
An Efficient Algorithm for
Approximate Pattern Matching with Swaps

Matteo Campanelli2 Domenico Cantone1 Simone Faro1

Emanuele Giaquinta1

Department of Mathematics and Computer Science, University of Catania, Italy

Scuola Superiore di Catania, University of Catania, Italy

1 / 21

Pattern Matching with Swaps

A swap permutation for a string P of length m is a permutation
π : {0, ...,m − 1} → {0, ...,m − 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);

(b) for all i , π(i) ∈ {i − 1, i , i + 1} (only adjacent characters are swapped);

(c) if π(i) 6= i then P[π(i)] 6= P[i] (identical characters can not be
swapped).

P has a swapped occurrence in T at location j with k swaps - P ∝k Tj - if
a swap permutation π of P exists such that π(P) matches T at location j
and k = |{i : P[i] 6= P[π(i)]}|/2

2 / 21

Pattern Matching with Swaps

A swap permutation for a string P of length m is a permutation
π : {0, ...,m − 1} → {0, ...,m − 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);

(b) for all i , π(i) ∈ {i − 1, i , i + 1} (only adjacent characters are swapped);

(c) if π(i) 6= i then P[π(i)] 6= P[i] (identical characters can not be
swapped).

P has a swapped occurrence in T at location j with k swaps - P ∝k Tj - if
a swap permutation π of P exists such that π(P) matches T at location j
and k = |{i : P[i] 6= P[π(i)]}|/2

2 / 21

Pattern Matching with Swaps

fate

afte π(1) = 2, π(2) = 1, π(3) = 3, π(4) = 4
afet π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 3
faet π(1) = 1, π(2) = 2, π(3) = 4, π(4) = 3
ftae π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4

3 / 21

Pattern Matching with Swaps

Approximate Pattern Matching with Swaps problem:

Alphabet Σ

Pattern P

Text T

Find all the pairs (j , k) such that P has a swapped occurrence in T at
location j with k swaps

4 / 21

Previous work

(Amir & Lewenstein & Porat, 2002): O(n log m log min(m, |Σ|))

(Cantone & Faro, 2009):

O(mn) dynamic-programming algorithm
O(d(mn log m)/we) bit-parallel algorithm; linear O(n) if
m(log(bm/2c+ 1) + 1) ≤ w

5 / 21

Approximate-BCS algorithm

BDM-like algorithm:

right-to-left scans in windows of size m
window update by left-align with the longest prefix matched

Find the longest prefix of the pattern which has a swapped occurrence
in the current window and count the number of swap operations using
dynamic-programming

6 / 21

Approximate-BCS algorithm

Sh
j = {h − 1 ≤ i ≤ m − 1 | P[i − h + 1 .. i] ∝ Tj}

The set Sh
j includes all the values i such that the h-substring of P

ending at position i has a swapped occurrence ending at position j in
T

7 / 21

Approximate-BCS algorithm

Wh
j = {h ≤ i < m−1 | P[i −h + 2 .. i] ∝ Tj and P[i −h + 1] = T [j−h]}

The set W h
j includes all the values i such that the h − 1 substring of

P ending at position i has a swapped occurrence at position j in T
and the first part of the swap between characters P[i − h] and
P[i − h + 1] is recognized

8 / 21

Approximate-BCS algorithm

The sets Sh
j and W h

j can be computed using the following recurrences:

Sh+1
j = {h − 1 ≤ i ≤ m − 1 | (i ∈ Sh

j and P[i − h] = T [j − h]) or
(i ∈ Wh

j and P[i − h] = T [j − h + 1])}

Wh+1
j = {h ≤ i ≤ m − 1 | i ∈ Sh

j and P[i − h] = T [j − h − 1]}

Base cases:

S0
j = {i | 0 ≤ i < m}
W0

j = {0 ≤ i < m − 1 | P[i + 1] = T [j]}

9 / 21

Approximate-BCS algorithm

If h − 1 ∈ Sh
j there is a swapped occurrence of the prefix of P of

length h

The window is shifted by m − l , where l = max{h : h − 1 ∈ Sh
j }

10 / 21

Approximate-BCS algorithm

If m − 1 ∈ Sm
j P has a swapped occurrence at position j in T

m − 1 ∈ Sm
j ⇐⇒ m − 1 ∈ (Sh

j ∪W h
j), 1 ≤ h ≤ m

Swap between characters P[m − 1− h] and P[m − 1− h + 1] ⇐⇒
m − 1 ∈ Sh+1

j ∧m − 1 ∈W h
j ∧m − 1 /∈ Sh

j

11 / 21

Approximate-BCS algorithm

P = ooze,T = ooez

m − 1 ∈W 1
j ,m − 1 /∈ S1

j

m − 1 /∈W 2
j ,m − 1 ∈ S2

j

m − 1 ∈W 3
j ,m − 1 ∈ S3

j

m − 1 ∈W 4
j ,m − 1 ∈ S4

j

12 / 21

Approximate-BCS algorithm

The number of swaps for a match at position j is given by
|{1 ≤ h < m : (m − 1) ∈ (Sh+1

j \ Sh
j)}|

The algorithm maintains a single counter per window

At iteration h the counter is incremented if m − 1 ∈ Sh+1
j \ Sh

j

13 / 21

Approximate-BPBCS algorithm

Simulation of Approximate-BCS using bit-parallelism

Sh
j and W h

j represented as vector of m bits

Sh
j → Dh

j : the i − h + 1-th bit of Dh
j is set to 1 if i ∈ Sh

j

W h
j → C h

j : the i − h + 1-th bit of C h
j is set to 1 if i ∈W h

j

Bit mask M[c], i-th bit is set to 1 if P[i] = c, as in Shift-And

14 / 21

Approximate-BPBCS algorithm

(a) Sh+1
j ← {i : i ∈ Sh

j and P[i − h] = T [j − h]}
(a′) Dh+1

j ← (Dh
j � 1) & M[T [j − h]]

(b) Sh+1
j ← Sh+1

j ∪ {i : i ∈ Wh
j and P[i − h] = T [j − h + 1]}

(b′) Dh+1
j ← Dh+1

j | ((Ch
j � 1) & M[T [j − h + 1]])

15 / 21

Approximate-BPBCS algorithm

(c) Wh+1
j ← {i : i ∈ Sh

j and P[i − h] = T [j − h − 1]}
(c’) Ch+1

j ← (Dh
j � 1) & M[T [j − h − 1]]

(d) m − 1 ∈ Sh+1
j \ Sh

j

(d ′) ((Dh+1
j & ∼ (Dh

j � 1)) & (1� h)) 6= 0

16 / 21

Complexity

Approximate-BCS: O(nm2) worst case time complexity, O(m)
space complexity

Approximate-BPBCS: O(dnm2/we) worst case time complexity,
O(σdm/we+ log(bm/2c+ 1)) space complexity

17 / 21

Experimental results

Implementation in C, compiled with gcc, run on AMD Turion X2
2GHz

Randσ problems, protein and genome sequences, natural language
text

Set of 100 patterns of fixed length m ∈ {4, 8, 12, 16, 20, 24, 28, 32},
randomly extracted from the text

Comparison between the following algorithms:

Approximate-Cross-Sampling (ACS)
BP-Approximate-Cross-Sampling (BPACS)
Approximate-BCS (ABCS)
Approximate-BPBCS (BPABCS)
Iliopoulos-Rahman algorithm with a naive check of the swaps
(IR&C)
BP-Backward-Cross-Sampling algorithm with a naive check of
the swaps (BPBCS&C)

18 / 21

Experimental results

Running times for a Rand8 problem

m 4 8 12 16 20 24 28 32

ACS 4.769 4.756 4.762 4.786 4.761 4.808 4.765 4.796
ABCS 11.675 7.273 5.632 4.736 4.167 3.782 3.511 3.305
BPACS 0.832 0.830 0.828 0.831 0.830 0.829 0.827 0.827
BPABCS 0.413 0.229 0.175 0.145 0.127 0.114 0.104 0.096
IR&C 0.282 0.279 0.279 0.277 0.280 0.279 0.283 0.285
BPBCS&C 0.388 0.249 0.193 0.157 0.141 0.121 0.111 0.101

Running times for a natural language text (σ = 93)

m 4 8 12 16 20 24 28 32

ACS 3.170 2.757 2.748 2.756 2.761 2.745 2.746 2.754
ABCS 6.175 4.054 3.164 2.705 2.306 2.288 2.042 1.866
BPACS 0.492 0.497 0.492 0.491 0.492 0.491 0.494 0.493
BPABCS 0.194 0.114 0.086 0.071 0.062 0.056 0.051 0.049
IR&C 0.171 0.165 0.164 0.168 0.165 0.165 0.165 0.167
BPBCS&C 0.164 0.126 0.094 0.076 0.070 0.059 0.056 0.055

19 / 21

Experimental results

Running times for a genome segence (σ = 4)

m 4 8 12 16 20 24 28 32

ACS 5.629 5.643 5.654 5.636 5.644 5.640 5.647 6.043
ABCS 18.018 11.261 8.805 7.523 6.700 6.117 5.710 5.359
BPACS 0.950 0.914 0.917 0.766 0.874 0.934 0.935 0.843
BPABCS 0.647 0.318 0.266 0.232 0.195 0.174 0.160 0.147
IR&C 0.262 0.287 0.314 0.311 0.311 0.311 0.310 0.311
BPBCS&C 0.678 0.367 0.290 0.233 0.204 0.176 0.160 0.146

Running times for a protein sequence (σ = 22)

m 4 8 12 16 20 24 28 32

ACS 3.777 3.784 3.671 3.729 3.766 3.703 3.716 3.741
ABCS 7.045 4.557 3.734 3.162 2.806 2.661 2.600 2.351
BPACS 0.565 0.581 0.561 0.563 0.584 0.580 0.534 0.519
BPABCS 0.249 0.142 0.103 0.084 0.074 0.066 0.061 0.058
IR&C 0.388 0.390 0.391 0.389 0.391 0.391 0.396 0.389
BPBCS&C 0.241 0.145 0.107 0.087 0.075 0.068 0.062 0.058

20 / 21

Conclusions

The Approximate-BPBCS algorithm is the fastest for m ≥ 8

The Approximate-BPBCS algorithm scales better than
BP-Approximate-Cross-Sampling

BP-Approximate-Cross-Sampling: m counters, linear if
m(log(bm/2c+ 1) + 1) ≤ w
Approximate-BPBCS: one counter, linear if m ≤ w

21 / 21

