure.
Blackorby and Donaldson (1993) also show that IRC is equivalent to base independence (which they
refer to as Equivalence Scale Exactness).

5Many researchers, including Pollak and Wales (1979), Pollak (1991) and Blundell and Lewbel
(1991), have suggested that exogenity of household characteristics is too demanding, and have thus
suggested that demand data can at best reveal the price response of equivalence scales, but not
equivalence scale sizes themselves (Pollak and Wales refer to ‘conditional’ versus ‘unconditional’
scales).

6Pashardes (1991) suggests that if families plan to have children, they may reduce their consump-
tion in pre- and post- child-rearing periods in order to consume more when their child-rearing needs
are greatest. He shows that equivalence scales estimated only from contemporaneous expenditures
substantially under-estimate the costs of children due to this form of intertemporal utility smooth-
ing.

interhousehold comparison of utility.4 Third, Eqs. (2.2) and (2.3) treat house-
hold characteristics, a, as exogenous instead of explicitly modelling how house-
holds choose their characteristics, including household size and number of
children.5 Fourth, even if the presence of children can be taken as exogenous,
households may be able to adjust their intertemporal consumption paths in
response to anticipated child-bearing.6 Finally, many researchers (notably,
Pollack and Wales, 1995) have suggested that it is unreasonable to expect
equivalence scales to be valid over wide income/expenditure ranges. This last
point requires that the first four difficulties have been solved (or over-
looked), and that the main problem lies in whether or not equivalence scales
defined by Eq. (2.1) are actually base independent as in Eqs. (2.2) and (2.3). It is
this latter question to which the current paper is addressed. Are household
preferences (as manifested in share equations) consistent with the existence of
a base independent equivalence scale, or must equivalence scales vary with total
expenditures?

Lewbel (1989b) and Blackorby and Donaldson (1989, 1993) do not derive the
specific observational consequences of Eqs. (2.2) and (2.3) in the context of an
unspecified reference demand system. Using Roy’s Identity, Eq. (2.3) and the
chain rule, I derive demand equations, x

i
(p, y, a), in terms of the demand

equations of the reference household, x
i
(p, y, aR), as follows:

x
i
(p, y, a)"D(p, a)x

iAp,
y

D(p, a)
, aRB#

y

D(p, a)

LD(p, a)

Lp
i

. (2.4)
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7The expenditure function is increasing for all household types if and only if the marshallian
budget shares are everywhere positive (i.e., if equivalence scale elasticities are not too large). The
Hessian of the expenditure function given by Eq. (2.2) is:

D2E(p,u,a)"D2E(p,u,aR)D(p,a)#DE(p,u,aR)DD(p,a)@

#DD(p,a)DE(p,u,aR)@#D2D(p,a)E(p,u,aR)

The Hessians of E(p,u,aR) and *(p,a) are negative semidefinite (NSD) and symmetric by assumption.
Since D(p,a) is homogeneous of degree zero in p, its gradient sums to zero, so that the sum of the

middle two terms is symmetric and has a zero determinant. Thus, the Hessian of E(p,u,a) is
symmetric and NSD for all household types.

Multiplying Eq. (2.4) by p
i
/y gives Marshallian expenditure share equations,

w
i
(p, y, a): defining g

i
(p,a) as the clasticity of D(p,a) with respect to p

i
,

w
i
(p, y, a)"w

iAp,
y

D(p, a)
, aRB#g

i
(p, a). (2.5)

Under base independence, the Marshallian shares of a nonreference house-
hold are equal to the Marshallian shares of the reference household at the
same equivalent expenditure plus the elasticity of the equivalence scale with
respect to price. Eq. (2.5) shows that under base independence the shapes of
Engel curves are linked across household types, but are not restricted to
particular shapes. Fig. 1 shows this relationship. In Mw

i
(p, y, a),log(y)N space,

share functions must be related by a horizontal and vertical shift. That
is, household expenditure share functions for particular goods must have the
same shape across household types. I call this restriction shape invariance,
and note that base independence is sufficient for shape invariance, but not vice
versa.

If we assume that the expenditure function for the reference household
type, E(p, u, aR), satisfies the Slutsky conditions and that the equi-
valence scale function is symmetric and concave in prices then the Slutsky
conditions must be satisfied for all household types.7 Since Eqs. (2.4) and (2.5)
are derived from the dual indirect utility function, this demand system is
integrable for all household types. Thus base-independence provides a method
for incorporating demographic information into nonparametric demand system
estimation that satisfies integrability and leaves the shape of household engel
curves unspecified.

Since the elasticity functions, g
i
(p, a), do not depend on total expenditure, it

must be the case that for all households with the same equivalent expenditure,
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Fig. 1. Base independence and Preferences.

Marshallian demand shares of different household types respond identically to
proportional changes in expenditure. Thus, shape invariance is a testable restric-
tion on preferences.

Blackorby and Donaldson (1989, 1993) note that an equivalence scale is only
uniquely identifiable from expenditure data if Marshallian share functions are
nonlinear functions of the log of total expenditure. If share equations were
linear, then a pair of share functions with slope b that are consistent with
Mlog D*, g*N would also be consistent with Mlog D*#j/b, g*#jN for any
choice of j. With nonlinear share equations, however, unique equivalence scales
are estimable from expenditure data under the assumption of base indepen-
dence.

To estimate the (log of) equivalence scale sizes, one needs to estimate the
horizontal shift in Fig. 1, and to estimate equivalence scale elasticities, one needs
to estimate vertical shifts in Fig. 1. Hitherto, all estimates under (and tests of)
base independence have specified parametric representations for the reference
share functions, w(p, y, aR), the equivalence scale function D(p, a), and (implicitly)
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8Gozalo (1997) estimates a model with nonparametric engel curves and base-dependent equiva-
lence scales based on Engel’s method. Engel equivalence scales are based on the assumption that two
households which have the same expenditure share for food are equally well off. Gozalo found that
for most household types, Engel equivalence scales are not base independent (i.e., they vary
substantially with total expenditures). Gozalo’s approach differs from the current paper in two
important ways: (1) Engel’s method uses only food shares whereas I look at three different
2-equation systems and one 4-equation system; and (2) Gozalo estimates price-independent scales
whereas I estimate price-dependent scales. In terms of Fig. 1, Gozalo examines whether shape
invariance holds in the food share equation with g"0.

9 Jorgenson and Slesnick (1987) impose Exact Aggregation on preferences, which forces all
expenditure share functions to be loglinear in total expenditure. As noted above (and shown in
Blackorby and Donaldson, 1989, 1993), this means that unique identification of the equivalence
scale function is coming from the additional restrictions in the model. In this case, identification of
D(p, a) comes from making some of the parameters of D(p, a) also appear in w(p, y, aR). In particular,
Translog parameters that measure the price responses of the reference share equations also appear in
the equivalence scale for nonreference households.

10All three papers have difficulty identifying the parameters of the equivalence scale function.
Blackorby and Donaldson (1989, 1993) show that this is due to the fact that the Almost Ideal
demand system forces all expenditure share functions to be loglinear in total expenditures. Banks et
al. (1994) suggests the use of an extended AI demand system wherein share functions are quadratic in
the log of total expenditures. Banks et al. (1994) and Dickens et al. (1993) use extended AI systems
and find that it fits the data much better than the loglinear AI model.

11Blundell and Lewbel (1991) reject base independence, but find that the departure from base
independence is quite small, which may be consistent with results presented in this paper.

its associated elasticities, g(p, a).8 Many attempts have been made to measure
(equivalence scales in this fashion. Jorgenson and Slesnick (1987) and Nicol
(1991) use an exactly aggregated Translog model for the reference share func-
tions, w(p, y, aR), and demographically shifted exactly aggregated Translogs for
the nonreference share functions. They impose Barten exactness and generate
unique equivalence scales from these restrictions that are related to prices in
a complicated way.9 Phipps (1991) and Pendakur (1994) use a Translog speci-
fication for reference preferences and a simple specification of the equivalence
scale function (Phipps uses a Cobb—Douglas and Pendakur a Translog equiva-
lence scale). Browning (1989), Nelson (1991), Blundell and Lewbel (1991) and
Dickens et al. (1993) use the Almost Ideal (AI) demand system as a model of
reference preferences and a Cobb—Douglas representation of the equivalence
scale function.10 Dickens et al. (1993) and Pashardes (1995) use extended
(log-quadratic) AI demand systems for reference preferences and translog equiv-
alence scale functions.

All of these models share the approach of specifying functional forms for both
expenditure share functions and for the equivalence scale functions. Browning
(1989), Blundell and Lewbel (1991)11 , Dickens et al. (1993) and Pashardes (1995)
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12The Working-Leser (Working, 1943) model posits that household expenditure share equations
are loglinear in total expenditure. The Exactly Aggregated Translog (Jorgenson and Slesnick, 1985)
and Almost Ideal (Deaton and Muelbauer, 1980) models also have loglinear shares at any price
vector. The unrestricted Translog (Jorgenson et al., 1960) and Integrable Quadratic Almost Ideal
(Banks et al., 1994) model both feature nonlinear share equations. Parametric representations,
however, rarely allow complications above the second moment (whatever is used as the independent
variable).

13This paper uses only kernel-based nonparametric estimation. Although other types of non-
parametric regression, such as spline smoothing and running median estimation are available,
semiparametric estimators are most well-developed in the context of kernel estimation.

go on to test the joint hypotheses that these functional forms are viable, and
reject the hypothesis of base independence in this context. The innovation in this
paper is that the model specifies a functional form only for the equivalence scale
function, and leaves the reference expenditure share functions unrestricted. I find
that with unrestricted reference expenditure share functions, semiparametric
estimates provide moderate support for the hypothesis of base independence,
and generate somewhat different estimates of equivalence scale sizes than the
parametric models.

3. Estimation of an equivalence scale

3.1. Nonparametric regression

The standard approach in the measurement of expenditure share equations
has hitherto been to assume a particular form for the functions, and to estimate
the parameters of that function by minimising some criterion function (either
ML or GMM).12 The idea of nonparametric regression is to let the data
determine the shape of the function to be estimated. Given an underlying
data generating function, m

i
"m(t

i
)#e

i
(e&iid(0)), an estimated nonparametric

regression curve, mL (t), may be defined over the data points, Mt
i
, m

i
N, as

follows.13

fK (t)"
1

Nh

N
+
i/1

KA
t!t

i
h B,

rL (t)"
1

Nh

N
+
i/1

KA
t!t

i
h Bmi.
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14A kernel function is a distribution that is used to smooth out irregularity in the data. Effectively,
kernel smoothing is the convolution of a regular distribution, the kernel, with an irregular distribu-
tion, that of the actual data. The gaussian kernel is defined as: K(u)"exp(!u2/2)/(2n)1@2.

15Please note that I suppress the dependence of the bandwidth, h, on the sample size N.

16Choosing bandwidth by cross-validation involves computing a new ‘leave-out’ regression
curve, mN (W), such that each element of mN (W

i
) uses all the data except the single datapoint (W

i
, m

i
)

exactly at that point. Then, the bandwidth that minimises the integrated squared error between mN (W)
and the data is the optimal bandwidth. Cross-validation thus creates an estimate of how good the
nonparametric regression curve is at predicting out of sample data, and chooses the bandwidth that
is best in this sense. I note that although cross-validation yields a bandwidth that is optimal in
a pointwise sense, it is not necessarily optimal for semiparametric applications (such as estimating
semiparametric shifts or testing shape invariance).

where K( ) ) is defined as a weakly positive Kernel function, and h as nonzero
bandwidth. Define

mL (t)"
rL (t)

fK (t)
"

+N
i/1

KA
t!t

i
h Bmi

+N
i/1

KA
t!t

i
h B

. (3.1)

In Eq. (3.1), the choice of the kernel function, K( ) ), has a minimal affect on the
estimate of mL (x) (see Härdle, 1993 Chapter 4.5), so I choose the gaussian kernel
for K( ) ).14,15 I use cross-validation16 to find optimal bandwidth for each
estimated nonparametric regression. Finally, to avoid boundary bias, I trim the
top and bottom 2.5% of estimated nonparametric regression functions used in
the semiparametric estimation.

3.2. The data

I use data from the 1990 Canadian Family Expenditure Survey (Statistics
Canada, 1992) to estimate expenditure share equations for food, recreation and
clothing for four household types. The four household types used are: (i) single
adults; (ii) adult couples; (iii) adult couples with one child less then ten years old;
and (iv) adult couples with two children less than ten years old. Because the age
of children has been shown to be an important determinant of expenditure
shares (see Browning, 1992), I focus on households with young children (under
ten years old). Further I exclude all households with members aged 65 or more,
because the expenditure patterns of seniors also seem to differ from those of the
non elderly. Only households where all members are full-year members are used.
I use only households residing in the fourteen largest Census Metropolitan

K. Pendakur / Journal of Econometrics 88 (1999) 1–40 9



17Because the data are from a single time and place, there is no price variation. Thus, the form of
the equivalence scale cannot be uniquely determined with respect to its price arguments. However,
because the elasticity of the equivalence scale will be estimated directly, the elasticity will be
determined at a single point. The estimates will therefore be consistent with a Cobb—Douglas
equivalence scale as follows:

ln(D(p, a))"ln(S(a))#+g
i
ln(p

i
)

where S(a) is a scale function and prices are normalized so that +g
i
ln(p

i
)"0 at the point of

estimation. Thus, for all estimation to follow, D(a) can be taken as S(a),

18Statistics Canada oversamples lower population areas, and the weights downweight these
areas. The nonparametric regression estimator with data MW

i
, m

i
, X

i
N where X

i
are weights is:

mL (W)"
R
i
K((W!W

i
)/h)X

i
m
i

R
i
K((W!W

i
)/h)Xi

Table 1
Descriptive statistics!

Household type

Singles Couples 0 Couples 1 Couples 2

Number of observations 638 753 350 310
Range of log consumption 7.84 9.92 8.48 10.31 8.78 10.49 8.94 10.51
Average log consumption 8.91 9.45 9.69 9.72
Range of consumption ($) 2540 20,333 4817 30,031 6503 35,954 7631 36,680
Average consumption ($) 8426 14,100 17,472 18,108
Average food share 0.28 0.31 0.32 0.35
Average clothing share 0.17 0.18 0.17 0.16
Average Recreation Share 0.35 0.32 0.27 0.24

! Statistics are for the middle 95% of the weighted data. Consumption refers to total expenditure on
nondurable consumption.

Areas of Canada to minimise the effects of home production. All estimates are
made without price variability,17 and the dependence of equivalence scales and
elasticities on prices will henceforward be dropped. The data come with weights
that reflect the sampling frame, and the weights are incorporated into the
estimation of all estimated nonparametric regression curves and semi-paramet-
ric estimators.18

To begin, I estimate three different two-share systems in which there is only
a single independent equation for each of four household types. I examine the

10 K. Pendakur / Journal of Econometrics 88 (1999) 1–40



19 If two log-quadratic share functions have the same second-order term, then they can be made
to coincide with horizontal and vertical translations in Mw, ln yN space. In particular, consider two
household types, aR (the reference household) and aN (a nonreference household), with share
equations for some good (suppressing the dependence of the share equations on p) given by

w(y, aR)"aR#bRln(y)#c ln(y)2,

w(y, aN)"aN#bN ln(y)#c ln(y)2.

These share equations are consistent with base independence, with equivalence scale and elasticity
given by

ln(D(aN))"(bR!bN)/2c, g(aN)"aN!aR#bR ln(D(aN))#c ln(D(aN)).2

shares of nondurable consumption spent on (i) food purchased in stores, (ii)
clothing, and (iii) recreation, including restaurant meals. Nondurable consump-
tion is defined to include all food (including restaurant purchases), clothing,
recreation (not including recreational vehicles), household operation and per-
sonal care. In Section 4, I estimate all three independent equations as a system
of equations with cross equation restrictions.

Table 1 offers some summary statistics about the data for the four household
types used in this paper. Adult couples with no children are denoted ‘Couples 0’,
couples with one child, ‘Couples 1’, and couples with two children, ‘Couples 2’.
Descriptive statistics are for the middle 95% of the data. Note from Table 1 that
these three types of expenditure account for about three quarters of nondurable
consumption for all four household types.

Table 2 shows results from estimated OLS log-quadratic regressions for the
three separate share equations for four household types. The log-quadratic
regressions are a good starting point for two reasons. First, the shape-invariance
restrictions given in Eq. (2.5) have a simple interpretation in the case where true
share equations are log-quadratic: for any share equation, the coefficients on the
square of log expenditure must be the same for all household types.19 Second,
identification under base independence requires that the coefficient on the
square of log expenditure must be nonzero. If the second order term is zero, then
the quadratic model collapses to a model with linear Engel curves, and demand
data cannot uniquely identify the equivalence scale under base independence.

Examination of Table 2 suggests two things. First, for all three types of
expenditure, while the point estimates of second-order terms look fairly different
across household types, they are quite imprecisely estimated and so may not be
significantly different across household type. Thus, these simple OLS log-
quadratic regressions may not reject the hypothesis of base independence (see
Table 4). Second, many of the second-order terms are not significantly different
from zero. In particular, the clothing equation is nearly log-linear for all

K. Pendakur / Journal of Econometrics 88 (1999) 1–40 11



Table 2
Estimates under log-quadratic model, by household type!

Expenditure Share Household type

Singles Couples 0 Couples 1 Couples 2

Food purchased from stores
Constant 8.61 4.22 5.69 7.02
Std Error 1.59 2.11 2.71 3.47
Log expenditure !1.69 !0.63 !0.96 !1.17
Std error 0.36 0.45 0.55 0.72
Log expenditure squared 0.084 0.023 0.042 0.050
Std error 0.021 0.024 0.028 0.037
R-squared 0.331 0.361 0.240 0.396
Std Error of regression 0.114 0.108 0.095 0.093

Restaurant food and recreation

Constant !5.67 !6.63 !4.66 !7.50
Std Error 2.16 2.13 2.66 3.29
Log expenditure 1.20 1.31 0.94 1.51
Std Error 0.48 0.45 0.55 0.67
Log expenditure squared !0.059 !0.060 !0.045 !0.073
Std Error 0.027 0.024 0.029 0.034
R-squared 0.182 0.254 0.111 0.131
Std Error of regression 0.151 0.117 0.087 0.090

Clothing

Constant !1.69 1.87 2.46 !1.68
Std Error 1.31 1.53 2.04 2.60
Log expenditure 0.36 !0.43 !0.54 0.31
Std Error 0.29 0.32 0.42 0.53
Log expenditure squared !0.017 0.026 0.032 !0.012
Std Error 0.016 0.016 0.022 0.027
R-squared 0.089 0.105 0.078 0.117
Std Error of regression 0.091 0.082 0.069 0.131

! Each share equation uses total expenditures on nondurable consumption as the denominator.
Nondurable consumption is: Food purchased from stores, restaurant food, recreation, clothing,
household operation and personal care. No cross-equation restrictions are imposed.

20Blundell et al. (1993) and Banks et al. (1997) find clothing shares to be quite nonlinear in British
expenditure data. There are at least two possible sources for this difference. First, I use a measure of
nondurable consumption which excludes alcohol, tobacco, shelter, and transportation while Blun-
dell et al. (1993) use a much broader measure of total expenditure. Second, I have far fewer
observations than Blundell et al. and Banks et al., suggesting that noise in the data may be a factor.

household types, suggesting that identification of equivalence scale sizes and
elasticities from the clothing equations will be questionable.20

Fig. 2 shows the food share data, log-quadratic regressions and nonparamet-
ric regressions (cross-validated bandwidths and other details are available in

12 K. Pendakur / Journal of Econometrics 88 (1999) 1–40



Fig. 2. Food expenditure shares, single adults.

Appendix B) for single adults. The regression curves have a great deal of
variance around them in both the parametric and nonparametric cases. Fig. 3
shows log-quadratic and nonparametric estimates of food share equations for
single adults, with the 90% confidence band (calculated pointwise at each decile
of the data by monte carlo simulation) shown as a dotted line for the non-
parametric regression. At first glance, it seems that the log-quadratic and
nonparametric estimated regression curves are only trivially different from each
other. However, in estimates and tests of base independence, the critical ques-
tion is whether or not the log-quadratic and nonparametric estimates differ
across households. I find that in this regard, the parametric and nonparametric
approaches yield quite different results.

Fig. 4 shows estimated log-quadratic regression curves for recreation shares
for childless couples and couples with two children. From Table 2, one can see
that the coefficients on the square of log expenditures are very close across these
two household types. Not surprisingly, the log-quadratic estimates appear to
have the same degree of curvature (which fully defines their shape), but it seems
like they are mapping different parts of the log-quadratic curve. In terms of the
model of interhousehold preferences given in Eqs. (2.2) and (2.3), that means that
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Fig. 3. Log-quadratic and nonparametric estimates, food shares, single adults.

the childless couples are spread over a different part of the equivalent income
distribution than the couples with two children.

Fig. 5 shows estimated nonparametric regression curves for recreation shares
for childless couples and couples with two children. These regression curves do
not seem to have the same shapes in the areas of estimation. However, it is not
obvious whether or not the differences between the shapes of nonparametric
regression curves constitute big differences and, given the large amount of
variance in the data, whether they constitute statistically significant differences.
The next subsection will formalize a measure of difference between nonparamet-
ric regression curves, and construct a semiparametric estimator of equivalence
scale sizes and elasticities.

While maximum likelihood techniques allow the easy testing of the log-
quadratic curves for shape invariance, these techniques use the global properties
of the distributions to find the parametric fits for equivalence scales and
elasticities. This means that standard maximum likelihood estimation might
identify equivalence scale sizes from household data that do not have overlap-
ping equivalent incomes, which may be an unsatisfactory way of estimating
equivalence scales. Because nonparametric regression curves are purely local,
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Fig. 4. Log-quadratic estimates, Recreation shares. childless and couples with 2 kids.

21The dependence of D(p, a) and g(p, a) on prices is dropped. See footnote 15.

semiparametric comparison of nonparametric curves must be based on local
properties of the distributions, and thus equivalence scales can only be identified
from data with overlapping levels of equivalent income.

3.3. A semiparametric equivalence scale estimator

The basic idea of the semiparametric approach to estimating an equivalence
scale is to find the pair Mlog D(a), g(a)N21 that is able to most nearly fit the
estimated nonparametric expenditure share equations of two household types.
The search algorithm will be a simple gridsearch across a fairly wide span of
Mlog D(a), g(a)N, which seeks the minimum value of a Loss Function that
measures the distance between the reference share function and the shifted
nonreference share function. Härdle and Marron (1990) suggest a simple
Loss Function equal to the integrated squared distance between the reference
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Fig. 5. Nonparametric estimates, recreation shares, childless couples and couples with 2 kids.

22The term ‘fixed design’ refers to the process generating the independent variable. If the
independent variable is nonstochastic and appears only at fixed intervals (as in much experimental
research), then the design is fixed. If the independent variable is randomly distributed, then it is
called ‘random design’. Budget data are suited to random design models because the independent
variable, total expenditure, is a random variable.

function and the transformed function for the fixed design case.22 However,
because this approach does not use any information about the relative densities
of the data in the two estimated regression equations, it is not appropriate for
the random design case. Pinkse and Robinson (1995) suggest a slightly more
complex Loss Function for the random design case. Under base independence,
reference and nonreference true expenditure share regression functions must be
related by Eq. (2.5). Denoting the log of total expenditure as t, the log of the
equivalence scale function as d(a), and the true expenditure share functions as
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23There are several regularity assumptions required for Pinkse and Robinson’s result. JN-
convergence requires that the expenditure shares are mutually independent across household type,
that the independent variables (the log of total expenditures) are iid draws, that the translations
d and g are in a bounded and open set, that the engel curves are sufficiently differentiable, that both
sample sizes increase at the same rate and that both nonparametric estimators employ the same
kernel. These assumptions seem reasonable for the present application. In particular, the expendi-
ture shares are not assumed to be homoskedastic across the log of total expenditure, nor are they
assumed to have the same densities across household type. However, Pinske and Robinson also
require that bandwidths go to zero at faster than pointwise optimal rates, which may not be as
reasonable for the present application. Pinkse and Robinson also show, without the use of
higher-order kernels, that if the two nonparametric estimators have different bandwidths (and those
bandwidths converge at the same rate), then the estimated parameters converge at a rate N~2@5.

m(t, a), base independence implies that for the reference household type, aR , and
a nonreference type, aN, the following must hold:

m(t, aN)"m(t!d(aN), aR)#g(aN). (3.2)

Noting that m(t, aN)"r(t, aN)/f (t, aN) and m(t, aR)"r(t, aR)/f (t, aR) (see
Eq. (3.1)), then multiplication of Eq. (3.2) by f (t, aN) f (t!d(aN), aR) implies the
following relationship:

f (t!d(aN), aR)r(t,aN)"f (t, aN)r(t!d(aN), aR)

#g(aN) f (t, aN)f (t!d(aN), aR). (3.3)

Pinkse and Robinson (1995) suggest the use of Eq. (3.3) to find the best
semiparametric fit for the parameters, d(aN) and g(aN). In particular, they show
that the solution which minimises the integrated squared difference between the
left- and right-hand sides of Eq. (3.3) using estimated nonparametric regression
curves is a JN-consistent estimator of the true parameters in the random design
semiparametric model.23 Thus, I define and minimise a loss function,
¸(d(a), g(a)), over estimated regression curves for household types, aN and aR, as
follows:

¸(d(aN), g(aN))"P
tlo

thi

[g(aN) fK (t,aN) fK (t!d(aN),aR)#fK (t,aN)

]rL (t!d(aN), aR)!fK (t!d(aN),aR)rL (t,aN)]2Lt (3.4)

3.4. Single equation estimates

Table 3a and Table 3b show estimates for equivalence scale sizes for each
pairwise comparison between our four household types. I report results for three
share equations (using nondurable consumption as the denominator): (i) food
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24For the reference household, aR, and the nonreference household type, aN, the econometric
model for estimating expenditure share equations, w(t, a), is given by:

w(t, aR)"aR#bRt#cRt2#eR, eR&N(0, p2
R
)

w(t, aN)"aN#bNt#cN#t2#eN, eN&N(0, p2
N
)

The shape invariance restriction is cN " cR. Errors are heteroskedastic across household type.

25 In practice the grid search can be concentrated over g(aN), because for every d1 (aN) value in the
search space for d(aN), there is a unique value of g6 (aN) which minimises the loss function, as follows:

gN (aN,dM )"P
thi

tlo

fK (t!dM ,aR)rL (t, aN)!fK (t,aN)rL (t!dM , aR)Lt/P
thi

tlo

fK (t!dM , aR) fK (t, aN)Lt.

26Härdle and Marron (1990) found that in the fixed design case, the choices of t
)*

and t
-0
, the

limits of integration, were very important. However, in the random design case, because information
is used about the relative densities of data, changing the limits of integration did not affect estimates
very much at all. For all semiparametric estimation, I use nonparametric regression curves from the
middle 95% of each data set.

27 I estimate small-sample distributions for estimated d, g and ¸(d, g) via monte carlo simulations.
Under shape invariance, the underlying true regression curves are related by (constant) horizontal
and vertical shifts, d and g. I construct bootrap samples maintaining this restriction, and simulate the
distribution of the semiparametric estimates of d, g and ¸(d, g). Although Pinkse and Robinson
(1995) show that these random variables are asymptotically normal, the small sample simulations
suggest that while d and g have roughly symmetric distributions, the distribution of ¸(d, g) is
right-hand skewed. Thus, standard errors for ¸(d, g) should be interpreted with caution: standard
errors have no obvious meaning when the distribution is non-normal. Details, including percentiles
of the bootstrap distribution, are in Appendix B.

purchased from stores; (ii) recreation and restaurant food; and (iii) clothing.
Table 3a gives the results imposing log-quadratic Engel curves, and Table 3b
gives results where the Engel curves are estimated nonparametrically, and the
equivalence scale sizes and elasticities are estimated semiparametrically. The
log-quadratic model is estimated using a maximum likelihood model with
log-quadratic share equations restricted so that the second order terms are
equal.24 The results in Table 3b are based on the gridsearch minimisation of
¸(d(a), g(a)),25,26 and standard errors for the semiparametric model are esti-
mated using monte carlo simulations.27 Equivalence scales are expressed treat-
ing the top household type as the reference (see Eq. (2.2)). Details are in
Appendix B.

The results in Table 3a suggest that under the log-quadratic model estimated
equivalence scales are not very stable across the different expenditure share
equations, ranging for the comparison of childless couples versus couples with
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Table 3a
Estimates under base-independence, single equations, log-quadratic model!

¸og-quadratic
Expenditure Singles Singles Singles Couples 0 Couples 0 Couples 1
share versus versus versus versus versus versus
equation Couples 0 Couples 1 Couples 2 Couples 1 Couples 2 Couples 2

Food Purchased From Stores
2nd-order term 0.029 0.025 0.026 0.025 0.042 0.017
Std Error 0.008 0.010 0.010 0.018 0.018 0.026
Log equivalence scale 0.96 0.17 1.24 20.83 0.28 1.55
Std Error 0.23 0.39 0.33 0.86 0.21 2.27
Equivalence Scale 2.62 1.19 3.47 0.44 1.33 4.70

Restaurant food and recreation
2nd-order term !0.025 !0.019 !0.021 !0.049 !0.075 !0.047
Std Error 0.010 0.011 0.012 0.019 0.019 0.024
Log equivalence scale 0.91 20.44 20.76 20.78 20.29 0.16
Std Error 0.32 0.84 1.04 0.43 0.19 0.21
Equivalence scale 2.50 0.64 0.47 0.46 0.75 1.18

Clothing
2nd-order term 0.000 0.006 0.002 0.030 0.018 0.024
Std Error 0.006 0.007 0.008 0.014 0.014 0.019
Log equivalence scale 8.17 1.90 21.89 0.21 0.13 20.03
Std Error 119.69 1.60 12.93 0.22 0.40 0.33
Equivalence scale 3541.77 6.69 0.15 1.23 1.13 0.97

! Each share equation uses total expenditures on nondurable consumption as the denominator. Esti-
mates and standard errors are computed via Maximum Likelihood. Nondurable consumption is defined
as food purchased from stores, restaurant food, recreation, clothing, household operation and personal
care.

one child from 0.44 in the food equation to 1.23 in the clothing equation.
Further, the equivalence scale estimates do not satisfy even basic a priori
expectations, such as increasingness with respect to household size. For
example, according to the food and recreation equations, couples with one child
require only half as much expenditure as couples with no children to get the
same level of utility. Finally, although the coefficients on t2 are significantly
different from zero at the 10% level for most comparisons in the food and
recreation equations, the coefficients on t2 are insignificantly different from zero
for all but one comparison in the clothing equation. That is, the clothing
equations under shape invariance are nearly log-linear and thus cannot identify
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Table 3b
Estimates under base independence, single equations, semiparametric model!

Semiparametric

Expenditure Singles Singles Singles Couples 0 Couples 0 Couples 1
share versus versus versus versus versus versus
equation Couples 0 Couples 1 Couples 2 Couples 1 Couples 2 Couples 2

Food Purchased From Stores
Log equivalence scale 0.68 0.87 1.01 0.61 0.86 0.21
Std Error 0.05 0.07 0.08 0.15 0.15 0.11
Equivalence scale 1.97 2.39 2.75 1.84 2.36 1.23

Restaurant food and recreation
Log equivalence scale 0.80 0.66 0.90 0.75 0.86 0.25
Std Error 0.12 0.13 0.12 0.15 0.15 0.10
Equivalence scale 2.23 1.93 2.46 2.12 2.36 1.28

Clothing
Log equivalence scale 0.63 1.04 1.22 0.45 0.63 0.29
Std Error 0.11 0.16 0.14 0.13 0.12 0.13
Equivalence scale 1.88 2.83 3.39 1.57 1.88 1.34

! Each share equation uses total expenditures on nondurable consumption as the denominator. Standard
errors are calculated via monte carlo simulation. Nondurable consumption is defined as food purchased
from stores, restaurant food, recreation, clothing, household operation and personal care.

28Table 3a reports results from ML estimates and thus may not be directly comparable with the
results in Table 3b which reports results from the simulated distributions of estimated parameters.
However, simulating the distributions of the coefficients in Table 3a does not change any of the test
results shown in Table 4 or Table 5. To illustrate, the following table shows simulated standard
errors analogous to those given in Table 2; they are slightly tighter, but not enough to change the
analysis.

Simulated standard errors for 2nd order terms
Household type Singles Couple 0 Couples 1 Couples 2
Food 0.0193 0.0201 0.0320 0.0347
Restaurant food
and recreation

0.0257 0.0228 0.0293 0.0330

Clothing 0.0157 0.0155 0.0234 0.0254

equivalence scale parameters, leading to very large confidence intervals for some
equivalence scale estimates.28
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29To estimate the small-sample distributions of semiparametric estimates computed on N1 and
N2 real data points, I use the percentile-t method as follows.

Draw two bootstrap samples of sizes N1 and N2. Shift one of them by the estimated log scale size
and elasticity. Compute semiparametric estimates. Repeat 1000 to generate simulated distributions
for semiparametric estimates.

I use two methods to draw the bootstrap sample. In method I, I draw with replacement pairs of
Mlog total expenditure, expenditure shareN from the original data for each bootstrap sample. When
I test on multiple equations, I draw quadruples of Mlog total expenditure, food share, clothing share,
recreation shareN. This is appropriate for the random design model because the independent variable
(log of total expenditure) is a random variable, too. However, Härdle and Marron (1993) show that
such ‘naı̈ve’ bootstrapping may lead to overly conservative testing due to the bias in nonparametric
regression (especially when the errors are heteroskedastic), and suggest that one should instead
replicate the conditional distribution of the errors. I allow for this by using a second bootstrap
method. In method II, I use the draw of the independent variable from the original data, and draw
only the error term on the dependent variable for each bootstrap sample. I draw from the
distribution of errors conditional on the log of total expenditure (i.e., the joint pdf divided by the
marginal density). In the text, I report statistics from method I. Results for method II are reported in
Appendix B. It turns out that method II tends to reject slightly less often.

30 In fact, base independence requires that d be the same no matter which two equation demand
system is used to estimate it. I explore this restriction in the Section 4.

Table 3b shows results from the semiparametric model. Here, almost all of the
estimated scale sizes increase with household size and are similar (though not
identical) across different expenditure share equations. The simulated29 stan-
dard errors for the log equivalence scale and elasticities are also somewhat
smaller than those estimated using the log-quadratic model.

Depending on which expenditure share equation is considered,30 the equiva-
lence scale sizes for comparisons with single adults average approximately 2.0,
2.4 and 2.8 for couples without children, couples with one child and couples with
two children, respectively.

3.5. Tests of base independence

Having estimated equivalence scales imposing base independence on prefer-
ences, it is natural to wonder whether or not preferences are in fact consistent
with base independence. The null hypothesis of shape invariance (which is
necessary for base independence) requires that d and g are constants, and the
alternative is that they vary with t. In the log-quadratic model, this null
hypothesis is violated if the second-order terms are significantly different across
household types. In the semiparametric model, I ask whether or not the Loss
Function, ¸(d, g), is very big at its minimised value compared to loss functions
minimised over simulated data with base independence holding by construction.

Table 4 shows tests of base independence for four household types and three
expenditure share equations under the log-quadratic and semiparametric
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Table 4
Tests of base independence, single equations!

Expenditure Singles Singles Singles Couples 0 Couples 0 Couples 1
share versus versus versus versus versus versus
equation Couples 0 Couples 1 Couples 2 Couples 1 Couples 2 Couples 2

¸og-quadratic"

Food purchased from stores
2nd order term difference 0.062 0.043 0.034 !0.019 !0.027 !0.008
Std Error of difference 0.032 0.035 0.043 0.037 0.043 0.046
P-value 5% 22% 42% 61% 53% 86%

Restaurant food and recreation
2nd-order term difference 0.001 !0.014 0.014 !0.016 0.013 0.029
Std Error of difference 0.036 0.040 0.044 0.037 0.041 0.044
P-value 97% 72% 74% 67% 75% 52%

Clothing
2nd-order term difference !0.043 !0.048 !0.004 !0.005 0.039 0.044
Std Error of difference 0.023 0.027 0.032 0.027 0.031 0.034
P-value 0% 7% 89% 85% 21% 20%

Semiparametric#

Food purchased from stores
Integrated loss 1.485 2.308 1.427 3.864 1.629 2.049
E[Simulated loss] 1.192 0.865 0.941 0.833 0.659 1.221
P-value 26% 6% 20% 1% 9% 19%

Restaurant food and recreation
Integrated loss 0.745 5.012 7.495 17.600 15.710 0.747
E[simulated ¸oss] 1.548 2.234 0.351 1.873 0.252 0.302
P-value 72% 6% 0% 0% 0% 17%

Clothing
Integrated loss 0.150 0.608 0.036 0.406 0.022 0.330
E[Simulated ¸oss] 0.265 1.147 0.317 1.163 0.302 0.399
P-value 58% 69% 90% 81% 94% 41%

! Each share equation uses total expenditures on nondurable consumption as the denominator. Nondur-
able consumption is defined as food purchased from stores, restaurant food, recreation, clothing, household
operation and personal care.
" Estimates and standard errors are computed via Maximum Likelihood.
# Standard errors are calculated via monte carlo simulation.
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31Recall from Table 2 that the log-quadratic estimates for food and clothing share equations were
nearly log-linear for a few household types. When share equations are log-linear, it is not possible to
uniquely identify equivalence scales from demand data (see Blackorby and Donaldson, 1993), but it
is still possible to test base independence. If share equations are log-linear, then shape invariance
requires that they have the same slopes across household types. The following table shows t-statistics
for tests of shape invariance under log-linear share equations:

Couples 0 Couples 1 Couples 2 Couples 1 Couples 2 Couples 2
Singles Singles Singles Couples 0 Couples 0 Couples 1

Food 0.60 !2.04 !0.29 !2.57, !0.81, 1.56,
Recreation !0.54 3.27 4.26 4.16 5.26 1.01
Clothing !0.76 !0.53, !1.17, 0.12, !0.54, !0.58,

, Denotes comparisons where both share equations have 2nd order terms that are insignificant at
the 10% significance level (from Table 2). Using these loglinear tests of shape invariance when 2nd
order terms are insignificant does not change the number of rejections of shape invariance in the
parametric models.

econometric models. The top panel shows the differences in coefficient estimates
on second-order terms in the log-quadratic regressions, the standard error of
this difference, and the p-value for chi-square test statistics on the hypothesis
that the difference is zero. Out of eighteen comparisons, shape invariance may
be rejected at the 10% level in only three cases: childless couples versus single
adults in the food and clothing equations, and couples with one child versus
singles in the clothing equation. In all other comparisons, the second-order
terms in the type-specific log-quadratic equations are insignificantly different
from each other.31

The bottom panel of Table 4 shows the minimised value of the estimated
loss function, ¸(d, g), its expected value under the null hypothesis of base
independence and the probability that loss function values in the simulated
distribution are larger than the observed ¸(d, g). The results in the semiparamet-
ric model are quite different from those of the log-quadratic model. Shape
invariance may be rejected at the 10% level in seven out of the eighteen
comparisons. It is notable, though, that the two models do not reject for the
same comparisons. For example, the log-quadratic model rejects comparisons
between childless singles and childless couples, while the semiparametric model
does not. On the other hand, the semiparametric model rejects four out of six
comparisons in the recreation equation while the log-quadratic model rejects
none.

Fig. 6 shows the log-quadratic estimates of clothing share equations for
childless couples and single adults. Fig. 7 shows the nonparametric estimates of
clothing share equations for the same pair of household types. Examination of
Fig. 6 reveals that the log-quadratic approximations do not have the same
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Fig. 6. Log-quadratic estimates, clothing shares, childless singles and childless couples.

32 I note that the 2nd order term in the clothing share equation is insignificant for single adults
and only barely significant (at the 10% level) for adult couples. However, under base independence, if
one household type’s share equation is log-linear, then all household types must have log-linear
share equations. Thus, if single adults have log-linear clothing demands, then base-independence is
rejected by the marginal significance of the second-order term in the clothing equation for adult
couples.

shape,32 and the results in Table 4 confirm this. Fig. 7 presents a different view
of the same data. The nonparametric regression curves appear to have very
similar shapes, but those shapes may not be log-quadratic. The results in
Table 4 confirm that under the semiparametric model, the shape invariance
restriction cannot be rejected for this comparison. Thus, the imposition of
log-quadratic restrictions causes the rejection of the hypothesis of shape invari-
ance in the comparison of clothing share equations for childless households.
Indeed, because the nonparametric regression curves could map log-quadratic
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Fig. 7. Nonparametric estimates, clothing shares, childless singles and childless couples.

33 I note that the nonparametric estimates shown in Fig. 7 are not very different from the
log-quadratic estimates shown in Fig. 6. Indeed a substantial body of research has suggested that
log-quadratic models do a good job of representing empirical engel curves (see especially Banks et
al., 1997). However, for this application, we are interested in whether or not shape invariance holds
in the data, not whether or not household engel curves are log-quadratic. Thus the fact that
semiparametric tests yield different results from parametric tests is interesting even if the parametric
model does a good job of approximating household engel curves.

Engel shares if the data demanded it, the three rejections under the
log-quadratic model could all be interpreted as false rejections.33

In looking at estimates of shift parameters under shape invariance in single
equations, I have not considered two important implications of base indepen-
dence implied by Eq. (2.5). First, base independence implies that the equivalence
scale (the horizontal shift in Fig. 1) must be the same in all expenditure share
equations. Second, base independence implies that the equivalence scales must be
consistent across all pairwise comparisons. For example, under base independence,
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34The choice of weights does not matter under the null, and in practise, I found that while the
choice of weight affected the estimates of scale sizes and elasticities a little bit, it did not affect the
tests of shape invariance/base independence very much at all. I report results with equal weights.

the log scale for couples with one child versus singles must equal the log scale for
couples with one child versus childless couples plus the log scale for childless
couples versus singles. In the next section, I address these issues by estimating
equivalence scales and testing base independence under fully parametric and
semiparametric models with restrictions of scale constancy across equations and
consistency across pairwise comparisons.

4. Cross equation restrictions

In Table 3b, I present semiparametric estimates of equivalence scale sizes by
expenditure share equation, and these estimates are allowed to differ across
equations. However, Eq. (2.5) implies that while the equivalence scale price
elasticities may be different for each commodity, the equivalence scale size must
be the same across the equations. This stricter hypothesis may also be tested
under the log-quadratic model or the semiparametric model. In the log-quad-
ratic case, this amounts to restricting d to be the same across equations, and
estimating the equation system by maximum likelihood. In the semiparametric
case, one uses information from all three equations to estimate the equivalence
scale size and three price elasticities. Under the null hypothesis that shape
invariance is true and the shift parameter d is the same across equations, the
solution that minimises the weighted sum of the integrated loss for the three
equations is a consistent estimator of the true parameters (Pinkse and Robinson,
1995).34

Table 5 shows estimates under shape invariance and tests of shape invariance
for both the parametric and semiparametric approaches with the imposition of
scale constancy across equations. The likelihood ratio test statistic for the fully
parametric model is distributed s2 with 5 degrees of freedom and has a 10%
critical value of 9.24. The fully parametric model rejects shape invariance at the
10% level for every pairwise comparison because the cross-equation restrictions
are binding. Given the differences in scale estimates across equations in Table 3a
(log-quadratic estimates), this is not too surprising. Further, some of the esti-
mates in the fully parametric model contradict intuition; for example, a couple
with one child needs about half the expenditure of a couple with no children.

The results in Table 5 under the semiparametric model are rather different.
Although the model rejects shape invariance for four out of six comparisons, it
does not reject for the comparison between childless singles and couples and for
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Table 5
Estimates and tests, system estimation!

Singles Singles Singles Couples 0 Couples 0 Couples 1
versus versus versus versus versus versus
Couples 0 Couples 1 Couples 2 Couples 1 Couples 2 Couples 2

¸og-quadratic"

Log equivalence scale 0.62 0.39 0.34 20.71 0.75 20.35
Std Err 0.11 0.16 0.60 0.36 0.35 0.22
Equivalence scale 1.86 1.47 1.40 0.49 2.11 0.71
Likelihood ratio test 12.29 10.09 18.72 10.40 10.45 11.26
P-value 3% 7% 0% 6% 6% 5%

Semiparametric#

Log equivalence scale 0.68 0.77 0.96 0.75 0.93 0.23
Std Err 0.12 0.05 0.14 0.09 0.17 0.15
Equivalence scale 1.97 2.16 2.61 2.12 2.53 1.26
Loss* 2.69 11.61 9.69 20.80 14.39 2.95
P[¸oss'¸oss*] 62% 1% 0% 0% 0% 36%

! Each share equation uses total expenditures on nondurable consumption as the denominator. Nondur-
able consumption is defined as food purchased from stores, restaurant food, recreation, clothing, household
operation and personal care. The left-out equation is household operation and personal care. Interhouse-
hold cross-equation restrictions are imposed under base independence.
"Estimates, standard errors and P-values are computed via maximum likelihood.
#Standard errors and P-values are calculated via monte carlo simulation. Loss* is observed integrated loss
from semiparametric system estimation.

the comparison between couples with one child and couples with two children.
For these comparisons, the equivalence scale sizes are 1.97 and 1.26, respective-
ly. Thus, the fully parametric model leads to a false rejection of base indepen-
dence (by rejecting shape invariance) for two important comparisons.

For both the log-quadratic and the semiparametric models, where the equiva-
lence scales are forced to be equal across share equations, the requirement that
the estimated scales in pairwise comparisons be consistent with each other is
a moot point. In the log-quadratic model, all six comparisons reject, so consist-
ency is trivially satisfied, and in the semiparametric model, only two compari-
sons satisfy shape invariance and these two comparisons do not overlap, so
again consistency is satisfied.

Why is base independence rejected for comparisons of childless households
with households with children? One important reason may be that there exist
some goods that are only purchased by households with children. If there are
such ‘child goods’, then childless households would have Engel curves for
these goods that are horizontal lines representing zero purchases at any total
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Fig. 8. Nonparametric estimates, children’s clothing shares, couples with children.

expenditure level. Under shape invariance, households with children would have
to have expenditure shares for child goods that were also flat, though they could
be nonzero. This means that if households with children have income-dependent
expenditure shares for child goods (nonflat Engel curves), then shape invariance
could not hold, and therefore base independence could not hold.

If income-dependent Engel curves for ‘child goods’ are breaking shape invari-
ance and base independence, then this should be observable in the demand data.
Unfortunately, the family expenditure surveys do not ask sufficiently detailed
expenditure questions to allow us to pursue the question of child goods very far.
The data on clothing, however, are separable by age. Fig. 8 shows nonparamet-
ric regression curves (with bandwidth 0.50) for children’s clothing for house-
holds with one and two children. The estimated regression curves for children’s
clothing for these two household types are decidedly upward sloping, which
means that they cannot have the same shape as the (flat) children’s clothing
Engel curve for childless couples. Thus, it may be that income-dependent Engel
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Table 6
Estimates of equivalence scale sizes!

Author; Type/Agency Singles Couples 0 Couples 1
versus versus versus
Couples 0 Couples 1 Couples 2

Pendakur; semiparametric system (Table 5) 1.97 rejected 1.26
Pashardes (1995); log-quadratic AI 1.56 1.16 1.14
Dickens et al. (1991); Extended AI N/A 1.20 1.20
Blundell and Lewbel (1991); AI N/A 1.16 N/A
Jorgenson and Slesnick (1985—1991);
exactly aggregated TL

1.92 1.30 1.33

Nicol (1994); exactly aggregated TL 2.50 1.51 1.34
Statistics Canada Low Income Cutoff Ratios (1992) 1.34 1.26 1.15
US Poverty Line Ratios (1992) 1.28 1.23 1.28
OECD Equivalence Scale (1992) 1.70 1.29 1.24

! Sources:Pashardes Table 2; Dickens, et al. Table 1 (children aged 6-9); Blundell and Lewbel
Table 2, Singles and Couples 2 are not estimated, I use children aged 6—10. Jorgenson and Slesnick
Table 1, white household head, urban resident; Nicol Table 4, urban resident; Statistics Canada
Catalogue d 11-210; US Poverty lines from United States 1994 (Green Book); OECD Scale from
Phipps 1993.

curves for child goods are part of what is causing the rejection of base indepen-
dence in comparisons of childless households with couples with children. Fur-
ther, since the Engel curves in Fig. 8 seem to have similar shapes, shape
invariance may hold over comparisons of households with children.

5. Discussion

Table 6 shows equivalence scale sizes from semiparametric estimates based
on semiparametric estimates in Table 5, five other parametric estimates and
estimates from three government and international agencies.

The semiparametric estimates of equivalence scale sizes presented in Table 5
are broadly in the same range as those from other econometric studies. Com-
pared with the parametric estimates of equivalence scales, the semiparametric
estimates of the equivalence scale sizes for couples with one child and couples
with two children look fairly moderate. The semiparametric estimates suggest
that there may be greater scale economies available to couples with two children
than some parametric estimates (especially those using exactly aggregated
translog forms) would lead one to believe. On the other hand, the three agency
equivalence scales for couples versus single adults are much smaller than the
semiparametric estimates (and parametric estimates). If the semiparametric
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35Banks et al. (1994) find some evidence that log-quadratic restrictions on expenditure share
equations may not do too much violence to the data, and significantly ease the estimation of
complex demand systems in comparison with higher-order specifications.

equivalence scale estimates are right, then these agency scales attribute scale
economies that are too large to couples relative to single adults.

Equivalence scales can be estimated semiparametrically without putting any
restrictions on the shape of household Engel curves other than the minimum
required for base independence. Further, the semiparametric methodology leads
to different results from parametric approaches. Thus, parametric restrictions on
the shapes of Engel curves may be binding, may affect the estimates of equiva-
lence scales, and may affect testing of base independence. In my view, this
suggests that we should abandon parametric approaches to equivalence scale
estimation that put strict limitations on the shapes of expenditure share equa-
tions (such as log-linearity/exact aggregation) in favour of either parametric
approaches that more realistically model the shapes35 of household Engel
curves or semiparametric approaches.

Semiparametric tests of shape invariance do not reject the hypothesis,
and thus do not reject base independence, for comparisons among childless
households and comparisons among households with children. Semiparametric
tests do, however, reject shape invariance (and therefore base independence)
for all comparisons of childless households with households with children. If
base independence holds for some inter-household comparisons but not for
others, then econometric analysis which tests only the hypothesis of base
independence across all household types may lead researchers to overly general
and substantively inaccurate conclusions. Parametric tests of shape invari-
ance shown above, as well as those in Blundell and Lewbel (1994), Dickens
et al. (1993) and Pashardes (1995), reject base independence against a
more general parametric alternative. In particular, although the parametric
tests shown above reject when the cross-equation restrictions of base indepen-
dence are imposed, semiparametric tests under cross-equation restrictions do
not reject base independence. Thus, in comparison to semiparametric tests,
parametric tests may lead to false rejections of shape invariance and base
independence.

6. Conclusions

Semiparametric estimation of equivalence scales under shape invariance (with
cross-equation restrictions) yields an equivalence scale size of 1.97 for the
comparison of childless couples with childless single adults, and an equivalence
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scale size of 1.26 for the comparison of couples with two children with couples
with one child. Shape invariance and its sufficient condition of base indepen-
dence are not rejected for these two comparisons. However, semiparametric
tests of base independence do reject the hypothesis for all comparisons between
childless households and households with children. That base independence is
rejected for some comparisons but not others underscores the importance of
separating these comparisons in econometric testing. Fully parametric tests
of shape invariance reject in every comparison. That fully parametric tests
reject shape invariance while semiparametric tests do not reject shape invari-
ance suggests that the parametric restrictions on household engel curves em-
bodied in fully parametric approaches may lead to false rejections of base
independence.

7. For further reading

Blackorby and Donaldson, 1991; Blackorby and Donaldson, 1994; Härdle
and Kelly, 1987; Lewbel, 1989a; Lewbel, 1991; Phipps, 1990; U.S. House of
Representatives et al., 1994.
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Appendix A.

See Table 7

Table 7
Estimates Under the Log-Quadratic Modela

Singles Couples 0 Singles Couples 1 Singles Couples 2 Couples 0 Couples 1 Couples 0 Couples 2 Couples 1 Couples 2

Food Purchased From Stores
ºnrestricted
Constant 8.61 4.22 8.61 5.69 8.61 7.02 4.22 5.69 4.22 7.02 5.69 7.02
Std Error 1.59 2.11 1.60 2.71 1.59 3.47 2.08 2.64 2.06 3.38 2.62 3.39
Log expenditure !1.69 !0.63 !1.69 !0.96 !1.69 !1.17 !0.63 !0.96 !0.63 !1.17 !0.96 !1.17
Std Error 0.36 0.45 0.37 0.55 0.36 0.72 0.45 0.54 0.44 0.70 0.54 0.70
Log expenditure squared 0.084 0.023 0.084 0.042 0.084 0.050 0.023 0.042 0.023 0.050 0.042 0.050
Std Error 0.021 0.024 0.021 0.028 0.021 0.037 0.024 0.028 0.024 0.036 0.028 0.036
R-Squared 0.361 0.352 0.403 0.324 0.370 0.332
Log likelihood 1010.917 751.583 729.452 878.171 856.789 597.924

Restricted
Constant 6.40 7.73 7.96 4.72 4.88 6.06
Std Error 1.15 1.34 1.35 1.59 1.60 2.21
Log expenditure !1.19 !1.49 !1.54 !0.77 !0.74 !1.03
Std Error 0.26 0.30 0.30 0.34 0.34 0.46
Log expenditure squared 0.056 0.073 0.076 0.028 0.030 0.046
Std Error 0.015 0.017 0.017 0.018 0.018 0.024
Log equivalence scale 0.64 0.53 0.92 20.60 0.30 0.59
Std Error 0.13 0.14 0.12 0.61 0.29 0.35
Equivalence scale 1.90 1.69 2.51 0.55 1.35 1.80
Vertical shift (Eta) 0.008 0.087 0.049 0.163 0.035 !0.073
Std Error 0.027 0.023 0.025 0.107 0.060 0.063
Cov(¸n Delta, Eta) !0.003 !0.003 !0.003 !0.065 !0.018 !0.022
R-squared 0.359 0.351 0.403 0.324 0.369 0.332
Log likelihood 1008.670 750.971 729.082 878.053 856.561 597.909
Wald test p-value 3.7443 0.053 1.4619 0.227 0.6532 0.419 0.2695 0.604 0.3957 0.529 0.0326 0.857
LRT p-value 4.4930 0.034 1.2244 0.268 0.7403 0.390 0.2372 0.626 0.4548 0.500 0.0302 0.862
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Appendix B.

See Table 8

Table 8
Estimates under semiparametric model!

Singles Couples 0 Singles Couples 1 Singles Couples 2 Couples 0 Couples 1 Couples 0 Couples 2 Couples 1 Couples 2

Food purchased from stores
Wavelength 0.34 0.34 0.34 0.44 0.34 0.43 0.34 0.44 0.34 0.43 0.44 0.43
Range(Ln Delta) [0.5,0.9] [0.65,1.05] [0.9,1.3] [0.35,075] [0.53,0.93] [0.06,0.46]
Ln Delta 0.68 0.87 1.01 0.61 0.86 0.21
Std Err (1) 0.052 0.134 0.070 0.081 0.083 0.113 0.147 0.070 0.151 0.158 0.108 0.128
Std Err (2) 0.100 0.155 0.113 0.099 0.130 0.130 0.151 0.086 0.147 0.133 0.143 0.158
Delta 1.97 2.39 2.75 1.84 2.36 1.23
Eta !0.0059 !0.0310 !0.0380 0.0496 0.0672 !0.0017
Std Err (1) 0.011 0.034 0.014 0.013 0.019 0.021 0.031 0.012 0.033 0.027 0.020 0.023
Std Err (2) 0.019 0.027 0.021 0.014 0.026 0.026 0.031 0.012 0.034 0.023 0.020 0.026
Loss 1.49 2.31 1.43 3.86 1.63 2.05
E(Loss)DNull (1) 1.40 1.19 2.11 0.87 2.18 0.94 1.24 0.83 1.11 0.66 1.09 1.22
SE(Loss)DNull (1) 1.12 1.58 1.71 0.82 1.78 1.03 1.17 0.84 1.20 0.91 1.06 1.23
P-value of Loss (1) 37% 26% 35% 6% 58% 20% 3% 1% 21% 9% 13% 19%
P[Loss'Lossı] (1) 63% 74% 65% 94% 42% 80% 97% 99% 79% 91% 87% 81%

10%critical (1) 2.98 2.39 4.43 1.97 4.46 2.12 2.67 1.95 2.67 1.51 2.22 2.76
5%critical (1) 3.63 3.06 5.35 2.57 5.72 2.95 3.22 2.64 3.70 2.23 2.94 3.63

E(Loss)DNull (2) 1.88 1.32 2.55 1.04 2.66 1.04 2.00 0.71 1.97 0.69 1.18 1.21
SE(Loss)DNull (2) 1.61 1.19 2.25 0.96 2.42 0.91 1.96 0.66 1.90 0.68 1.17 1.25
P-value of Loss (2) 47% 31% 40% 11% 63% 25% 14% 1% 43% 8% 17% 15%
P[Loss'Lossı] (2) 53% 69% 60% 89% 37% 75% 87% 100% 57% 92% 83% 85%

10%critical (2) 3.87 2.60 5.36 2.35 5.46 2.35 4.37 1.58 4.43 1.52 2.64 2.55
5%critical (2) 4.95 3.43 7.14 2.95 7.28 2.93 5.81 2.01 5.67 1.94 3.62 3.79

Recreation and Restaurant Food
Wavelength 0.45 0.33 0.45 0.26 0.45 0.64 0.33 0.26 0.33 0.64 0.26 0.64
Range(Ln Delta) [0.5,0.9] [0.65,1.05] [0.9,1.3] [0.35,075] [0.53,0.93] [0.06,0.46]
Ln Delta 0.80 0.66 0.90 0.75 0.86 0.25
Std Err (1) 0.121 0.122 0.128 0.160 0.120 0.124 0.155 0.179 0.151 0.127 0.102 0.148
Std Err (2) 0.137 0.122 0.142 0.142 0.144 0.142 0.130 0.110 0.122 0.096 0.143 0.151
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