
Adapting Boyer-Moore-Like Algorithms for Searching
Huffman Encoded Texts

Domenico Cantone Simone Faro Emanuele Giaquinta

Department of Mathematics and Computer Science, University of Catania, Italy

1 / 26

String matching in compressed texts

Compressed matching problem (Amir & Benson, 1992):

Alphabet Σ

Pattern P

Compression system (E ,D)

Encoded Text E(T)

Find all the shifts of P in T using E(P) and E(T)

2 / 26

String matching in compressed texts

A static compression method is characterized by a system (E ,D) of two
complementary functions:

E : Σ→ {0, 1}+
E(ε) = ε
E(T [1 .. `]) = E(T [1 .. `− 1]).E(T [`]),∀` : 1 ≤ ` ≤ |T |

D(E(c)) = c ,∀c ∈ Σ

Prefix property - @c1, c2 : E(c1) v E(c2)

Canonical Huffman coding

3 / 26

String matching in compressed texts

A static compression method is characterized by a system (E ,D) of two
complementary functions:

E : Σ→ {0, 1}+
E(ε) = ε
E(T [1 .. `]) = E(T [1 .. `− 1]).E(T [`]),∀` : 1 ≤ ` ≤ |T |

D(E(c)) = c ,∀c ∈ Σ

Prefix property - @c1, c2 : E(c1) v E(c2)

Canonical Huffman coding

3 / 26

String matching in compressed texts

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Problem: false positives, occurrences of E(P) in E(T) which do not
correspond to occurrences of P in T .

An occurrence of E(P) which does not start on a codeword boundary is a
false positive.

4 / 26

String matching in compressed texts

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Problem: false positives, occurrences of E(P) in E(T) which do not
correspond to occurrences of P in T .

An occurrence of E(P) which does not start on a codeword boundary is a
false positive.

4 / 26

String matching in compressed texts

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Problem: false positives, occurrences of E(P) in E(T) which do not
correspond to occurrences of P in T .

An occurrence of E(P) which does not start on a codeword boundary is a
false positive.

4 / 26

minimum redundancy codes

A binary prefix code can be represented with an ordered binary tree, whose
leaves are labeled with characters in Σ and whose edges are labeled by 0
(left) and 1 (right).

The codeword of a given character is the word labeling the branch from
the root to the leaf labeled by the same character.

5 / 26

skeleton tree

The minimal prefix of a codeword which allows one to unambigously
determine the codeword length corresponds to the minimum depth node in
the path from the root induced by the codeword, which is the root of a
complete subtree.

The skeleton tree (Klein, 2000) is a pruned canonical Huffman tree whose
leaves correspond to minimum depth nodes in the Huffman tree which are
roots of complete subtrees.

It is useful to maintain at each leaf of a skeleton tree the common length
of the codeword(s) sharing the prefix which labels the path from the root
to it.

6 / 26

skeleton tree

b : 00

i : 01

d : 1000

t : 1001

a : 1010

r : 1011

l : 1100

c : 1101

g : 11100

k : 11101

u : 11110

e : 11111

b i

d t a r l c

g k u e

0

2 0

4 0

4 5

0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1

0 1

7 / 26

Previous work

sk-KMP (Daptardar & Shapira, 2006): modified KMP, prefix
alignments always respect codeword boundaries. Decoding uses the
skeleton tree. If no prefix matches the border of the current window,
the algorithm can skip the remaining bits for the current codeword.

8 / 26

skeleton tree verification

Filtering/verification paradigm

The filtering phase searches the occurrences of E(P) in E(T)

The verification phase uses an algorithm based on the skeleton tree to
verify candidate matches

9 / 26

skeleton tree verification

Suppose that we have found a candidate shift s. We need to know if s is
codeword aligned.

We maintain an offset ρ pointing to the start of the last window where a
verification has taken place.

We update - using the skeleton tree - ρ to a minimal position ρ∗ ≥ s
which is codeword aligned. If ρ∗ = s, s is a valid shift.

10 / 26

skeleton tree verification

Sk-Align(root, t, ρ, s)

1 x ← root, `← 0
2 while true
3 do B ← Bt [bρ / kc]� (ρ mod k)
4 if B < 2k−1 then x ← Left(x) else x ← Right(x)
5 if Key(x) 6= 0
6 then ρ← ρ+ Key(x)− `, `← 0, x ← root
7 if ρ ≥ s then break
8 else ρ← ρ+ 1, `← `+ 1
9 return ρ

11 / 26

skeleton tree verification

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

0̄01̄000̄11̄100̄01̄110 j = 3

SK-ALIGN(root, t, 0, 3) = 5 6= 3

0̄01̄000̄11̄100̄01̄110 j = 9

SK-ALIGN(root, t, 5, 9) = 10 6= 9

12 / 26

skeleton tree verification

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

0̄01̄000̄11̄100̄01̄110 j = 3

SK-ALIGN(root, t, 0, 3) = 5 6= 3

0̄01̄000̄11̄100̄01̄110 j = 9

SK-ALIGN(root, t, 5, 9) = 10 6= 9

12 / 26

skeleton tree verification

t : 00

e : 01

w : 100

a : 101

n : 110

y : 1110

b : 1111

ten 0̄00̄11̄10

twenty 0̄01̄000̄11̄100̄01̄110

0̄01̄000̄11̄100̄01̄110 j = 3

SK-ALIGN(root, t, 0, 3) = 5 6= 3

0̄01̄000̄11̄100̄01̄110 j = 9

SK-ALIGN(root, t, 5, 9) = 10 6= 9

12 / 26

skeleton tree verification

Pros

Lazy decoding: in the best case (the pattern does not occur) no
decoding is performed

For every codeword the algorithm reads the minimum number only of
bits necessary to infer its length

Cons

The number of bits processed depends on the position of candidate
matches

13 / 26

skeleton tree verification

Huffman-matcher(P,m,T , n)

1 Precompute Globals(P)
2 n← |T |
3 m← |P|
4 s ← 0
5 ρ← 0
6 root ← Build-Sk-Tree(φ)
7 for i ← 0 to n − 1
8 do j ← Check Shift(s,P,T)
9 if j = s + m − 1

10 then ρ← Sk-Align(root,T , ρ, j)
11 if ρ = j then Print(j)
12 s ← s + Shift Increment(s,P,T , j)

14 / 26

string matching in binary strings

Adaptation of existing algorithms for binary strings

BINARY-HASH-MATCHING (Lecroq & Faro, 2009)

FED (J. Kim & E. Kim & Park, 2007)

15 / 26

string matching in binary strings

Scanning T with bit granularity is slow

T [0, . . . , n − 1]→ BT [0, . . . , dn/ke − 1], BT [i] is a block of k bits

An occurrence of P can start at bit 1, 2, . . . k of a block

Pi ← P � i

Pi [0, . . . ,m + i − 1]→ Patti [0, . . . , d(m + i)/ke − 1]

ent 10001110
twenty 00100011-10001110

P2 00100011-10000000

16 / 26

string matching in binary strings

Scanning T with bit granularity is slow

T [0, . . . , n − 1]→ BT [0, . . . , dn/ke − 1], BT [i] is a block of k bits

An occurrence of P can start at bit 1, 2, . . . k of a block

Pi ← P � i

Pi [0, . . . ,m + i − 1]→ Patti [0, . . . , d(m + i)/ke − 1]

ent 10001110
twenty 00100011-10001110

P2 00100011-10000000

16 / 26

string matching in binary strings

Scanning T with bit granularity is slow

T [0, . . . , n − 1]→ BT [0, . . . , dn/ke − 1], BT [i] is a block of k bits

An occurrence of P can start at bit 1, 2, . . . k of a block

Pi ← P � i

Pi [0, . . . ,m + i − 1]→ Patti [0, . . . , d(m + i)/ke − 1]

ent 10001110
twenty 00100011-10001110
P2 00100011-10000000

16 / 26

string matching in binary strings

E(P) = 110010110010110010110

(A) Patt 0 1 2 3
0 11001011 00101100 10110000

1 01100101 10010110 01011000

2 00110010 11001011 00101100

3 00011001 01100101 10010110

4 00001100 10110010 11001011 00000000

5 00000110 01011001 01100101 10000000

6 00000011 00101100 10110010 11000000

7 00000001 10010110 01011001 01100000

(B) Mask 0 1 2 3
0 11111111 11111111 11111000

1 01111111 11111111 11111100

2 00111111 11111111 11111110

3 00011111 11111111 11111111

4 00001111 11111111 11111111 10000000

5 00000111 11111111 11111111 11000000

6 00000011 11111111 11111111 11100000

7 00000001 11111111 11111111 11110000

17 / 26

string matching in binary strings

The pattern E(P) is aligned with the s-th bit of the text if

Patt i [h] = BT [j + h] & Mask i [h], for h = 0, 1, ...,mi − 1

where j = bs/kc, i = s mod k,mi = d(m + i)/ke

18 / 26

string matching in binary strings

Bad character rule does not work well with binary alphabets,
bc(c)→ 1, ∀c ∈ Σ

Super alphabet: 2→ 2k

P is logically divided into m − k overlapping grams

19 / 26

BINARY-HASH-MATCHING

Shift with bit granularity

Hs(B) = min
“
{0 ≤ u < m | p[m − u − k ..m − u − 1] w B} ∪ {m}

”
, 0 ≤ B < 2k

if Hs[B] = 0, the alignment (s −m + 1) mod k is checked, where s
is the current position in T in bits

20 / 26

BINARY-HASH-MATCHING

Shift with bit granularity

Hs(B) = min
“
{0 ≤ u < m | p[m − u − k ..m − u − 1] w B} ∪ {m}

”
, 0 ≤ B < 2k

if Hs[B] = 0, the alignment (s −m + 1) mod k is checked, where s
is the current position in T in bits

20 / 26

FED

Shift with byte granularity

δi (c) = min({mi − 2 + 1} ∪ {mi − 2 + 1− k | Patti [k] = c and 1 ≤ k ≤ mi − 2})

δ(c) = min{δi (c), 0 ≤ i < k}

hash table λ to find candidate alignments, each entry in the table
pointing to a linked list of patterns

pattern Patti is inserted into the slot with hash value Patti [mi − 2]

21 / 26

FED

Shift with byte granularity

δi (c) = min({mi − 2 + 1} ∪ {mi − 2 + 1− k | Patti [k] = c and 1 ≤ k ≤ mi − 2})

δ(c) = min{δi (c), 0 ≤ i < k}

hash table λ to find candidate alignments, each entry in the table
pointing to a linked list of patterns

pattern Patti is inserted into the slot with hash value Patti [mi − 2]

21 / 26

Complexity

O(dm/ken) worst case time complexity

O(m + 2k) space complexity

k ≤ 8 works well for a single pattern, space overhead negligible

22 / 26

Experimental results

Implementation in C, compiled with gcc 4, run on PowerPC G4 1.5
GHz

Natural language texts

Set of 100 patterns of fixed length m ∈ {4, 8, 16, 32, 64, 128, 256},
randomly extracted from the text

Comparison between the following algorithms:

Huffman-Kmp
Huffman-Hash-Matching
Huffman-Fed
Decompress and Search with 3-Hash algorithm

23 / 26

Experimental results - running times

 0

 200

 400

 600

 50 100 150 200 250

ti
m

e

m

HKMP HHM HFED D&S

24 / 26

Experimental results - processed bits

 0

 0.5

 1

 50 100 150 200 250

b
it
s

m

HKMP HHM HFED

25 / 26

Conclusions

Our generic algorithm can skip many bits when decoding

Sublinear on average when used with Boyer-Moore like algorithms

Fast, especially when the pattern frequency is low

26 / 26

