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Abstract 
 

Due to their excellent performance in solving 
combinatorial optimization problems, metaheuristics 
algorithms such as Genetic Algorithms (GA), 
Simulated Annealing (SA) and Tabu Search TS make 
up another class of search methods that has been 
adopted to efficiently solve dynamic optimization 
problem. Most of these methods are confined to the 
population space and in addition the solutions of 
nonlinear problems become quite difficult especially 
when they are heavily constrained. They do not make 
full use of the historical information and lack 
prediction about the search space. Besides the 
knowledge that individuals inherited "genetic code" 
from their ancestors, there is another component called 
Culture. In this paper, a novel culture-based GA 
algorithm is proposed and is tested against 
multidimensional and highly nonlinear real world 
applications. 
  
1. Introduction 
 

The dynamic optimization of fed-batch bioreactors 
is a very challenging problem due to several reasons. 
First, the control variable (feed rate) appears linearly in 
the system differential equations, so the problem is 
singular, creating additional difficulties for its solution 
(especially using indirect methods). For these type of 
problems, the optimal operating policy will be either 
bang-bang, or singular, or a combination of both. 
Second, most bioprocesses have highly nonlinear 
dynamics, and constraints are also frequently present 
on both the state and the control variables. These 

characteristics introduce new challenges to the existing 
solution techniques; therefore, efficient and robust 
methods are needed in order to obtain the optimal 
operating policies. 

The well-known numerical optimization methods 
[2], [37], [14], [26], [29], [30], [23], [24], of nonlinear 
programming do not always lead to acceptable 
solutions in practical problems, often becoming 
entrapped in local minima instead of yielding global 
solutions. Many stochastic methods like Genetic 
Algorithm (GA) [4], [12], [17], [27], [36], [10], [25], 
[19], [11], [15], [3] and Simulated Annealing (SA) 
[20], [9] can locate the vicinity of global solutions with 
relative efficiency , but the cost to pay is that global 
optimality can not be guaranteed. It has been widely 
confirmed [10], [25], [6], [28] that real-number 
encoding performs better than binary or Gray encoding 
for function optimizations and constrained 
optimizations [16]. Most of these methods are confined 
to the population space. They don't make full use of 
the historical information and lack prediction about the 
search space. In human societies, Culture can be 
viewed as a vehicle for the storage of information that 
is potentially accessible to all members of the society, 
and that can be useful in guiding their problem solving 
activities [39]. The Culture Algorithm (CA) reduces 
the need for immature individual to waste energy by 
bypassing trail and error iterations usually required to 
acquire information about the environment, and also 
enables the transmission of more information than any 
individual genome may feasibly contain. Rest of the 
paper is organized as follows. A more general 
investigation into the potential strength of CA in 
optimization problems is conducted in section 2.The 

mailto:melhosseini@mucsat.sci.eg


new devised algorithm is presented in section 3. 
Section 4 covers results and computer simulations, 
followed by some conclusion.  

 

 
Figure 1. Culture Algorithm CA Components 

 
Cultural Algorithms consist of a social population 

and a belief space [1], [31], [15], [21] as shown in 
Figure 1. Selected individuals from the population 
space contribute to cultural knowledge by means of the 
acceptance function. The cultural knowledge resides in 
the belief space where it is stored and updated based 
on individual experiences and their successes or 
failures. In turn, the cultural knowledge controls the 
evolution of the population by means of an influence 
function [7]. There are at least five basic categories of 
cultural knowledge that are important in the belief 
space of any cultural evolution model: situational, 
normative, topographic, historical or temporal, and 
domain knowledge [21].  The pseudo code of the 
general CA is as follows: 

 
• Begin 
• t = 0; 
• Initialize Belief Space  ( )BLF t  ; 
• Initialize Population Space  

( )POP t  ;(in the   ) BESTRANGE
• Repeat until termination condition 

achieved; 
ο Perform actions of the 

individuals in  ( )POP t  ; 
ο Evaluate each individual by 

using the fitness function; 
ο Select the best individuals to 

become parents; 
ο Create new generation of 

offspring by mutation & 
crossover; 

ο Delete not so fit members to 
make room for the new ones; 

ο  ( )bLF t   alters the genome of 
the offspring - influence 

function; 
ο Best individuals can update the  

( )BLF t   - acceptance function; 
• End. 

 
2. Related Research 
 

In the literature, several works are available about 
Cultural Algorithm [32], [1], [31], [15], [21], [22].  
Reynolds et al. [33] and Chung and Reynolds [7] have 
investigated the use of cultural algorithms for global 
optimization with very encouraging results. some of 
the works do not totally use all different sources of 
information in the belief space. Kobti [21] used only 
the topographic, domain knowledge and history 
knowledge. Xue [39] abstracted 4 different kinds of 
knowledge and succeeded in using the range of the 
best parameters to be one source of belief information, 
then followed by accepting the point or modify it to be 
in the proper region.  Only the situational knowledge; 
information relating to the above-average or the best 
point are implemented by Yu [38] to solve the 
earliness / tardiness flow shop with uncertain 
processing time. In heavily constrained model, there is 
a plenty of time wasted in generating solutions in the 
unfeasible region and it would be great to not waste 
this valuable time.  If there is a chance to get benefit 
from the history of violation and satisfaction of these 
constraints, it could force the algorithm to move faster 
and converges better. The history of violating and 
satisfying constraints is also used here to force the 
evolution process away from the region that violates 
the constraints at each generation. This kind of 
information is updated so it helps in reducing the need 
for immature individual to waste energy by bypassing 
trial and error iterations. 
 
3. Culture Genetic Algorithm 

 
The proposed research has employed real-coded 

GA integrated with culture algorithm. In the belief 
space there are multi sources of information that best 
individuals along their evolution is stored. The list of 
best candidates, the ranges of the best performers 
candidates, and the ranges of feasible regions that lead 
the search away from candidates that violate the 
constraints are the main source of information 
implemented in the belief space. The algorithm is 
detailed below 
 
• Begin 
•  t  0 ; 



• Initialize Population Space  ( )POP t  ; 
• Initialize Belief Space ( )BLF t  ;( 

, , E  ) LISTBEST BESTRANGE FRANG
ο Repeat until termination condition 

achieved; 
ο Perform actions of the individuals in  

( )POP t  ; 
ο Evaluate each individual by using the 

fitness function; 
ο Penalize fitness if violation happened 
ο Select the best individuals to become 

parents; 
ο Create new generation of offspring by 

mutation & crossover; 
ο Influence function : move all individuals 

toward the best candidate, choose the 
best percent of them 

ο Generate randomly individuals in the 
feasible range    "that satisfy 
the constraint" 

FRANGE

ο Remove from the old population an 
amount equal to (   
individuals + close individual to the  

) 

FRANGE

LISTBEST
ο Insert these individuals into the 

population 
ο Best individuals can update the  ( )BLF t   

- acceptance function; 
• End. 

 
The belief space consists of 3 different kinds of 

information sources; 
1) In each generation, the best candidate LISTBEST 

is stored to be used later by grandsons, and in each 
generation, we generate random percent of 
individuals in the neighbor of the best candidates. 
in fact, we move some percent of individuals in 
the closest point to the best individual "like best 
neighbor in PSO" and this helps in leading the 
individuals to jump into the promising region. 

2) The best range of the  20%  performers in each 
generation is calculated  BE   and 
successive generations will be randomly generated 
in this promising range. This also lead to 
increasing convergence and not wasting time 
discovering the good regions. 

STRANGE

3) The history of violating and satisfying constraints 
are also used here to force the evolution process 
away from the region that violates the constraints  

 , and at each generation this kind of 

information is updated so it helps in reducing the 
need for immature individual to waste energy by 
bypassing trial and error iterations and also enable 
the transmission for more information than any 
individual genome may feasibly contain. 

FRANGE

 
4. Experimental Results  

 
Three real world problems are selected to illustrate 

the performance of the proposed cultural genetic 
algorithm.   

 
4.1. Pressure Vessel Design 
 

A cylindrical pressure vessel with two 
hemispherical heads is designed for minimum cost of 
fabrication. Four variables are identified: thickness of 
pressure vessel  sT  , thickness of head   , inner 

radius of the vessel  
hT

R   , and the length of the vessel 
without heads  L   (shown in figure 2). The variable 
vectors for this case are given (in inches) by  

 .  1 2 3 4( , , , ) ( , , , )s hT T R L x x x x X= =

 
 

Figure 2. Pressure Vessel  
 

The mathematical model of mixed-integer 
optimization problem is expressed as [8]: 

minfx  0.6224x1x3x4  1.7781x2x3
2 

3.1661x1
2x4  19.84x1

2x3
 

(1) 

Subject to the following constraints: 

g1x  −x1  0.0193x3 ≤ 0  
 

(2) 

g2x  −x2  0.00954x3 ≤ 0
 

(3) 

g3x  −x3
2x4 − 4

3 x3
3  1,296,000 ≤ 0

 
(4) 

g4x  x4 − 240 ≤ 0  
 

(5) 

The following ranges of the design variables were 
used: , ,10    10 9x≤ ≤ 9 0 2 99x≤ ≤



3 200x≤ ≤ , and10  . The proposed 
cultural-based GA was applied to the problem of 
pressure design vessel 50 runs, and the best objective 
function value obtained is 6580.8, the mean of the 50 
runs is 8745.8, the worst value is 11673, and the 
standard deviation is 1.0658e+003. 

4 200x≤ ≤

As evident from the results, the proposed CGA 
method obtained a close solution to the optimal point 
obtained by [8] (6112.5619) even we do not implement 
all the information sources of the belief space in the 
proposed CGA method. The idea of developing the 
satisfaction region for constraints gives our algorithm 
the chance to move far away of the unfeasible region, 
and as the search progresses we can make sure that we 
are now searching in the feasible region. The optimal 
function value in each run is illustrated in Figure 3 and 
the performance of the last run (run No. 50) is depicted 
in Figure 4. 

 
4.2 Optimal Control of a Fed-batch fermentor 
for Penicillin Production 
 

A model of a fed-batch fermentor for the 
production of Penicillin [36] is illustrated in figure 5. 
The objective function is to maximize the amount of 
Penicillin produced using the feed rate as the control 
variable. 

 
Figure 3. Best PI of each population during 50 

iterations 

 
Figure 4. Best PI of each population in the last run 

 
Find    and  ( )u t ft   over  0[ , ]ft t t∈   to maximize  

  subject to 2 4( ) ( )J x t x t=

dx2
dt  h2x1 − 0.001x2 − u x2

500x4  
(7) 

dx3
dt  − h1x1

0. 47 − h2
x1
1.2 − x1

0. 029x3
0.0001  x3

 u
x4

1 − x3
500

 
(8) 

dx4
dt  u

500  
 

(9) 

h1  0.11 x3
0.006x1  x3

 
 

(10) 

h2  0. 0055 x3
0.0001  x31  10x3   

(11) 

Where  1x  ,  2x  ,  3x   are the biomass, penicillin 

and substrate concentration, and  4x   is the volume. 
The initial conditions are: 

( ) [ ]0 1.5 0 0 7 Tx t =  .  

 

dx2
dt  h x1

500x4
1x1 − u  

 
(6) 



 
 

Figure 5. Fed-Batch Penicillin fermentor 
 
The upper and lower bounds on the state variables are 

0 ≤ x1 ≤ 40

0 ≤ x3 ≤ 25

0 ≤ x4 ≤ 10

 

 

(12) 

 
The upper and lower bounds on the feed rate are 

0 ≤ u ≤ 50  
 

(13) 

 
When applying the suggested technique with penalty 
to the fermentor problem at hand, it gives performance 
index equal to 83.0526, and the optimal control vector  

  , for   . Figure 6 illustrates 
the biomass, penicillin and substrate concentrations, 
and the volume plotted in the interval of investigation. 
The minimum performance index of each population is 
depicted in Figure 7. 

11.3901u = 132ft = h

 
Figure 6. Penicillin production fermentor states 

 
Figure 7. Optimal performance index of each 
population  

 
Figure 8. Best range of control vector 

 
Figure 9. Final time, Control vector, and PI evolution 



 
Figure 10. Last generation 

 
The best interval range for the optimal control vector 
in each population is illustrated in Figure 8.  The 
evolution of the final time, PI, and the optimal control 
during the 40 population are depicted in Figure 9. Last 
generation is illustrated in Figure 10. 
 
5. Conclusion 
 
The Cultural-based GA enables monitoring the search 
space and records important events in the search space 
regarding to the best individual, the best range, and the 
best feasible range that satisfy constraints, and this 
leads to reduce the effect of premature convergence to 
a certain extent. A real-coded GA-wise there is no 
encoding and decoding, low usage of memory, good 
precision, etc. From a computational point of view, the 
basic reason why cultural evolution can proceed at an 
increased rate is that it is able to provide selective 
pressure on the population by placing constraints on 
their performance and maintain a history of individual 
performance that is separate from that individual. Both 
of these characteristics are key factors in influencing 
the performance speedup associated with the specific 
version of cultural algorithm. The application of the 
proposed algorithm using the highly nonlinear and 
multidimensional case studies illustrates that the 
algorithm performs very well for the problems 
considered. 
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