An Efficient Algorithm for Approximate Pattern Matching with Swaps

Matteo Campanelli² Domenico Cantone¹ Simone Faro¹ Emanuele Giaquinta¹

Department of Mathematics and Computer Science, University of Catania, Italy

Scuola Superiore di Catania, University of Catania, Italy

A swap permutation for a string P of length m is a permutation $\pi : \{0, ..., m-1\} \to \{0, ..., m-1\}$ such that:

(a) if $\pi(i) = j$ then $\pi(j) = i$ (characters at positions i and j are swapped);

(b) for all i, $\pi(i) \in \{i-1, i, i+1\}$ (only adjacent characters are swapped);

(c) if $\pi(i) \neq i$ then $P[\pi(i)] \neq P[i]$ (identical characters can not be swapped).

A swap permutation for a string P of length m is a permutation $\pi : \{0, ..., m-1\} \to \{0, ..., m-1\}$ such that:

(a) if $\pi(i) = j$ then $\pi(j) = i$ (characters at positions i and j are swapped); (b) for all $i, \pi(i) \in \{i-1, i, i+1\}$ (only adjacent characters are swapped);

(c) if $\pi(i) \neq i$ then $P[\pi(i)] \neq P[i]$ (identical characters can not be swapped).

P has a swapped occurrence in T at location j with k swaps - $P \propto_k T_i$ - if a swap permutation π of P exists such that $\pi(P)$ matches T at location j and $k = |\{i : P[i] \neq P[\pi(i)]\}|/2$

fate

Approximate Pattern Matching with Swaps problem:

- Alphabet Σ
- Pattern P
- Text T

Find all the pairs (j, k) such that P has a swapped occurrence in T at location i with k swaps

- (Amir & Lewenstein & Porat, 2002): $\mathcal{O}(n \log m \log \min(m, |\Sigma|))$
- (Cantone & Faro, 2009):
	- \odot $\mathcal{O}(mn)$ dynamic-programming algorithm
	- \odot $\mathcal{O}(\left[\frac{m n \log m}{w}\right])$ bit-parallel algorithm; linear $\mathcal{O}(n)$ if $m(\log(|m/2| + 1) + 1) \leq w$
- BDM-like algorithm:
	- right-to-left scans in windows of size m
	- window update by left-align with the longest prefix matched
- Find the longest prefix of the pattern which has a swapped occurrence in the current window and count the number of swap operations using dynamic-programming

$$
\mathcal{S}_j^h = \{h-1 \leq i \leq m-1 \mid P[i-h+1..i] \propto T_j\}
$$

The set \mathcal{S}^h_j includes all the values i such that the *h*-substring of P ending at position i has a swapped occurrence ending at position i in T

$$
\mathcal{W}_j^h = \{ h \le i < m-1 \mid P[i-h+2..i] \propto T_j \text{ and } P[i-h+1] = T[j-h] \}
$$

The set W^h_j includes all the values i such that the $h-1$ substring of P ending at position i has a swapped occurrence at position \overline{j} in \overline{T} and the first part of the swap between characters $P[i - h]$ and $P[i - h + 1]$ is recognized

The sets \mathcal{S}^h_j and \mathcal{W}^h_j can be computed using the following recurrences:

\n- \n
$$
\mathcal{S}_{j}^{h+1} = \{h-1 \leq i \leq m-1 \mid (i \in \mathcal{S}_{j}^{h} \text{ and } P[i-h] = T[j-h]) \text{ or } (i \in \mathcal{W}_{j}^{h} \text{ and } P[i-h] = T[j-h+1])\}
$$
\n
\n- \n
$$
\mathcal{W}_{j}^{h+1} = \{h \leq i \leq m-1 \mid i \in \mathcal{S}_{j}^{h} \text{ and } P[i-h] = T[j-h-1]\}
$$
\n
\n

Base cases:

\n- $$
\mathcal{S}_j^0 = \{i \mid 0 \leq i < m\}
$$
\n- $\mathcal{W}_j^0 = \{0 \leq i < m - 1 \mid P[i + 1] = T[j]\}$
\n

- If $h-1\in \mathcal{S}_j^h$ there is a swapped occurrence of the prefix of P of length h
- The window is shifted by $m-l$, where $l=\max\{h: h-1\in \mathcal{S}_{j}^{h}\}$

If $m-1\in S_j^m$ P has a swapped occurrence at position j in ${\mathcal T}$

$$
\quad \bullet \ \ m-1 \in S_j^m \iff m-1 \in (S_j^h \cup W_j^h), 1 \leq h \leq m
$$

• Swap between characters $P[m-1-h]$ and $P[m-1-h+1]$ \iff $m-1\in S_j^{h+1}\wedge m-1\in\mathit{W}_j^h\wedge m-1\notin S_j^h$

$$
P = \text{ooze}, T = \text{ooez}
$$
\n
$$
m - 1 \in W_j^1, m - 1 \notin S_j^1
$$
\n
$$
m - 1 \notin W_j^2, m - 1 \in S_j^2
$$
\n
$$
m - 1 \in W_j^3, m - 1 \in S_j^3
$$
\n
$$
m - 1 \in W_j^4, m - 1 \in S_j^4
$$

- \bullet The number of swaps for a match at position *j* is given by $|\{1 \leq h < m \; : \; (m-1) \; \in \; (\mathcal{S}_i^{h+1})\}$ $\{S_j^{h+1}\setminus S_j^h)\}|$
- The algorithm maintains a single counter per window
- At iteration h the counter is incremented if $m-1\in\mathcal{S}^{h+1}_i$ $\zeta_j^{h+1}\setminus \mathcal{S}_j^h$

• Simulation of APPROXIMATE-BCS using bit-parallelism \mathcal{S}^h_j and \mathcal{W}^h_j represented as vector of m bits $\mathcal{S}_j^h \rightarrow D_j^h$: the $i-h+1$ -th bit of D_j^h is set to 1 if $i \in \mathcal{S}_j^h$ $\mathcal{W}_j^h \rightarrow \mathcal{C}_j^h$: the $i-h+1$ -th bit of \mathcal{C}_j^h is set to 1 if $i \in \mathcal{W}_j^h$ • Bit mask $M[c]$, *i*-th bit is set to 1 if $P[i] = c$, as in Shift-And

(a)
$$
S_j^{h+1} \leftarrow \{i : i \in S_j^h \text{ and } P[i-h] = T[j-h] \}
$$

(a') $D_j^{h+1} \leftarrow (D_j^h \ll 1) \& M[T[j-h]]$

(b)
$$
S_j^{h+1} \leftarrow S_j^{h+1} \cup \{i : i \in \mathcal{W}_j^h \text{ and } P[i-h] = T[j-h+1]\}
$$

(b') $D_j^{h+1} \leftarrow D_j^{h+1} \mid ((C_j^h \ll 1) \& M[T[j-h+1]])$

\n- (c)
$$
\mathcal{W}_j^{h+1} \leftarrow \{i : i \in \mathcal{S}_j^h \text{ and } P[i-h] = T[j-h-1]\}
$$
\n- (c') $C_j^{h+1} \leftarrow (D_j^h \ll 1) \& M[T[j-h-1]]$
\n

$$
\begin{array}{ll} (d) & m-1 \in S_j^{h+1} \setminus S_j^h \\ (d') & ((D_j^{h+1} \And \sim (D_j^h \ll 1)) \And (1 \ll h)) \neq 0 \end{array}
$$

- ${\rm APPROXIMATE\text{-}BCS\text{: }\mathcal{O}(nm^2)}$ worst case time complexity, $\mathcal{O}(m)$ space complexity
- APPROXIMATE-BPBCS: $\mathcal{O}(\lceil nm^2/w \rceil)$ worst case time complexity, $\mathcal{O}(\sigma[m/w] + \log(|m/2| + 1))$ space complexity

Experimental results

- Implementation in C, compiled with gcc, run on AMD Turion X2 2GHz
- Rand σ problems, protein and genome sequences, natural language text
- Set of 100 patterns of fixed length $m \in \{4, 8, 12, 16, 20, 24, 28, 32\}$, randomly extracted from the text
- Comparison between the following algorithms:
	- Approximate-Cross-Sampling (ACS)
	- BP-Approximate-Cross-Sampling (BPACS)
	- Approximate-BCS (ABCS)
	- Approximate-BPBCS (BPABCS)
	- ILIOPOULOS-RAHMAN algorithm with a naive check of the swaps (IR&C)
	- BP-BACKWARD-CROSS-SAMPLING algorithm with a naive check of the swaps (BPBCS&C)

Experimental results

4	8	12	16	20	24	28	32
4.769	4.756	4.762	4.786	4.761	4.808	4.765	4.796
11.675	7.273	5.632	4.736	4.167	3.782	3.511	3.305
0.832	0.830	0.828	0.831	0.830	0.829	0.827	0.827
0.413	0.229	0.175	0.145	0.127	0.114	0.104	0.096
0.282	0.279	0.279	0.277	0.280	0.279	0.283	0.285
0.388	0.249	0.193	0.157	0.141	0.121	0.111	0.101

Running times for a Rand8 problem

Running times for a natural language text $(\sigma = 93)$

m	4	8	12	16	20	24	28	32
ACS	3.170	2.757	2.748	2.756	2.761	2.745	2.746	2.754
ABCS	6.175	4.054	3.164	2.705	2.306	2.288	2.042	1.866
BPACS	0.492	0.497	0.492	0.491	0.492	0.491	0.494	0.493
BPABCS	0.194	0.114	0.086	0.071	0.062	0.056	0.051	0.049
IR&C	0.171	0.165	0.164	0.168	0.165	0.165	0.165	0.167
BPBCS&C	0.164	0.126	0.094	0.076	0.070	0.059	0.056	0.055

Running times for a genome segence ($\sigma = 4$)									
m	4	8	12	16	20	24	28	32	
ACS	5.629	5.643	5.654	5.636	5.644	5.640	5.647	6.043	
ABCS	18.018	11.261	8.805	7.523	6.700	6.117	5.710	5.359	
BPACS	0.950	0.914	0.917	0.766	0.874	0.934	0.935	0.843	
BPABCS	0.647	0.318	0.266	0.232	0.195	0.174	0.160	0.147	
IR&C	0.262	0.287	0.314	0.311	0.311	0.311	0.310	0.311	
BPBCS&C	0.678	0.367	0.290	0.233	0.204	0.176	0.160	0.146	

 R_{unr} times for a genome segence $(1 - 4)$

Running times for a protein sequence $(\sigma = 22)$

m	4	8	12	16	20	24	28	32
ACS	3.777	3.784	3.671	3.729	3.766	3.703	3.716	3.741
ABCS	7.045	4.557	3.734	3.162	2.806	2.661	2.600	2.351
BPACS	0.565	0.581	0.561	0.563	0.584	0.580	0.534	0.519
BPABCS	0.249	0.142	0.103	0.084	0.074	0.066	0.061	0.058
IR&C	0.388	0.390	0.391	0.389	0.391	0.391	0.396	0.389
BPBCS&C	0.241	0.145	0.107	0.087	0.075	0.068	0.062	0.058

- The APPROXIMATE-BPBCS algorithm is the fastest for $m > 8$
- The APPROXIMATE-BPBCS algorithm scales better than BP-Approximate-Cross-Sampling
	- BP-APPROXIMATE-CROSS-SAMPLING: *m* counters, linear if $m(\log(|m/2| + 1) + 1) \leq w$
	- APPROXIMATE-BPBCS: one counter, linear if $m \leq w$