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Abstract

We explore the effects of truncation on the joint distribution of the observable random variables. A general formula for

the distortion induced by truncation in the least-squares coefficients is presented. The implications of our derivations are

illustrated with an example.
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1. Introduction

We study the effects induced by truncation in multivariate systems, with particular attention to the
distortion induced on linear regression coefficients. Truncation mechanisms may be used to model some forms
of selection. As an instance, in econometric studies on income, only observations with income above a
threshold may appear in the sample. In biometric studies on the effect of an expensive treatment using health
care claims data, there might be worries that only the sickest patients are given the treatment.

It is well known that, in linear regression modelling, the distribution for any fixed set of units depends on the
covariate values, so selection on the basis of covariate values affects the distribution but does not affect the
specification of the model. If there is selection on the basis of variables other than the covariates, we may have
two well-known situations, such as censoring or truncation.

In this paper we focus on truncation. This implies that the population consists of all units satisfying the
selectivity condition. We do not address issues of estimation, but we explore the effects of truncation on the
distribution of the observable variables and give an explicit formula of the distortion induced in the least-
squares regression coefficients of interest. We will assume that some knowledge either on the conditional
independence structure or on zero constraints on partial regression coefficients is available a priori. This allows
to make connections to graphical models, see e.g. Lauritzen (1996). For a related approach, where different
sources of selection bias are illustrated using graphical models, see Hernán et al. (2004). The situation here
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considered forms the basis of the widely studied Heckman’s (1979) model. There is an extensive literature on
the topic of selection bias. A broad account can be found in Copas and Li (1997), with discussion, while a
general review on estimation is in Vella (1998).

2. Some general results on truncation

Let X ¼ ðX jÞ, j ¼ 1; . . . ; d, be a d � 1 vector of random variables indexed by the set V ¼ f1; . . . ; dg. We
assume X to have a joint density function f V . After partitioning V ¼ N [ S, suppose that the variables X S are
truncated, i.e. X j , j 2 S, is observed only if it belongs to the intervalIj ¼ ðaj ; bjÞ which is a subset of the support.
LetIS be the Cartesian product of all intervalsIj for j 2 S. The density function of X after truncation on X S is
~f V ðxÞ ¼ a�1f V ðxÞI½xS 2 IS� where I½xS 2 IS� is the indicator function of the set in square brackets and

a ¼ PðX S 2 ISÞ. (1)

In the following, we make use of three disjoint subsets of V called R, T and C, which may be interpreted as
indexes of responses, treatments and covariates, respectively. We shall denote with F the set of truncated
variables outside R, T and C. With the notation R@T jC we indicate that the random vectors X R and X T are
conditionally independent given X C . We shall look at marginal and conditional densities before and after
truncation on S. Using the tilde, we use the convention that truncation occurs always before marginalization
or conditioning.

First, notice that since the marginal distribution of X S after truncation is ~f SðxSÞ ¼ a�1f SðxSÞ � I½xS 2 IS�,
the conditional distribution of X N jX S is unaffected by truncation. A more general condition under which the
conditional densities before and after truncation are equal is provided by the following proposition.

Proposition 1. Let F be non-empty. If the response variables R are not truncated, i.e. R � N, then there is no

distortion, ~f RjTC ¼ f RjTC , whenever R@F jT [ C, that is the responses are independent of the truncated variables

outside the covariates given the covariates.

Proof. Assume, without loss of generality that V ¼ R[
:

T [
:

C [
:

F . Then, if R@F jT [ C, f V ¼

f RTC f FTC=f TC , and thus ~f V ¼ a�1f RTC f FTC=f TC � IðxS 2 ISÞ with a as in (1). Marginalizing over X F

we get

~f RTC ¼ f RTC=f TC

1

a

Z
IF

f FTC � IðxS 2 ISÞdF

" #
¼ f RTC=f TC � gTC .

The result follows by noting that gTC is a function not depending on X R. &

The following proposition establishes a relationship between the conditional independence structure before
and after truncation.

Proposition 2. Let T , F and C be three disjoint subsets of the node set V such that, before truncation, T@F jC.
Then, the conditional independence is preserved if truncation is on S � F [ C [ T .

Proof. By assumption, the marginal density after truncation is

~f TFC ¼

Z
IU

a�1f TFCU � IðxT 2 IT ;xF 2 IF ;xC 2 ICÞdU

¼ a�1f FC f TC=f C � IðxT 2 IT ÞIðxF 2 IF ÞIðxC 2 ICÞ,

with U ¼ VnðT [ C [ F Þ and a as in (1). Therefore, ~f TFC can be factorized into gFCgTC and the result
follows. &

Corollary 1. All conditional independencies T@F jC, such that V ¼ T [ F [ C, continue to hold after truncation

on S � V .

Corollary 1 has implications for undirected graphical models (see Lauritzen (1996, Section 3.2)), that define a
class of distributions that obeys to the pairwise Markov property, such that a conditional independence
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between X i and X j given all the remaining variables holds whenever there is a missing edge in the associated
undirected graph. By Corollary 1, the conditional independence graph before truncation matches the one after
truncation.

3. The truncated multivariate normal distribution

We show the effects of truncation on the concentration matrix. We assume that X follows a multivariate
normal distribution with mean m and positive definite covariance matrix S partitioned as

S ¼
SSS SSN

: SNN

 !
; S�1 ¼

SSS SSN

: SNN

 !
,

where the dot is the usual shortcut for symmetric matrices. In the following, we indicate with ~S and ~S
�1

the
covariance and concentration matrix of the joint distribution of X after truncation on X S. Then, the
covariance matrix after truncation is, see Johnson and Kotz (1972, p. 70),

~S ¼
~SSS

~SSSPT
NjS

: SNN:S þPNjS
~SSSPT

NjS

0
@

1
A, (2)

where PNjS ¼ SNSS�1SS ¼ �ðS
NN Þ
�1SNS, is the matrix of least-squares regression coefficients and SNN :S ¼

ðSNN Þ
�1 is the partial covariance matrix. The expression for ~SSS can be found from the cumulant generating

function of the truncated normal, see Tallis (1961) and Finney (1962). For jSj ¼ 1 and bS ¼ þ1, the marginal
distribution of X N after truncation is an extended skew-normal, see Capitanio et al. (2003).

Proposition 3. The concentration matrix of vector X after truncation on X S is

~S
�1
¼

~S
SS

SSN

: SNN

 !
,

where ~S
SS
¼ ~S

�1

SS þPT
NjSS

NNPNjS.

Proof. The covariance matrix in (2) can be decomposed as

~S ¼
I 0

PNjS I

 !
~SSS 0

0 SNN:S

 !
I PT

NjS

0 I

 !
.

Taking the inverse and multiplying, the result follows. &

This result is valid outside the Gaussian case provided that the conditional distributions have linear
regressions and homoscedastic covariance matrices. Notice that the matrices S�1 and ~S

�1
must share the same

sets of structural zeros in blocks ðS;NÞ and ðN;NÞ. For i and j in S, if sij ¼ 0 then, from Corollary 1,
X i@X jjrest also after truncation.

4. Distortion in linear regression coefficients induced by truncation

In this section we give an explicit formula for the distortion induced by truncation on linear regression
coefficients. Let PRjT :C be the partial least-squares regression coefficient of X T when regressing X R on X T and
X C , before truncation, and let ~PRjT :C be the same coefficient computed in the distribution resulting after
truncation on X S. Therefore,

PRjT :C ¼ SRT :CS�1TT :C and ~PRjT :C ¼ ~SRT :C
~S
�1

TT :C .

We have that PRjTC ¼ ðPRjT :CPRjC:T Þ. We will make use of the matrix extension of Cochran’s (1938) recursive
formula, Wermuth and Cox (2004),

PRjT ¼ PRjT :W þPRjW :TPW jT . (3)
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Proposition 4. (i) If the response variables R are not truncated and S � T , then

~PRjT ¼ PRjT .

(ii) Let R � S and T � N, then

~PRjT ¼ LRjTPRjT ,

where LRjT ¼ ~SRR:T ðSRR:T Þ
�1.

Proof. Let the marginal covariance matrix of ðR;TÞ be O. (i) The regression coefficients after truncation is
~PRjT ¼ �ð ~ORRÞ

�1 ~ORT . But, as S � T , from Proposition 3, we have �ð ~ORRÞ
�1 ~ORT ¼ �ðORRÞ

�1ORT ¼ PRjT .

(ii) Proposition 3 implies that ~ORT ¼ ORT only and ~PRjT ¼ �ð ~ORRÞ
�1ORT ¼ ð ~ORRÞ

�1ORRPRjT : The result

follows by noting that ORR ¼ S�1RR:T . &

Proposition 5. Let R, T and C be three disjoint subsets of V with R � N. Let F ¼ SnðT [ CÞ.
(i) Let F be a non-empty set. Then

~PRjT :C ¼ PRjT :C �PRjF :TCfPF jT :C � ~PF jT :Cg. (4)

(ii) Let F be the empty set. Then

~PRjT ¼ PRjT �PRjC:T fPCjT � ~PCjT g. (5)

Proof. (i) By (3), we have

~PRjT :C ¼ ~PRjT :CF þ ~PRjF :TC
~PF jT :C

¼ PRjT :CF þPRjF :TC
~PF jT :C by Proposition 4ðiÞ

¼ PRjT :C �PRjF :TCfPF jT :C � ~PF jT :Cg using again ð3Þ.

(ii) It follows analogously. &

Corollary 2. If the response variables R are not truncated, then

~PRjT :C ¼ PRjT :C (6)

if either (i) PRjF :TC ¼ 0 or (ii) PF jT :C ¼ ~PF jT :C ¼ 0.

Notice that, if a stronger condition holds, such as R@F jT [ C, from Proposition 1, it follows that the
conditional densities ~f RjTC and f RjTC are equal. In the linear case, this implies that PRjT :C can be estimated
using ordinary least-squares, with a loss of efficiency due to the restrictions on the range of admissible values
of X T and X C . Eq. (4) is the multivariate extension of Goldberger’s (1981) equation (37) for incidental
truncation.

5. Some implications for linear recursive regressions

Sometimes a full ordering of the variables X can be determined such that the joint density of the variables in
X can be factorized into a product of univariate densities. In that case, we say that the distribution is generated
over a directed acyclic graph, see Lauritzen (1996, Section 3.2.2). When truncation occurs on more than one
variable of the univariate recursive process, the problem arises on whether truncation on univariate densities
in a stepwise fashion is equivalent to truncation on the joint distribution. Provided that truncations on each
variable are independent, the two mechanisms lead to the same truncated distribution.

Particular cases of distributions generated over a directed acyclic graph are linear recursive regression
systems with independent residuals, where it is assumed that the random variables X are mean-centred such
that AX ¼ e where A is a unit upper triangular matrix and the errors e have zero means and are uncorrelated,
see Wermuth and Cox (2004). In this framework X may contain latent variables which induce correlated
residuals in the equations for the observed variables. We discuss an example illustrating the implications of the
previous results in these systems.
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Fig. 1. Two conditional independence graphs for the incidental truncation problem (a) without and (b) with exclusion restrictions.

G.M. Marchetti, E. Stanghellini / Statistics & Probability Letters ] (]]]]) ]]]–]]] 5
Example. The situation known as incidental truncation, Goldberger (1981), can be represented with a linear
structural model

Y 1 ¼ b1X X þ Z1,

Y 2 ¼ b2X X þ Z2,

where Z1 and Z2 are correlated error terms, marginally independent of X , and the units are selected according
to Y 2 2 I2. The model is related to Heckman (1979) model. By adding a latent variable L inducing correlation
among Z1 and Z2, an equivalent linear recursive regression model with independent residuals is derived.
The associated directed acyclic graph is in Fig. 1(a). The interest is in estimating PY1jX :L

after truncation on
Y 2. Since Y 1@Y 2jX [ L, by Proposition 5

~PY1jX :L
¼ PY1jX :L

�PY1jY2 :XLðPY2jX :L
� ~PY2jX :L

Þ ¼ PY1jX :L
.

Since L is usually not known, PY1jX :L
cannot be estimated. Suppose now that X can be partitioned into X 1

and X 2 such that X 1@Y 2jX 2 and X 2@Y 1jX 1 as in Fig. 1(b). The interest is now on PY1jX1 :L
. By direct

calculations, or using the results in Spirtes et al. (1998, Section 4.4), we have PY1jX1:L
¼ PY1jX1 :X2Y2

. Then,

from Proposition 1, f Y1jX1 :X2Y2
¼ ~f Y1jX1 :X2Y2

. The implication is that, in the linear case, the least-squares

regression coefficient of interest can be estimated from a sample drawn from the truncated distribution as the
OLS coefficient of X 1 in the linear regression of Y 1 against X 1, X 2 and Y 2. Notice that the derivations here do
not make use of the information on the censoring mechanism induced by the truncation process.
6. Concluding remarks

This note details the effects of truncation with particular references to linear recursive systems. Sufficient
conditions for the absence of distortion are given, based on conditional independencies or zero partial
correlations before truncation. A formula for the distortion in linear regression coefficient is also provided.
When some conditional independencies can be either postulated or induced via an adequate design, rules are
given to check which associations are not distorted after truncation. In the linear case, when the distribution is
generated over a directed acyclic graph, this leads to useful conditions to find adjusting covariates that allow
the identification of the least-squares coefficients of interest. Furthermore, as the example shows, there might
be a gain in the estimation of the least-squares parameters of interest by conditioning on the truncation
variables, when measured, even if not explicitly appearing in the equation.
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