Carnegie Mellon
ectrical & Computer
A ENGINEERINE

SPIRAL, FFTX, and the
Path to SpectralPACK

Franz Franchetti

Carnegie Mellon University

www.sPiral.net

In collaboration with the SPIRAL and FFTX team @ CMU and LBL

EEEEEEE

=

http://www.spiral.net/

Carnegie Mellon

) ENENERRING
Have You Ever Wondered About This?

Numerical Linear Algebra Spectral Algorithms
LAPACK
ScaLAPACK Convolution
LU factorization Correlation
Upsampling

Eigensolves
SVD Poisson solver

FFTW
DFT, RDFT
1D, 2D, 3D,...

BLAS, BLACS
BLAS-1
BLAS-2
BLAS-3

batch

No LAPACK equivalent for spectral methods

= Medium size 1D FFT (1k—10k data points) is most common library call
applications break down 3D problems themselves and then call the 1D FFT library

= Higher level FFT calls rarely used
FFTW guru interface is powerful but hard to used, leading to performance loss

= Low arithmetic intensity and variation of FFT use make library approach hard
Algorithm specific decompositions and FFT calls intertwined with non-FFT code

Carnegie Mellon
ectrical & Computer
A ENGINEERINE

It Is Worse Than It Seems

FFTW is de-facto standard interface for FFT mw
= FFTW 3.X is the high performance reference implementation:
supports multicore/SMP and MPI, and Cell processor

= Vendor libraries support the FFTW 3.X interface:
Intel MKL, IBM ESSL, AMD ACML (end-of-life), Nvidia cuFFT, Cray LibSci/CRAFFT

Issue 1: 1D FFTW call is standard kernel for many applications

= Parallel libraries and applications reduce to 1D FFTW call
P3DFFT, QBox, PS/DNS, CPMD, HACC,...

= Supported by modern languages and environments
Python, Matlab,...

Issue 2: FFTW is slowly becoming obsolete

= FFTW 2.1.5 (still in use, 1997), FFTW 3 (2004) minor updates since then
= Development currently dormant, except for small bug fixes

= No native support for accelerators (GPUs, Xeon PHI, FPGAs) and SIMT
= Parallel/MPI version does not scale beyond 32 nodes

Risk: loss of high performance FFT standard library

Carnegie Mellon

A ERGREERING
FFTX: The FFTW Revamp for ExaScale
Modernized FFTW-style interface -—\(....\\) = SveoTRe

= Backwards compatible to FFTW 2.X and 3.X
old code runs unmodified and gains substantially but not fully

= Small number of new features
futures/delayed execution, offloading, data placement, callback kernels

Code generation backend using SPIRAL

= Library/application kernels are interpreted as specifications in DSL
extract semantics from source code and known library semantics

= Compilation and advanced performance optimization
cross-call and cross library optimization, accelerator off-loading,...

= Fine control over resource expenditure of optimization
compile-time, initialization-time, invocation time, optimization resources

= Reference library implementation and bindings to vendor libraries
library-only reference implementation for ease of development

Carnegie Mellon
A ENGINEERING
FFTX and SpectralPACK: Long Term Vision

Numerical Linear Algebra Spectral Algorithms

LAPACK

LU factorization
Eigensolves
SVD

SpectralPACK
Convolution
Correlation
Upsampling
Poisson solver

FFTX

DFT, RDFT
1D, 2D, 3D,...
batch

BLAS

BLAS-1
BLAS-2
BLAS-3

Define the LAPACK equivalent for spectral algorithms

= Define FFTX as the BLAS equivalent
provide user FFT functionality as well as algorithm building blocks

= Define class of numerical algorithms to be supported by SpectralPACK
PDE solver classes (Green’s function, sparse in normal/k space,...), signal processing,...

= Define SpectralPACK functions
circular convolutions, NUFFT, Poisson solvers, free space convolution,...

FFTX and SpectralPACK solve the “spectral dwarf” long term

Example: Hockney Free Space Convolution

N »

/
X
|_'_I

-

Carnegie Mellon
ectrical & Computer
A ENGINEERINE

Carnegie Mellon

A ENGNEERING
Example: Hockney Free Space Convolution

fftx plan pruned real convolution plan(fftx real *in, fftx real *out, fftx complex *symbol,
int n, int n_in, int n_out, int n freq) ({
int rank =1,
batch _rank = 0,

fftx plan plans[5];
fftx plan p;

tmpl = fftx create zero temp real(rank, &padded dims) ;
plans[0] = fftx plan guru copy real(rank, &in dimx, in, tmpl, MY FFTX MODE SUB) ;
tmp2 = fftx create temp complex(rank, &freq dims);
plans[l] = fftx plan guru dft r2c(rank, &padded dims, batch_rank,
sbatch_dims, tmpl, tmp2, MY FFTX MODE_SUB) ;
tmp3 = fftx create temp complex(rank, &freq dims);
plans[2] = fftx plan guru pointwise c2c(rank, &freq dimx, batch rank, &batch dimx,
tmp2, tmp3, symbol, (fftx callback)complex scaling,
MY _FFTX MODE SUB | FFTX_PW_POINTWISE) ;
tmp4 = fftx create temp real(rank, &padded dims) ;
plans[3] = fftx plan guru dft c2r(rank, &padded dims, batch_rank,
&batch dims, tmp3, tmp4, MY FFTX MODE_SUB) ;
plans[4] = fftx plan guru copy real(rank, &out _dimx, tmp4, out, MY FFTX MODE SUB) ;
p = fftx plan compose (numsubplans, plans, MY FFTX MODE TOP) ;

return p;

} Looks like FFTW calls, but is a specification for SPIRAL

@ Carnegie Mellon

ectrical & Computer
) ENGNEERRE

Spiral Technology in a Nutshell

Library Generator

Traditionally

High performance library

Comparable

Spiral Approach

Spiral

High performance library

optimized for given platform NGakaidilllad optimized for given platform

Intel Xeon 8180M IBM POWER9
2.25 Tflop/s, 205 W 768 Gflop/s, 300 W
28 cores, 2.5—3.8 GHz 24 cores, 4 GHz

2-way—16-way AVX-512 4-way VSX-3

Intel Xeon Phi 7290F
1.7 Tflop/s, 260 W

72 cores, 1.5 GHz
8-way/16-way LRBni

Nvidia Tesla V100
7.8 Tflop/s, 300 W
5120 cores, 1.2 GHz
32-way SIMT

Snapdragon 835 Intel Atom C3858
15 Gflop/s, 2 W 32 Gflop/s, 25 W
8 cores, 2.3 GHz 16 cores, 2.0 GHz

A540 GPU, 682 DSP, NEON 2-way/4-way SSSE3

Dell PowerEdge R940 Summit

3.2 Tflop/s, 6 TB, 850 W
4x 24 cores, 2.1 GHz
4-way/8-way AVX

187.7 Pflop/s, 13 MW
9,216 x 22 cores POWER9
+ 27,648 V100 GPUs

Mathematical Foundation

Model: common abstraction
=spaces of matching formulas

abstraction
o

abstraction .

F— (e)

vec(v)

} defines \ /m .
: searc
\< = --j’_\ e~

algorithm

)L

TE 5 <]

pick

st(iU M)

architecture
space

space

@
S
“[i:r
I~
[
o~
=
w
e

Kernel:
problem size,
algorithm choice

Architectural parameter:
Vector length,
#processors, ...

Code Synthesis and Autotuning

Intel Core i7 (2™ Gen) DFT,5
Base cases Transformation rules Breakdown rules

Expansion + backtracking

L @) Asen 4[;4; 4 B DFT, —+ (DFTy&La)Th,
Li"@he et By 1 ® DFTm) L}
A DFTy — Pu(DFT,@DFTm)Qn

[5-34 DFT, — RI0i®DFT, D,
S3E sSE S5E SSE smel (I, @DFT,)Ry

laghs by (bpee orr - [} 4] £-0L (loop)
expression

Optimized Z-OL
expression

'

Abstract code

Optimized abstract
code

Ccode

-t
) L-_J(eaﬂ """)(1, 1Ly DFT) (1
=

Presenter
Presentation Notes
Top left: Spiral abstracts a high level description (math) of the algorithm, uses domain knowledge to rewrite it, performs many of the optimizations and matches to architecture at this high level and then translates the high level highly optimized algorithm into high quality code (C, Verilog)

Top right: Spiral automatically generated code has been licensed by Intel that incorporates thousands of kernels in Intel’s two libraries IPP and MKL that Intel sells to their independent software vendors (ISV) like Adobe. In particular, IPP comes with IPPgen, a domain that is in its entirety automatically generated by Spiral. The background shows a running list of these thousands of kernels (calls in IPP) of functions generated by Spiral.

Bottom right: example of the algorithms that Spiral automatically generates code for: from kernels like linear transforms like the FFT, to full fledged applications, in the radio wireless domain like software defined radio, to generating implementations for synthetic aperture radar, to JPEG, or Viterbi encoders and decoders.

Bottom left: Spiral generates code for a wide range of multicore platforms, from Intel x86, to IBM Cell processor, GPUs, FPGA (hardware implementation rather than software), from smartphone platforms (ARM processor) to supercomputers (BlueGene). Spiral generated FFT was part of the IBM led team that won the Gordon Bell performance Award last year (2010).

Carnegie Mellon

ectrical & Computer
) ENGNEERRE

Algorithms: Rules in Domain Specific Language

Linear Transforms Graph Algorithms
DFT, — (DFT;QLyn) T}, DFTy)LE, n=km - B.C
DFT, — Pu(DFT,@DFT,)Qn, n=km, gcd(k,m) =1 cremy Kepner and John Gilber o=p ®o0
DFT, — RT(Il@DFTp 1)Dp(I1; ®DFT,_1)Rp, p prime \! 2
DCT-3;, — (Im®Jm) L7 (DCT-3,,(1/4) & DCT-3,,,(3/4)) o © © ©

Ln 06 —Jpy—1

(Fo®ILn) { %(11 @2 Im)} , n=2m Graph Algorithms in the A . L v c
2

Language of Linear Algebra

DCT-4, — SpDCT-2ydiagp<r<n(1/(2cos((2k + 1)w/4n)))

IMDCT5,, — (Jm®@Ln®Ln®Jm) (({_ﬂ ® Im> @ (:ﬂ ® Im>) Jom DCT-45,),

Extract 3
—_—

t
WHTQk — H (12k1+"‘+ki—1 ®WHT2ki ®ngi+1+'“+kt)’ k=ki+ --+k

i=1

DjE‘T2 — F2 . 123455 1:3435
DCT-2, — diag(1,1/v2)Fy 4
DCT—42 d J2 Rl37T/8 Sfe @

In collaboration with CMU- SEI
Numerical Linear Algebra Spectral Domain Applications

r;:;tei?:: L g interpolation 2D iFFT g d

X

MMMy 11 — ()1
MMMm,n,k - (®)m/mb><1 ® MMMmb,n,k

MMMm,n,k - MMMm,nb,k ® (®)1><n/nb
MMMm,n,k - ((Zk/kb o (')k/kb) ® MMMm,n,kb)o
k/k,
(LR ® 1) X)

0

Normalized Doppler
I

Steering Response (dB)

I
=]

MMM, o — (L™ ™ @ I,)o
((®)1><n/nb ® MMMm,nb,k)o
k
(% (L1 @ Iy)

n/n

Bearing Angle (x radiuns)

https://en.wikipedia.org/wiki/File:Space-Time_Beamformer_Response.jpg

Carnegie Mellon

) ENGINEERIVG
SPIRAL: Success in HPC/Supercomputing

Global FFT (1D FFT, HPC Challenge)

PAID Program, FFTs for Blue Waters 10000 BlueGene/P

m RIKEN K computer 1000
FFTs for the HPC-ACE ISA

m LANL RoadRunner

6.4Tflop/s

thearetical peak

Spiral-generated

100

UPC coalesced transpose

FFTs for the Cell processor 10
o PSC/XSEDE Brldges 1'II\‘|C 4I\IJC Iﬁi\IC 2‘R 4IR 8IR 'IéR 3iR
La rge Size FFTS BlueGene/P node cards and racks

m LLNL B|ueGene/|_ and P BlueGene/P at Argonne National Laboratory
128k cores (quad-core CPUs) at 850 MHz

FFTW for BlueGene/L’s Double FPU
m ANL BlueGene/Q Mira

2006 Gordon Bell Prize (Peak Performance Award) with LLNL and IBM
2010 HPC Challenge Class Il Award (Most Productive System) with ANL and IBM

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiqr4Gcz5HXAhVm0YMKHXk9AhwQjRwIBw&url=https://www.electronicsweekly.com/news/research-news/k-computer-claims-new-crown-2015-07/&psig=AOvVaw1L7BwXhkkESqaSzSfImZtF&ust=1509221698763917
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjs4-7zz5HXAhWh8YMKHRt1AzYQjRwIBw&url=https://www.extremetech.com/extreme/122159-what-can-you-do-with-a-supercomputer&psig=AOvVaw0u2pzptIlJwtAbe7IqEd-X&ust=1509221855781721

A ERENERRING
FFTX Backend: SPIRAL

Paradigm
Other C/C++ Code Plug-In:
GPU Extensible platform

and programming
model definitions

Paradigm
Plug-In:
Shared memory

FFTX call site :
fftx plan(..) SPIRAL module: Core system:

fftx_execute (..) Code synthesis, trade-offs SPIRAL engine
reconfiguration, statistics

Automatically
FFTX call site

£ft FFT Solvers FFT Codelets Generated
x plan (..) . .
fftx execute (..) OpenMP CUDA FFTW-like library

components
DARPA BRASS

Carnegie Mellon

ectrical & Computer
) ENGNEERRE

FFTX: First Results for Hockney on Volta

FFTX and SpectralPack: A First Look

Franz Franchetti, Danicle G. Spampinato, Anuva Kulkamni, Doru Thom Popovic, Tze Meng Low
Electrical and Computer Engineering Department

Carnegie Mellon University

Pittsburgh, P, USA

{franzgf spampinato}@cmedy, anuvak @andrew.cmued, {dpopevic, lowt | @cmu.edu

Michael Franusich
Spiralzern. Inc.
Pintsburgh, PA, USA
mike_franusich @ spiralgen.com

Absract—We propose FFTX, a new framework for building
high-performance FFT-basd applications on exascale ma-
chines. Complex node architectures lkead to multiple levels of
paralkelism and demand efficient ways of data communica-
tion. The current FFTW interface falls short in maximizing
performance in soch scenarios. FFTX is designed o en-
able application developers to keverage experi-level, automatic
optimizations while navigating a Tamiliar interface. FFTX
is backwards compatible to FFTW and extends the FFTW
Interface inte an embedded Domain Specific Language (DSL)
expressed as a library interface. By means of 3 SPIRAL-based
back end. this enables build-time source -fo-source translation
and advanced performance optimizations, such as cross-library
calls optimizations, targeting of accelerators through offload-
ing, and inlining of user-provided kernels. We demonstrate the
use of FFTX with the prototypical example of 1D and 3D
pruned convolutions and discuss future extensions

Keywords-FFT: exasclale: code generator; high-performance:;

L INTRODUCTION

The Discrete Fourier Transform (DFT) — and in par-
ticular its implementation using Fast Fourier Transform
(FFT) [1]. [2] algorithms — is a fundamental component for
the design of scientific applications suitable for the emerging
exascak: computing ecosystem. Application domains include
material science, chemistry, molecular dynamics, and cos-
mology. Some examples are FFT-based differential equation
solvers to compuic properiics of makerials such as stress
and strain [3]. simulation of incompressible flows [4], plane
wave based electronic structure methods [5] [6] and particle-
in-cell (PIC) codes [7].

Capturing application-specific properties of the FFTs is
very important to enable high-performance execution on
emerging platforms. For example. applications where a large
subset of the inputs or outputs is either set to zero or not
computed at all should exploit the zro structures to reduce
data movements within the memory hicrarchy on a node
or across the network, The structure of multidime nsional
FFTs provide opportunities for parallelism at multiple kevels

Andrew Canning, Peter McCorguodale, Brian Van Straalen. Phillip Colella
Lawrence Berkeley National Laboratory

Bereley €A, USA

{acanning pwmccorguodale, bvstraalen, peolella} @bl gov

SIMID, threads, accelerators, and distibuted systems.
The best strategy for exploiting these opportunities strongly
depends on the details of the use case and of the computing
platform, as well as tradeoffs with other necds of the
application in which the transforms are embedded.

Conventional FFT-based implementation approach
and its limits. The implementation strategy for most of
today’s large science applications that depend on FFTs
constists in transforming multidimensional problems into &
sequence of 1D FFT calls, with the latter being performed
by a library. Ower the last decade or so the FFTW APl
became the de-facto standard FFT imterface [8], [9]. [10].
Vendors that provide FFT librarics like Intel, Cray, and
IBM may still provide their own proprictary interface for
backwards compatibility reasons, but all curent vendor
high-performance libranes, including Intel MKL [11], IBM
ESSL [12], and Nvidia cuFFT [13]. implement (at keast a
subset) of the FFTW interface. Thus, FFTW defines the
standard FFT library interface and oftentimes is considersd
a key component of today’s applications.

However, the approach of building up high-performance
implementations out of calls to 1D FFTW kemels is break-
ing down on the current and emerging HPC platforms. for
two masons: First, node archiectures have become mone:
complex. Multiple cores and accelerators kad to multple
levels of parallelism, including threading and SIMIVSIMT.
In addition, thers are on-node complex memory hicrarchics
that are to varying extents user-controlled, and across which
it is expensive to move datn This keads to more complex
mappings of multidimensional FFT-based applications to the
core 1D FFTs. Some of these are simply not expressible in
the current FFTW inierface; others can be expressed, but
with significant programming effort. and often below the
theorstically-predicted performance due to unexpected and
opagque behavior of the FFT library software. Second, FFTW
15 no longer supported. The system comprises a high-level
domain-specific language. a symbolic transformation/code

FFTX with SPIRAL and OpenACC:
on par with cuFFT expert interface

FFTX with SPIRAL and OpenACC:
15 % faster than cuFFT expert interface

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici,
T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B.
Van Straalen, P. Colella:

FFTX and SpectralPack: A First Look, Workshop on Parallel
Fast Fourier Transforms (PFFT), to appear.

http://www.spiral.net/doc/fftx

http://www.spiral.net/docs/fftx

Carnegie Mellon

ectrical & Computer
) ENGNEERRE

SPIRAL 8.0: Available Under Open Source

<2 Spiral] X

m Open Source SPIRAL available
m non-viral license (BSD)

m Initial version, effort ongoing to i .
open source whole system

m Commercial support via SpiralGen, Inc.

m Developed over 20 years
m Funding: DARPA (OPAL, DESA, HACMS,

PERFECT, BRASS), NSF, ONR, DoD HPC, JPL,
DOE, CMU SEl, Intel, Nvidia, Mercury

m Open sourced under DARPA PERFECT

Encyclopedia of

Parallel Computing

www.spiral.net

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Plischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://www.spiral.net/
http://users.ece.cmu.edu/%7Efranzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

	Slide Number 1
	Have You Ever Wondered About This?
	It Is Worse Than It Seems
	FFTX: The FFTW Revamp for ExaScale
	FFTX and SpectralPACK: Long Term Vision
	Example: Hockney Free Space Convolution
	Example: Hockney Free Space Convolution
	Spiral Technology in a Nutshell
	Algorithms: Rules in Domain Specific Language
	SPIRAL: Success in HPC/Supercomputing
	FFTX Backend: SPIRAL
	FFTX: First Results for Hockney on Volta
	SPIRAL 8.0: Available Under Open Source

