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Background

The finite element exterior calculus is a new way of looking at
finite element spaces used to discretize some of the most
fundamental differential operators.

It has brought great clarity and unity to the development and
analysis of mixed finite elements for a variety of problems, and
has enabled major advances in finite elements for elasticity,
preconditioning, a posteriori error estimates, implementation, . . .

The fundamental idea is to mimic the framework of exterior
calculus by developing finite element spaces of differential
forms which exactly transfer key geometrical properties
(de Rham theory, Hodge theory) from the continuous to the
discrete level.

Numerical multilinear algebra? Differential forms are an
important class of multilinear operator: fields of alternating
multilinear forms.
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Manifold concepts

n-Manifold Ω

For all x ∈ Ω, the
tangent space TxΩ
is an n-dimensional
vector space

If f : Ω→ R, its derivative dfx : TxΩ→ R is a 1-form (covector
field)
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Differential forms and the de Rham complex

ω ∈ Λk(Ω) ⇐⇒ ωx is k-linear alternating form on TxΩ ∀x ∈ Ω

Exterior derivative: dk : Λk(Ω)→ Λk+1(Ω), dk+1 ◦ dk = 0

0→ Λ0(Ω)
d0

−→ Λ1(Ω)
d1

−→ · · · dn−1

−−→ Λn(Ω)→ 0

cohomology: Hk = ker(dk)/ range(dk−1)

Case Ω ⊂ R3:

0→ C∞(Ω)
grad−−→ C∞(Ω; R3)

curl−−→ C∞(Ω; R3)
div−−→ C∞(Ω)→ 0

dim Hk =


no. of components, k = 0

no. of handles, k = 1

no. of holes, k = 2
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PDEs closely connected to the de Rham sequence

− div grad u = f or σ = grad u, − div u = f

(curl curl− grad div)u = f

curl curl u = f , div u = 0

div u = f , curl u = 0

Maxwell’s equations

dynamic problems, eigenvalue problems, lower order-terms

variable coefficients, nonlinearities. . .
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Finite element discretization

Stable discretization of such problems not easy, even in simple cases.

σ ∈ H(div), u ∈ L2 :
〈σ, τ〉+ 〈div τ, u〉 = 0 ∀τ ∈ H(div)

−〈div σ, v〉 = 〈f , v〉 ∀v ∈ L2

P1-P0 Raviart–Thomas - P0
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Bounded cochain projections

An important observation of FEEC is that when discretizing HΛk

by a subspace Λk
h , the key property is dΛk

h ⊂ Λk+1
h and there exist

a bounded cochain projection, i.e., πk
h : HΛk(Ω)→ Λk

h such that:

πk
h bounded

πk
h a projection

πk
hdk−1 = dk−1πk−1

h

· · · −−→ HΛk−1(Ω)
dk−1

−−−→ HΛk(Ω) −−→ · · ·yπk−1
h

yπk
h

· · · −−→ Λk−1
h

dk−1

−−−→ Λk
h −−→ · · ·

Implies preservation of cohomology, discrete Poincaré lemma,
stability and convergence of Galerkin’s method, . . .
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Finite element differential forms

To construct a finite element space of differential forms, we have
to specify for a given simplex T ⊂ Rn:

a finite dimensional space of polynomial forms on the simplex

a decomposition of its dual space into subspaces associated to
the subsimplices (degrees of freedom)

Prototypical case: Lagrange finite elements. V (T ) = Pr (T )

V (T )∗ =
⊕

f ∈∆(T )

W (T , f )

W (T , f ) = { u 7→
∫
f trT ,f uv dx : v ∈ Pr−1−dim f (f ) }

The assembled space is then precisely

{ u ∈ H1(Ω) : u|T ∈ V (T )∀T }
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The spaces PrΛ
k and P−r Λk

Major take-away message of this talk: For general form degree k
there are two families of spaces of polynomial differential forms,
PrΛ

k and P−r Λk , which, when assembled lead to the natural finite
element subspaces of HΛk(Ω).

They can be assembled into complexes with bounded cochain
projections (in numerous ways).

PrΛ
k and P−r Λk are affine invariant subspaces of k-forms, and are

almost uniquely characterized as such.

The two families are inter-related.

Special cases:

PrΛ
0 = P−r Λ0, the Lagrange finite elements

PrΛ
n(T ) = P−r+1Λ

n consists of all piecewise polynomials of
degree r

P−1 Λk(T ) is the space of Whitney k-forms (1 DOF per k-face)
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Finite element differential forms and classical mixed FEM

P−r Λ0(T ) = PrΛ
0(T ) ⊂ H1 Lagrange elts

P−r Λn(T ) = Pr−1Λ
n(T ) ⊂ L2 discontinuous elts

n = 2: P−r Λ1(T ) ⊂ H(curl) Raviart–Thomas elts

n = 2:

Pr Λ1(T ) ⊂ H(curl) Brezzi–Douglas–Marini elts

n = 3: P−r Λ1(T ) ⊂ H(curl) Nedelec 1st kind edge elts

n = 3:

Pr Λ1(T ) ⊂ H(curl) Nedelec 2nd kind edge elts

n = 3:

P−r Λ2(T ) ⊂ H(div) Nedelec 1st kind face elts

n = 3:

Pr Λ2(T ) ⊂ H(div) Nedelec 2nd kind face elts
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The Koszul complex

The key to the construction is the Koszul differential κ : Λk → Λk−1:

(κω)x(v
1, . . . , vk−1) = ωx(X , v1, . . . , vk−1), X = x − x0

0 ←−− PrΛ
0 κ←−− Pr−1Λ

1 κ←−− · · · κ←−− Pr−nΛ
n ←−− 0

C.f., the polynomial de Rham complex

0 −−→ PrΛ
0 d−−→ Pr−1Λ

1 d−−→ · · · d−−→ Pr−nΛ
n −−→ 0

For Ω ⊂ R3

0← Pr (Ω)
·X←−− Pr−1(Ω; R3)

×X←−− Pr−2(Ω; R3)
X←−− Pr−3(Ω)← 0

Key relation: (dκ + κd)ω = (r + k)ω ∀ω ∈ HrΛ
k (homogeneous polys)

κ is a contracting chain homotopy

HrΛ
k = dHr+1Λ

k−1 ⊕ κHr−1Λ
k+1
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Definition of P−r Λk

Using the Koszul differential, we define P−r Λk contained between
PrΛ

k and Pr−1Λ
k :

Pr

−

Λk := Pr−1Λ
k + κHr−1Λ

k+1 + dHr+1Λ
k−1

X

Note

P−r Λ0 = PrΛ
0

P−r Λn = Pr−1Λ
n

Pr−1Λ
k ( P−r Λk ( PrΛ

k otherwise

God made PrΛ
k and P−r Λk ,

all the rest is the work of man.
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Degrees of freedom

To define the finite element spaces, we must specify degrees of freedom,

i.e., a decomposition of the dual spaces (PrΛ
k(T ))∗ and (P−r Λk(T ))∗,

into subspaces associated to subsimplices f of T .

DOF for P−r Λk(T ): to a subsimplex f of dim. d ≥ k we associate

ω 7→
∫

f
Trf ω ∧ η, η ∈ Pr+k−d−1Λ

d−k(f ) Hiptmair

DOF for PrΛ
k(T ):

ω 7→
∫

f
Trf ω ∧ η, η ∈ P−r+k−dΛd−k(f )

The resulting FE spaces have exactly the continuity required by HΛk :

Theorem. PrΛ
k(T ) = {ω ∈ HΛk(Ω) : ω|T ∈ PrΛ

k(T ) ∀T ∈ T }.
Similarly for P−r .
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Dual bases

As a basis for PrΛ
k(T ) and P−r Λk(T ) we may take the dual basis

to the degrees of freedom.

For k = 0 this is the standard Lagrange basis.

For P−1 Λk(T ) there is one basis element for each k-simplex, the

Whitney form

φσ0···σk
:=

k∑
i=0

(−1)iλσi
dλσ0 ∧ · · · ∧ d̂λσi

∧ · · · ∧ dλσk
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Geometric bases

The Bernstein basis, given by monomials in the barycentric coords, is an
explicit alternative to the Lagrange basis for the Lagrange finite elts.

Pr (T ) =
⊕

f subsimplex

Pr (T , f )

Pr (T , f )
∼=−−−→

trace
P̊r (f ) ∼= Pr−dim f−1(f )

PrΛ
k(T ) =

⊕
dim f≥k
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Construction of the geometric basis

The Bernstein basis for Pr (T ) begins with the barycentric
monomials

λα0
0 · · ·λ

αn
n , |α| = r

Associating the monomial to the subsimplex determined by
supp(α) we get the geometric decomposition.

For P−r Λk(T ) we start with the spanning set

λα0
0 · · ·λ

αn
n φρ, |α| = r − 1, 0 ≤ ρ0 < · · · < ρk ≤ n

These are not linearly independent, but associating this form to the
subsimplex determined by supp(α) ∪ {ρ0, . . . , ρk} gives a direct
sum decomposition.

For PrΛ
k(T ), the obvious spanning set is

λα0
0 · · ·λ

αn
n dλρ1 ∧ · · · ∧ dλρk

, |α| = r , 0 ≤ ρ1 < · · · < ρk ≤ n

but these do not give a direct sum decomposition. A modification
does work, namely we substitute a more complicated expression for
dλρi if ρi ∈ supp(α)

16 / 19



Finite element de Rham subcomplexes

The polynomial dR complex assembles into a FEdR subcomplex

0→ PrΛ
0(T )

d−−→ Pr−1Λ
1(T )

d−−→ · · · d−−→ Pr−nΛ
n(T )→ 0

For r ≥ 1, the P−r Λk spaces give another FEdR subcomplex:

0→ P−r Λ0(T )
d−−→ P−r Λ1(T )

d−−→ · · · d−−→ P−r Λn(T )→ 0

These are extreme cases. For every r there are 2n−1 such
FEdR subcomplexes.
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The 4 FEdR subcomplexes ending with P0Λ
3 in 3D

0→ grad−−→ curl−−→ div−−→ → 0

0→ grad−−→ curl−−→ div−−→ → 0

0→ grad−−→ curl−−→ div−−→ → 0

0→ grad−−→ curl−−→ div−−→ → 0

18 / 19



Bounded cochain projections

The canonical projections, determined by the DOFs, commute with
d . But they are not bounded on HΛk .

If we apply the three operations:

extend

regularize

project

we get a map Qk
h : HΛk(Ω)→ Λk

h which is bounded and commutes

with d . But it is not a projection.

However the composition

πk
h = (Qk

h |Λk
h
)−1 ◦ Qk

h

can be shown to be a bounded cochain projection.

AFW, Christiansen, Schöberl
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