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On some combinatorial problems concerning the harmonic structure of musical chord sequences

A bit of music (theory)

• CHORD: two or more notes sounded simultaneously
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• CHORD PROGRESSION: two or more chords played in succession
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• OCTAVE EQUIVALENCE: no distinction between notes which are one (or more) octave(s) apart
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• Octave equivalence partitions the notes into twelve equivalence classes –pitch classes–

– In each pitch class we choose a note –the representative– and we identify the pitch class

with its representative;

– The representatives all belong to the same (musical) octave;
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• Representing chords using pitch classes

– A (non-musical) chord is a set of pitch classes;

– A voicing is an ordered tuple (i.e., a string) of distinct pitch classes;
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• Octave equivalence partitions the notes into twelve equivalence classes –pitch classes–
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with its representative;

– The representatives all belong to the same (musical) octave;

G
C

¯
C♯

4 ¯
(D♭)

( )2 ¯
D

¯
D♯

4 ¯
(E♭)

( )2 ¯
E

¯
F

¯
F♯

4 ¯
(G♭)

( )2 ¯
G

¯
G♯

4 ¯
(A♭)

( )2 ¯
A

¯
A♯

4 ¯
(B♭)

( )2 ¯
B

¯

• Representing chords using pitch classes

– A (non-musical) chord is a set of pitch classes;

– A voicing is an ordered tuple (i.e., a string) of distinct pitch classes;

G
C0 







B

G

E

C









¯¯¯¯
C1 







E

B

G

C









¯¯¯
¯

C2 







G

C

B

E









¯¯ ¯
¯

C3 







C

G

E

B









¯¯¯
¯

C4 







B

E

G

C









¯¯
¯ ¯

C5 







C

B

E

G









¯¯
¯¯



On some combinatorial problems concerning the harmonic structure of musical chord sequences

Regular Harmonic Structures and Chord Connections

G ˇˇˇ ˇˇˇ ˇˇˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ Chord Progression C

• Chord progression C corresponds to the following list of sets of pitch classes

{C, E, G}, {C, E, A}, {C, F, A}, {D, F, A}, {D, F, B}, {D, G, B}, {E, G, B} .

• If we look at the voicings of the chords of C we get the following “regular” matrix M:

M =





G E C A F D B

E C A F D B G

C A F D B G E





• If we “glue” at the left (or right) end of matrix M a copy of itself, we get:

M⋆ =





G E C A F D B G E C A F D B

E C A F D B G E C A F D B G

C A F D B G E C A F D B G E





Problem Can we voice a chord progression in such a way that it assumes a regular harmonic

structure like that of the chord progression C?
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Formal definitions

Let Σ be a finite alphabet (Σ = {a, b, c, x, y} in the examples).

• A chord over Σ is a nonempty set C of two or more symbols of Σ.

• The size of a chord C, denoted by size(C), is the number of symbols in C.

• A chord progression is a sequence C = 〈C0, C1, . . . , Cn〉 of chords such that

size(C0) = size(C1) = · · · = size(Cn).

• A string X of length m ≥ 0 is represented as a finite array X [0 .. m − 1]. The length of X is

denoted by |X|. By X [i] we denote the (i + 1)-th symbol of X , for 0 ≤ i < |X|.

• A voicing over Σ is a string V of symbols of Σ such that |V | ≥ 2 and V [i] 6= V [j] for all

distinct i, j ∈ {0, 1, . . . , |V | − 1}.

Example

V = axby


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


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


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• The base chord Set(V ) of a voicing V is the set of the symbols occurring in V .

• A voicing V is said to be a voicing of a chord C if Set(V ) = C.
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• A voice leading over Σ is a sequence V = 〈V0, V1, . . . , Vn〉 of voicings over Σ such that

|V0| = |V1| = · · · = |Vn|.

• A voice leading V = 〈V0, V1, . . . , Vn〉 is a voice leading of a chord progression

C = 〈C0, C1, . . . , Cm〉, if n = m and Vi is a voicing of the chord Ci, for i = 0, 1, . . . , n.

• A voicing V is (immediately) connected to a voicing W , in symbols V −→ W , if

W = s r V [0 .. |V | − 2], for some symbol s ∈ Σ.

Example

abcx −→ yabc











x c

c b

b a

a y











• A voice leading V = 〈V0, V1, . . . , Vn〉 is connected if Vi −→ Vi+1, for i = 0, 1, . . . , n − 1; V

is circularly connected if it is connected and in addition Vn −→ V0.

Example

A connected voice leading

axc −→ cax −→ bca −→ ybc





c x a c

x a c b

a c b y




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Example

A circularly connected voice leading

↓
axc −→ yax −→ cya −→ xcy





c x a y

x a y c

a y c x





• A voicing V is connectable to a voicing W with respect to the alphabet Σ, in symbols

V =⇒ W , if there is a connected voice leading V = 〈V0, V1, . . . , Vn〉 over Σ, with n ≥ 1, such

that V0 = V and Vn = W .

The connectivity relation “=⇒” (between voicings) is an equivalence relation

– V =⇒ V (Reflexivity)

– V =⇒ W implies W =⇒ V (Symmetry)

– V =⇒ W and W =⇒ Z imply V =⇒ Z (Transitivity)

for all voicings V , W and Z.
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• A chord C is connected to a chord D, written C −→ D, if V −→ W , for some voicings V

of C and W of D.

• A chord progression C is connected (resp., circularly connected) if it has a connected

(resp., circularly connected) voice leading. A chord progression C = 〈C0, C1, . . . , Cn〉 is regu-

lar if it is circularly connected and, in addition, Ci 6= C(i+1) mod (n+1), for i = 0, 1, . . . , n.

Example

The chord progression

C = 〈C0, C1, C2, C3〉,

where

C0 = {a, c, x}, C1 = {a, x, y}, C2 = {a, c, y}, C3 = {c, x, y},

is regular:

– the following is a circularly connected voice leading of C

↑
axc −→ yax −→ cya −→ xcy

– and, in addition,

C0 6= C1 6= C2 6= C3 6= C0
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Discovering regular structures: some algorithms

Problem 1 Given a chord progression C = 〈C0, C1, . . . , Cn〉 over an alphabet Σ, a voicing V of

C0, and a voicing W of Cn, construct, if it exists, a connected voice leading V = 〈V0, V1, . . . , Vn〉

of C such that V0 = V and Vn = W .

• We start by setting V0 = V .

• Suppose we have constructed the

partial connected voice leading

〈V0, V1, . . . , Vi〉 of 〈C0, C1, . . . , Ci〉.

- Let Si =
Def

Set(Vi[0 .. m − 2])

if Si ⊆ Ci+1 then

- let Ci+1 \ Si = {c}

Vi+1 =
Def

c r Vi[0 .. m − 2]

else STOP

ALGO1(C, V , W )

1. m := |V |
2. X := V

3. for i := 1 to n do
4. if Set(X[0 .. m− 2]) ⊆ Ci then
5. - let z be such that Ci = Set(X[0 .. m− 2]) ∪ {z}

6. X := z r X[0 .. m− 2]
7. OUTPUT(X)

8. else
9. return false

10. if X 6= W then
11. return false

12. return true

OUTPUT: A sequence V1, V2, . . . , Vk of voicings such that 〈V, V1, V2, . . . , Vk〉 is the longest con-

nected voice leading, starting at V , of an initial segment of C.
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Let

C = 〈

C0

{a, b, c},

C1

{a, b, x},

C2

{a, b, x},

C3

{b, x, y}〉, V = abc, W = ybx

0) X = V = abc
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Let

C = 〈

C0

{a, b, c},

C1

{a, b, x},

C2

{a, b, x},

C3

{b, x, y}〉, V = abc, W = ybx

0) X = V = abc

1) Set(X [0 .. m−2]) = {a, b} ⊆ C1 → C1 \ {a, b} = {x} → X = xab

OUTPUT: xab
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Let

C = 〈

C0

{a, b, c},

C1

{a, b, x},

C2

{a, b, x},

C3

{b, x, y}〉, V = abc, W = ybx

0) X = V = abc

1) Set(X [0 .. m−2]) = {a, b} ⊆ C1 → C1 \ {a, b} = {x} → X = xab

2) Set(X [0 .. m−2]) = {a, x} ⊆ C2 → C2 \ {a, x} = {b} → X = bxa

OUTPUT: xab, bxa
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Let

C = 〈

C0

{a, b, c},

C1

{a, b, x},

C2

{a, b, x},

C3

{b, x, y}〉, V = abc, W = ybx

0) X = V = abc

1) Set(X [0 .. m−2]) = {a, b} ⊆ C1 → C1 \ {a, b} = {x} → X = xab

2) Set(X [0 .. m−2]) = {a, x} ⊆ C2 → C2 \ {a, x} = {b} → X = bxa

3) Set(X [0 .. m−2]) = {b, x} ⊆ C3 → C3 \ {b, x} = {y} → X = ybx = W → TRUE

OUTPUT: xab, bxa, ybx

abc −→ xab −→ bxa −→ ybx
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Time Complexity

ALGO1(C, V , W )
1. m := |V |

2. X := V

3. for i := 1 to n do

4. if Set(X[0 .. m− 2]) ⊆ Ci then
5. - let z be such that Ci = Set(X[0 .. m− 2]) ∪ {z}
6. X := z r X[0 .. m− 2]

7. OUTPUT(X) T1(m) O(n × T1(m))
8. else

9. return false

10. end if

11. end for
12. if X 6= W then
13. return false T2(m)

14. end if
15. return true

Representing chords and voicings as linear arrays:

Overall Running Time = O(n × m2)

{

T1(m) = O(m2)

T2(m) = O(m)

However, by using bit-parallelism we can reduce time complexity to O(n + m) . . .
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Representation of Chords and Voicings

Let

Σ = {s0, s1, . . . , sσ−1}

be a fixed alphabet. We use the following representations:

• a singleton {si} ⊆ Σ is represented as the bit mask B(si) = b0b1 · · · bσ−1 (of length σ), where

bj =

{

1 if j = σ − 1 − i

0 otherwise ,

for j = 0, 1, . . . , σ − 1 ;

• a nonempty subset A = {si0, si1, . . . , sik} of Σ is represented as the bit mask

B(A) =
Def

B(si0) ∨ B(si1) ∨ · · · ∨ B(sik) ;

• the empty subset of Σ is represented by the bit mask 0σ, i.e., the string consisting of σ copies of

the bit 0;

• a chord progression C = 〈C0, C1, . . . , Cn〉 is represented as an array C[0 .. n] of n + 1 bit masks,

where C[i] = B(Ci) for i = 0, 1, . . . , n;

• a voicing V of length m is represented as an array V[0 .. m − 1] of m bit masks, where V[i] =

B(V [i]), for i = 0, 1, . . . , m − 1 (this amounts to represent a voicing V = v0v1 · · · vm−1 as the

ordered tuple of the bit masks corresponding to the singletons {v0}, {v1}, . . . , {vm−1}).
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Examples

Let

Σ = {a, b, c, x, y}

• Singletons

{a}, {b}, {c}, {x}, {y}

are represented by the bit masks

B(a) = 00001, B(b) = 00010, B(c) = 00100, B(x) = 01000, B(y) = 10000

• Chords

A = {a, b, c}, B = {a, b, c, y}, C = {y, b, x}

are represented by the bit masks

B(A) = 00111, B(B) = 10111, B(C) = 11010

• Voicings

V = abc, W = xbya

are represented by the arrays (of bit masks)

V = [00001, 00010, 00100], W = [10000, 00010, 01000, 00001]
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Algorithm ALGO2: a bit-parallel version of ALGO1

ALGO2(C, V, W)
1. m := length(V)

2. n := length(C) − 1
3. for h = m − 2 down to 0 do

4. Q[h] := V[m − 2 − h]
5. S := 0σ

6. for i := 0 to m − 2 do
7. S := S ∨ V[i]

8. h := 0
9. for i := 1 to n do

10. if (C[i] ∧ S) = S then

11. Z := (C[i]∧ ∼ S)
12. D := Q[h]

13. Q[h] := Z

14. h := (h + 1) mod (m − 1)

15. S := (S∧ ∼ D) ∨ Z

16. else
17. return false

18. for j := 0 to m − 2 do
19. if Q[(h + j) mod (m − 1)] 6= W[m − 2 − j] then

20. return false

21. return true

The algorithm ALGO2 returns true if there

is a connected voice leading of the chord pro-

gression C from the voicing V to voicing W ,

and false, otherwise.

The algorithm “constructs” the longest con-

nected voice leading 〈V0, V1, . . . , Vk〉 (start-

ing at V ) of an initial segment of C.

For i = 1, 2, . . . , k, immediately after itera-

tion i of the for-loop of line 9:

- the partial voicing Vi[0 .. m − 2] is stored

circularly into the array Q:

Vi[h − 1] · · · Vi[0] Vi[m − 2] · · · Vi[h]

0 · · · h − 1 h · · · m − 2

- the bit mask S stores the partial chord

Set(Vi[0 .. m − 2]);

Time complexity: O(n + m)
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ALGO2(C, V, W)
1. m := length(V)

2. n := length(C) − 1
3. for h = m − 2 down to 0 do

4. Q[h] := V[m − 2 − h]
5. S := 0σ

6. for i := 0 to m − 2 do
7. S := S ∨ V[i]
8. h := 0

9. for i := 1 to n do
10. if (C[i] ∧ S) = S then

11. Z := (C[i]∧ ∼ S)
X := decode(Z)

for j := 0 to m − 2 do

X := X r decode(Q[(h + m − 2 − j) mod (m − 1)])

OUTPUT(X)

12. D := Q[h]
13. Q[h] := Z

14. h := (h + 1) mod (m − 1)
15. S := (S∧ ∼ D) ∨ Z

16. else
17. return false

18. for j := 0 to m − 2 do
19. if Q[(h + j) mod (m − 1)] 6= W[m − 2 − j] then
20. return false

21. return true

If we use an auxiliary string-variable X and

add the following lines of code between lines

11 and 12:

X := decode(Z)

for j := 0 to m − 2 do

X := X r decode(Q[(h + m − 2 − j) mod (m − 1)])

OUTPUT(X)

we get as output the longest connected voice

leading of an initial segment of C.

The one-argument function decode yields

the symbol s, when applied to the bit mask

B(s) which represents the singleton {s}, for

s ∈ Σ.

If we assume that Σ is the set of the first σ

nonnegative integers, Σ = {0, 1, . . . , σ − 1},

then

- B(s) = (1 << s) = 2s, for each s ∈ Σ;

- decode(x) =
Def

log2 x;

(s = log2 2s = log2 B(s) = decode(B(s)))
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Problem 2 Given a chord progression C = 〈C0, C1, . . . , Cn〉, check whether C is regular.

• A natural (but inefficient) solution

Let m be the size of the chords C0, C1, . . . , Cn.

– We start by checking that Ci 6= Ci+1, for i = 0, 1, . . . , n − 1;

– Then we form the set V oic(C0) of all possible voicings of the first chord C0;

– For each voicing V ∈ V oic(C0) we run the algorithm ALGO1 to search for a connected voice

leading of C from V to the voicing W = V [1 .. m − 1] r w, where w is the only symbol of Cn

not contained in C0 (if, indeed, size(Cn \ C0) 6= 1, then, certainly, C would not be regular).

However, since there are m! possible voicings of C0, such an approach is very time-consuming.

• The main observation

Suppose C = 〈C0, C1, . . . , Cn〉 is regular, and let V = 〈V0, V1, . . . , Vn〉 be a circularly connected

voice leading of C, where V0 = v0v1v2 · · · vm−1. Moreover, let

Xk =
m−1−k
⋂

i=0

Ci , for k = 0, 1, . . . , m − 1.

Then

1. X0 = {v0}, X1 \ X0 = {v1}, X2 \ X1 = {v2}, . . . , Xm−1 \ Xm−2 = {vm−1};

2. Vn = v1v2 · · · vm−1w where Cn \ C0 = {w};
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Example

The chord progression C = 〈C0, C1, C2, C3, C4〉, where

C0 = {a, b, c, x}, C1 = {a, c, x, y}, C2 = {a, b, x, y}, C3 = {a, b, c, y}, C4 = {b, c, x, y},

is regular.










C0

b

C1

c

C2

x

C3

a

C4

y

c x a y b

x a y b c

a y b c x





















C0

b

C1

c

C2

x

C3

a

C4

y

c x a y b

x a y b c

a y b c x











X3 = C0 = {a, b, c, x} X2 = C0 ∩ C1 = {a, c, x}

X3 \ X2 = {b}











C0

b

C1

c

C2

x

C3

a

C4

y

c x a y b

x a y b c

a y b c x





















C0

b

C1

c

C2

x

C3

a

C4

y

c x a y b

x a y b c

a y b c x











X1 = C0 ∩ C1 ∩ C2 = {a, x} X0 = C0 ∩ C1 ∩ C2 ∩ C3 = {a}

X2 \ X1 = {c} X1 \ X0 = {x}
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The Algorithm ALGO3 to check whether a chord progression C = 〈C0, C1, . . . , Cn〉 is regular.

C = 〈C0, C1, . . . , Cn〉
Input:

Is Ci 6= Ci+1,

for i = 0, 1, . . . , n − 1?

Let

- Xk =
m−k−1

⋂

i=0

Ci,

for k = 0, 1, . . . , m − 1

Is size(Xk+1 \ Xk) = 1,

for k = 0, 1, . . . , m − 2
AND

size(Cn \ C0) = 1?
Let

- Xk+1 \ Xk = {vk+1},

for k = 0, 1, . . . , m − 2
- X0 = {v0}

- Cn \ C0 = {w}
- V = v0v1 · · · vm−1

- W = v1 · · · vm−1w

ALGO1(C, V, W )?

NOT REGULAR

Output:

REGULAR

Output:

NOYES

NOYES

NO

YES
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Algorithm ALGO4: a bit-parallel version of ALGO3

ALGO4(C, m)
1. n := length(C) − 1

2. for i := 0 to n − 1 do
3. if C[i] = C[i + 1] then Is C0 6= C1 6= · · · 6= Cn ?
4. return false

5. end for
6. X[m − 1] := C[0]

7. for k := m − 2 down to 0 do
8. X[k] := X[k + 1] ∧ C[m − k − 1]

9. if X[k] 6= 0σ and X[k] 6= X[k + 1] then Construct sets Xm−1, Xm−2, . . . , X0

10. V[k + 1] := W[k] := X[k + 1]∧ ∼ X[k] and check whether

11. else Xm−1 % Xm−2 % · · · % X0 6= ∅
12. return false

13. end if

14. end for
15. V[0] := X[0]

16. if X[0] ∧ C[n] = 0σ and (C[n] ∧ C[0]) ∨ X[0] = C[0] then Is size(Cn \ C0) = 1 ?
17. W[m − 1] := C[n]∧ ∼ C[0]

18. return ALGO2(C,V,W)
19. else
20. return false

21. end if

Time complexity: O(n + m)
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Further questions on the connectivity of chords

Property 3 Any two chords of the same size can always be connected by a voice leading.

Let C and D be two chords of size m, and let V0 be any voicing of C. We define a connected voice

leading V = 〈V0, V1, . . . , Vm〉 such that Set(Vm) = D:

• Vi+1 = si r Vi[0 .. m − 2], where si is any symbol in D \ Set(Vi[0 .. m − 2]),

for i = 0, 1, . . . , m − 2.

We notice that the voicing V0 of C has been selected arbitrarily ... therefore, we can conclude

that the following property holds too:

Property 4 Any given chord progression C = 〈C0, C1, . . . , Cn〉 can always be extended to a

connected chord progression C ′ = 〈C ′
0, C

′
1, . . . , C

′
p〉, in the sense that Ci = C ′

ki
, for some strictly

increasing sequence of indices 0 ≤ ki ≤ p, for i = 0, 1, . . . , n.

An interesting problem is then the following:

Open Problem 5 Given a chord progression C, find a connected chord progression of minimal

length which extends C.
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The connectivity relation between voicings depends on the richness of the alpha-

bet.

Let V = abcd and W = abdc be two voicings of the same chord C = {a, b, c, d}. If we try to connect

V to W by using only symbols of the alphabet Σ = {a, b, c, d}, then we end up with the periodic

voice leading

abcd −→ dabc −→ cdab −→ bcda −→ abcd −→ dabc −→ cdab −→ bcda −→ abcd −→ . . .

However, if we are allowed to use a new symbol, say x, then it is immediate to see that

〈abcd, xabc, cxab, dcxa, bdcx, abdc〉

is a voice leading which connects V to W (with respect to the extended alphabet Σ ∪ {x}).

A connectability test for voicings:

Property 6 Given any two voicings V and W of the same length over an alphabet Σ, if

Set(V ) 6= Σ or Set(W ) 6= Σ, then V can be connected to W with respect to Σ, otherwise V can

be connected to W if and only if W is a substring of V r V .

... and the related optimization problem:

Open Problem 7 Given two voicings V and W of the same length over an alphabet Σ,

determine a shortest voice leading connecting V to W .
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... however, Property 6 does not say anything on the fact that a voice leading V which connects V

to W have to satisfy the additional property that any two or more consecutive voicings of V must

have distinct base chords.

Example

Although voicing V = abcd is connectable to voicing W = abdc with respect to the alphabet

Σ = {a, b, c, d} ∪ {x}, there is no way to connect V to W by a voice leading 〈V0, V1, . . . , Vn〉 over

Σ such that Set(V0) 6= Set(V1) 6= . . . Set(Vn).

Indeed, if we try to connect V to W by a such voice leading:

abcd −→ xabc −→ dxab −→ cdxa −→ bcdx −→ abcd −→ xabc −→ dxab −→ cdxa −→ . . .

... fortunately, we have:

Property 8 Let V and W be voicings of length m over an alphabet Σ of size at least m + 2.

Then there is a connected voice leading 〈V0, V1, . . . , Vn〉, which connects V to W with respect

to Σ, such that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1.

... therefore, any given chord progression can always be extended to a regular chord progression by

adding at most two new symbols. An interesting question is then the following:

Open Problem 9 Given a chord progression C = 〈C0, C1, . . . Cn〉 over an alphabet Σ and a

fixed bound k > n, determine the minimum number of new symbols we need to add to Σ in

order that C can be extended to a regular chord progression of length at most k.
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Conclusions and future works

• A bit of music (theory)

• Regular Harmonic Structures and Chord Connections

• Formal definitions

• Discovering regular structures: some algorithms

• Further questions on the connectivity of chords

• Solutions to the open problems

• Other notions of connectivity of chords


