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Background

@ The finite element exterior calculus is a new way of looking at
finite element spaces used to discretize some of the most
fundamental differential operators.

@ It has brought great clarity and unity to the development and
analysis of mixed finite elements for a variety of problems, and
has enabled major advances in finite elements for elasticity,
preconditioning, a posteriori error estimates, implementation, . ..

@ The fundamental idea is to mimic the framework of exterior
calculus by developing finite element spaces of differential
forms which exactly transfer key geometrical properties
(de Rham theory, Hodge theory) from the continuous to the
discrete level.

@ Numerical multilinear algebra? Differential forms are an
important class of multilinear operator: fields of alternating
multilinear forms.
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For all x € Q, the
tangent space T,{Q2
is an n-dimensional
vector space

If f:Q — R, its derivative df, : T, — R is a 1-form (covector
field)
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w € N (Q) <= wy is k-linear alternating form on T,Q Vx € Q
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PDEs closely connected to the de Rham sequence

@ —divgradu=f or oc=gradu, —divu=1f

o (curlcurl —graddiv)u = f

o curlcurlu=f, divu=20

@ divu="f,curlu=0

@ Maxwell's equations

@ dynamic problems, eigenvalue problems, lower order-terms

@ variable coefficients, nonlinearities. . .
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Finite element discretization

Stable discretization of such problems not easy, even in simple cases.

o€ H(div), uel?:
(o,7)+ (divr,u) =0 V7 € H(div)
—(divo,v) = (f,v) Vv € L?
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Bounded cochain projections

An important observation of FEEC is that when discretizing HA¥
by a subspace AX, the key property is d/\ﬁ C /\ﬁ+1 and there exist
a bounded cochain projection, i.e., 7 : HA¥(Q) — AK such that:

k-1 d< ! k
" -—>H/\7(Q)—>H/\ (Q)—>
@ 7y bounded
_k—1 —k
@ 7} a projection L‘h l“h
o . k—1 k—1
L e RN /\g—1 4 /\ﬁ - ...
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Bounded cochain projections

An important observation of FEEC is that when discretizing HAK
by a subspace AX, the key property is d/\ﬁ C /\ﬁ+1 and there exist
a bounded cochain projection, i.e., 7 : HA¥(Q) — AK such that:

k—1 d ! k
h - — HN Q) —— HAY(Q) — ---
@ 7y bounded

k H H ﬁk71 T
@ T, a projection h h

Kk jk—1 k—1 _k—1 B k—1
o mkdk—1 = gk-ixk P ANV Sy
Implies preservation of cohomology, discrete Poincaré lemma,
stability and convergence of Galerkin's method, ...



Finite element differential forms

To construct a finite element space of differential forms, we have
to specify for a given simplex T C R":
@ a finite dimensional space of polynomial forms on the simplex

@ a decomposition of its dual space into subspaces associated to
the subsimplices (degrees of freedom)

Prototypical case: Lagrange finite elements. V(T) =P,(T)
@ W(T,f)
fEA(T -
W(T,f)={uw— [rtrrruv dx CVEP1-dime(f)}

The assembled space is then precisely

{ue HYQ) : u|r € V(T)VT}



The spaces P,A* and P, Ak

Major take-away message of this talk: For general form degree k
there are two families of spaces of polynomial differential forms,
P, Ak and P, A¥, which, when assembled lead to the natural finite
element subspaces of HAX(Q).

They can be assembled into complexes with bounded cochain
projections (in numerous ways).

The two families are inter-related.
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The spaces P,A* and P, Ak

Major take-away message of this talk: For general form degree k
there are two families of spaces of polynomial differential forms,
P, Ak and P, A¥, which, when assembled lead to the natural finite
element subspaces of HAX(Q).

They can be assembled into complexes with bounded cochain
projections (in numerous ways).

The two families are inter-related.

Special cases:
@ P,A® = PN the Lagrange finite elements
o P,A"(T) =P, ;\" consists of all piecewise polynomials of
degree r
o P, AX(T) is the space of Whitney k-forms (1 DOF per k-face)



Finite element differential forms and classical mixed FEM

o P,N(T)="P,N(T)C H!
o PrA"(T) =P, 1A"(T) C L?
@ n=2: P, NY(T) C H(curl)

P, NY(T) C H(curl)

o n=3: P, AYT) C H(curl)
P, N(T) C H(curl)
PoN(T) C H(div)
P, N3(T) C H(div)

R R PR g
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The Koszul complex

The key to the construction is the Koszul differential x : AK — AK—1:

(kw)x (V... VDY = w (X v L R, X =x—x0
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Definition of P, A*

Using the Koszul differential, we define Pf/\k contained between
P.A and P,_1A\k:
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Definition of P, A*

Using the Koszul differential, we define Pf/\k contained between
P.A and P,_1A\k:

PN =P, N+ kH, N+ dH KN
Note
PN =P,A°

PN =P A"
P,_1AK C PNk C P.AK otherwise

God made P,N< and PN,
all the rest is the work of man.
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Degrees of freedom

To define the finite element spaces, we must specify degrees of freedom,
i.e., a decomposition of the dual spaces (P,A*(T))* and (P, A*(T))*,
into subspaces associated to subsimplices f of T.

DOF for P AX(T): to a subsimplex f of dim. d > k we associate
W /Trfu; Amn, nE 73,+,<,d,1/\d’k(f)
Jf
DOF for P,A*(T):

w»—>/Trfw/\?7, 77673:+k7d/\d_k(f)
f

The resulting FE spaces have exactly the continuity required by HAX:
Theorem.  P,AX(T) = {w € HAX(Q) : w|T € PANT) VT €T }.
Similarly for P, .
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Dual bases

As a basis for P,AX(7) and P;AX(T) we may take the dual basis
to the degrees of freedom.

For k = 0 this is the standard Lagrange basis.

For P; AX(T) there is one basis element for each k-simplex, the
Whitney form

Bogcr, = Z )Xo, dAog A+ A dAg, A A dAg,
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Geometric bases

The Bernstein basis, given by monomials in the barycentric coords, is an
explicit alternative to the Lagrange basis for the Lagrange finite elts.

\ ~
— L PAT) = €D PAT.F)
/\ 7N\ f subsimplex

/ 4 \
ZF ~—- &;\\ PoT, f) —— Po(Ff) = Pr_dim r-1(F)

trace
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Geometric bases

The Bernstein basis, given by monomials in the barycentric coords, is an
explicit alternative to the Lagrange basis for the Lagrange finite elts.

B P(T.0)

f subsimplex

ﬁ) (L PAT)
A \

. P(T, f) f:: Pr(F) = Pr_dim r—1(F)
A X /

g

PA(T)= € PAT,F), PA(T.F) — PN () = P,

dim f—k
— r+k—dim f/\ (f)
dim >k
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Geometric bases

The Bernstein basis, given by monomials in the barycentric coords, is an
explicit alternative to the Lagrange basis for the Lagrange finite elts.

\
A ~

AN P(T)= @ PAT.F)
/\ VA f subsimplex

' 1 &

7‘) ; \’\//\\ ) -

Al/‘ L ) PoT, ) — Po(f) = Prodimr-1(f)
: \ A X»/

e

PAN(T)= @ PAN(T.f), PA(T. ) 7“;75,/\ (F) = Pry sy fN™ 5 ()
dim f>k
PrA(T) = @ P AKT, ),
dim f>k

P, AT, f) ;;:P N(F) =2 Prik—dim -1 A5 (F)
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Construction of the geometric basis

The Bernstein basis for P,(T) begins with the barycentric
monomials
/\80.../\(,;'”7 ‘O[| = r
Associating the monomial to the subsimplex determined by
supp(«) we get the geometric decomposition.
For P, AK(T) we start with the spanning set
Al Ay By, || =r—1, 0<py<---<pe<n

These are not linearly independent, but associating this form to the
subsimplex determined by supp(a) U {po, ..., pk} gives a direct
sum decomposition.

For P,AX(T), the obvious spanning set is
Aol AR ANy A ANd Ny, Jal=r, 0<pr<---<pe<n
but these do not give a direct sum decomposition. A modification

does work, namely we substitute a more complicated expression for
dX,, if pi € supp(a)
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Finite element de Rham subcomplexes

@ The polynomial dR complex assembles into a FEdR subcomplex
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Finite element de Rham subcomplexes

@ The polynomial dR complex assembles into a FEdR subcomplex

0— PAT) L PANT) -2 o —L P, AN(T) =0

@ For r > 1, the P; Ak spaces give another FEdR subcomplex:

0—P-AAT) L P-AYT) L o L PoAT) -0

@ These are extreme cases. For every r there are 2"~ ! such
FEdR subcomplexes.
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Bounded cochain projections

The canonical projections, determined by the DOFs, commute with
d. But they are not bounded on HAk. =

19/19



Bounded cochain projections

The canonical projections, determined by the DOFs, commute with
d. But they are not bounded on HAk. =
If we apply the three operations:
@ extend
@ regularize
@ project
we get a map QF : HAK(Q) — AK which is bounded and commutes

with d. But it is not a projection. =

19/19



Bounded cochain projections

The canonical projections, determined by the DOFs, commute with
d. But they are not bounded on HAk. =
If we apply the three operations:
@ extend
@ regularize
@ project
we get a map QF : HAK(Q) — AK which is bounded and commutes

with d. But it is not a projection. =

However the composition
k _ Akl -1 k
Th _(Qh‘/\‘,‘]) o Qh

can be shown to be a bounded cochain projection.
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