
Another Use of the Five-Card Trick:
Card-Minimal Secure Three-Input Majority

Function Evaluation⋆

Kodai Toyoda1 , Daiki Miyahara2,3 , and Takaaki Mizuki1,3

1 Tohoku University, Sendai, Japan
mizuki+lncs[atmark]tohoku.ac.jp

2 The University of Electro-Communications, Tokyo, Japan
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. Starting from the five-card trick proposed by Den Boer (EU-
ROCRYPT’ 89), many card-based protocols performing secure multi-
party computations with a deck of physical cards have been devised.
However, the five-card trick is considered to be still the most elegant,
easy-to-understand and practical protocol, which enables two players to
securely evaluate the AND value of their private inputs using five cards.
In other words, for more than thirty years, in the research area of card-
based cryptography, we have not discovered any protocols that are as
simple and beautiful as the five-card trick.

In this study, making use of the five-card trick, we design a novel easy-to-
understand protocol which securely evaluates the three-input majority
function using six cards. That is, by applying a simple shuffle, we reduce
a secure three-input majority computation to evaluating the AND value.
By virtue of a direct application of the five-card trick, our proposed ma-
jority protocol is extremely simple enough for lay-people to execute. In
addition, one advantage is that ordinary people such as high school stu-
dents will be able to learn the concept of logical AND/OR operations
and the majority function as well as their relationship through our ma-
jority protocol, providing a nice tool of pedagogical significance. Thus,
we believe that our new protocol is no less practical and beautiful than
the five-card trick.

1 Introduction

To perform cryptographic tasks such as secure multiparty computations, card-
based cryptography uses a deck of physical cards such as black ♣ and red cards
♡ where their backs are all identical ? . Using these cards, Boolean values are
typically represented as follows:

♣ ♡ = 0, ♡ ♣ = 1. (1)

⋆ This paper appears in Proceedings of INDOCRYPT 2021. The final authenticated
version is available online at https://doi.org/10.1007/978-3-030-92518-5_24.

https://orcid.org/0000-0002-4586-4342
https://orcid.org/0000-0002-5818-8937
https://orcid.org/0000-0002-8698-1043
https://doi.org/10.1007/978-3-030-92518-5_24

2 K. Toyoda, D. Miyahara, and T. Mizuki

When a one-bit value x ∈ {0, 1} is encoded by two face-down cards according
to the encoding rule (1) above, we call such a pair of cards a commitment to x,
which is denoted by

? ?︸︷︷︸
x

.

This paper begins with introducing the first card-based protocol in history, called
the five-card trick, designed by Den Boer [6].

1.1 The Five-Card Trick

Assume that Alice and Bob hold private input bits x ∈ {0, 1} and y ∈ {0, 1},
respectively, and that each of them creates a commitment to his/her private bit.
The five-card trick securely evaluates the AND value x ∧ y of their private bits,
given commitments to bits x, y ∈ {0, 1} along with an additional card ♡ :

♡ ? ?︸︷︷︸
x

? ?︸︷︷︸
y

→ · · · → x ∧ y .

The procedure is as follows. (Here, we slightly rearrange the order of cards from
the original reference [6] for the sake of later explanation.)

1. By swapping the two cards constituting the commitment to y (which means
the NOT computation), obtain a commitment to the negation y, and turn
over the additional card:

♡ ? ?︸︷︷︸
x

? ?︸︷︷︸
y

→ ?
♡
? ?︸︷︷︸
x

? ?︸︷︷︸
y

.

Note that the three ♡ s are cyclically consecutive (i.e., the first, second, and
fifth cards are red) if and only if x ∧ y = 1:

?
♡
?
♣
?
♡
?
♡
?
♣

if (x, y) = (0, 0),

?
♡
?
♣
?
♡
?
♣
?
♡

if (x, y) = (0, 1),

?
♡
?
♡
?
♣
?
♡
?
♣

if (x, y) = (1, 0),

?
♡
?
♡
?
♣
?
♣
?
♡

if (x, y) = (1, 1).

2. Apply a random cut to the sequence of five cards; a random cut, denoted
by ⟨·⟩, is a shuffling operation that cyclically shifts a sequence of cards at
random without changing its order:

⟨ ? ? ? ? ? ⟩ → ? ? ? ? ? .

Card-Minimal Secure Three-Input Majority Function Evaluation 3

Thus, the resulting sequence becomes one of the following five cases with
the equal probability (i.e., 1/5), where we attach a number to each card for
convenience sake:

1

?
2

?
3

?
4

?
5

? →

1

?
2

?
3

?
4

?
5

? ,
2

?
3

?
4

?
5

?
1

? ,
3

?
4

?
5

?
1

?
2

? ,
4

?
5

?
1

?
2

?
3

? ,
5

?
1

?
2

?
3

?
4

? .

It is well-known that humans can securely implement a random cut easily
so that nobody learns which case occurs [24].

3. Reveal all the five cards; then, we know the value of x ∧ y depending on
whether the three ♡ s are cyclically consecutive:

♡ ♣ ♡ ♡ ♣ ♡ ♡ ♣ ♣ ♡
♣ ♡ ♡ ♣ ♡ ♡ ♣ ♣ ♡ ♡
♡ ♡ ♣ ♡ ♣ ♣ ♣ ♡ ♡ ♡
♡ ♣ ♡ ♣ ♡ ♣ ♡ ♡ ♡ ♣
♣ ♡ ♣ ♡ ♡ ♡ ♡ ♡ ♣ ♣

x ∧ y = 0 x ∧ y = 1

or

.

This is the five-card trick, whereby Alice and Bob can learn only the value
of x∧ y without leaking any information about x and y more than necessary. As
seen above, the five-card trick is extremely easy-to-understand: even lay-people
can easily understand why this AND protocol works, and it is simple enough for
non-experts such as high school students to execute without any difficulty.

1.2 Our Target

Since the invention of the five-card trick, many card-based protocols have been
devised; refer to [9,14,23] for surveys. However, the five-card trick is considered
to be still the most elegant, easy-to-understand, and practical protocol. The
five-card trick provides a way of “secure dating” for two people [12] as well as
it can be used for teaching the concept of secure multiparty computation to
students [20,22].

While it is quite certain that the five-card trick is beautiful, many lay-people
would consider that such a secure two-input AND computation may be somewhat
useless because once Alice having a private bit of x = 1 knows that the result
of the computation is x ∧ y = 0, she gets to know that Bob’s bit is y = 0,
implying that information about the other private input is leaked. Of course,
this is inherent, but it would be worthwhile to find more suitable functions for
educational purpose.

4 K. Toyoda, D. Miyahara, and T. Mizuki

In this study, as a promising function, we consider the three-input majority
function maj : {0, 1}3 → {0, 1} defined as

maj(a, b, c) =

{
1 if a+ b+ c ≥ 2,

0 if a+ b+ c ≤ 1.
(2)

That is, we solicit card-based protocols that securely evaluate maj(a, b, c); we
call them three-input majority protocols. By using such a three-input majority
protocol, Alice, Bob, and Carol can know only whether or not there are two or
more players having ‘Yes.’ We believe that the three-input majority function is
more convincing than the two-input AND function when teaching the concept
of secure multiparty computation.

1.3 The Existing Protocols

There are several existing three-input majority protocols. Here, we review the
history.

In 2013, Nishida et al. [17] presented for the first time a three-input majority
protocol using eight cards. Their protocol takes commitments to bits a, b, c ∈
{0, 1} along with two additional cards and outputs a commitment to the value
of maj(a, b, c) using two shuffles:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

♣ ♡ → · · · → ? ?︸︷︷︸
maj(a,b,c)

.

Such a protocol is called a committed-format protocol (because it outputs a
commitment). It has been an open problem to reduce the number of required
additional cards (to 0 or 1).

In 2017, Nakai et al. [16] showed that the three-input majority function can be
securely evaluated with four cards by introducing “private operations.” Allowing
private operations is a strong assumption4 that a player may manipulate the
cards privately, say behind their back, while making sure that the other players
do not see the movement (cf. private PEZ protocols [1,5]). The protocol proposed
by Nakai et al. includes a private rearranging operation and a private turning
operation.

In 2018, Watanabe et al. [25] showed that the same task can be conducted
with only three cards. Their protocol uses an oral response to reverse the value
depending on the input value. In other words, this protocol uses a private nega-
tion.

In 2020, Yasunaga [26] proposed a protocol using six cards based on simple
private operations. This protocol needs to reconstruct the input commitment to
a in the middle. Yasunaga [26] also provided a protocol that does not use private
operation by making a copy of the input commitment to a in advance, resulting
in an eight-card protocol.

4 Malicious behaviors during the private operations have been discussed in [2,11,18,19].

Card-Minimal Secure Three-Input Majority Function Evaluation 5

Table 1. The existing three-input majority protocols (without private operations) and
our proposed protocols

#Cards #Shuf. Committed format Runtime

Nishida et al., 2013 [17] 8 2 ✓ finite
Yasunaga, 2020 [26] 8 3 finite
Ours (Section 2) 6 2 finite
Ours (Appendix A) 6 8 (exp.) ✓ Las Vegas

This paper focuses on protocols that do not rely on any private operation;
hence, in our setting, all the previous works are the protocol by Nishida et
al. [17] and the second protocol by Yasunaga [26], as shown in Table 1. The
open problem mentioned above has not been resolved yet; we will close it by
proposing “card-minimal” protocols, as explained below.

1.4 Our Contribution

In this paper, we construct two protocols using six cards that improve upon the
existing three-input majority protocol proposed by Nishida et al. [16], as shown
in Table 1.

Our first protocol is the main contribution of this paper: it securely evaluates
maj(a, b, c) without any additional card:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

→ · · · → maj(a, b, c).

Because any three-input majority protocol requires six cards due to three input
commitments (in our setting) and our protocol needs no additional card, i.e.,
only three input commitments (consisting of six cards) suffice, our protocol is
optimal in terms of the number of required cards under the encoding rules (1),
i.e., it is card-minimal. Therefore, this is the first card-minimal protocol for the
three-input majority function maj(a, b, c).

As seen later, our protocol makes use of the five-card trick [6]. That is, by
applying a simple shuffle, we reduce the three-input majority computation to
evaluating the AND value. Thus, our card-minimal protocol uses only a sim-
ple shuffle along with an execution of the five-card trick. As the five-card trick
is famous for its brevity, our protocol is also simple enough for lay-people to
execute.

As the second protocol, we will also provide a committed-format version,
which we will present in Appendix A:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

→ · · · → ? ?︸︷︷︸
maj(a,b,c)

.

This protocol is obtained by amending our first protocol using the idea behind
the AND protocol proposed by Abe et al. [3]. Although the runtime of the

6 K. Toyoda, D. Miyahara, and T. Mizuki

protocol is Las Vegas, it is interesting to note that we can achieve the minimum
number of cards without complex shuffling operations such as those required
for the card-minimal AND protocol proposed by Koch et al. [10] and the one
modified by Ruangwises and Itoh [21].

1.5 Outline

The outline of this paper is as follows. In Section 2, we present a simple and easy-
to-understand three-input majority protocol which is card-minimal. In Section 3,
we formally describe our protocol and give a formal proof for correctness and se-
curity. In Appendix A, we present a committed-format version of a card-minimal
three-input majority protocol. We conclude this paper in Section 4.

2 Our Card-Minimal Majority Protocol

In this section, we design a three-input majority protocol without any additional
card.

In our construction, we make use of the following simple fact on the three-
input majority function maj(a, b, c) [16]:

maj(a, b, c) =

{
b ∧ c if a = 0,

b ∨ c if a = 1.
(3)

That is, we will reduce the computation of maj(a, b, c) to the computation of b∧c
or b∨ c . As we can compute b∧ c using the five-card trick shown in Section 1.1,
let us consider how to compute b ∨ c in a similar manner, i.e., we first propose
the five-card “OR” protocol by modifying the five-card trick slightly. We also
describe variants of the five-card trick and the five-card OR protocol by replacing
the additional red card ♡ with a black card ♣ .

2.1 Variants of Five-Card Trick

In this subsection, based on the idea behind the five-card trick, we describe its
four variants: the ♡-based AND, ♡-based OR, ♣-based AND, and ♣-based OR
protocols.

The ♡-based AND protocol is exactly the five-card trick itself because it uses
♡ as an additional card and evaluates the AND value. We can obtain the ♡-
based OR protocol by modifying the rearrangements in the five-card trick. As for
the ♣-based protocols, let the output be 0 if three ♣ s are cyclically consecutive;
otherwise, let the output be 1. (Note that this encoding is the opposite case
where ♡ is the additional card.) Then, we can have the ♣-based AND and OR
protocols, as seen below. For the sake of illustration, let us write commitments
to x and y using x0, x1, y0 and y1 as

?
x0

?
x1︸︷︷︸
x

?
y0

?
y1︸︷︷︸

y

,

Card-Minimal Secure Three-Input Majority Function Evaluation 7

where x0 and x1 (y0 and y1) represent the two cards constituting the commitment
to x (y). For example, if x = 1, x0 is ♡ and x1 is ♣ .

The ♡-based AND protocol. This is exactly the same as the five-card trick pre-
sented in Section 1.1.

The ♡-based OR protocol.

1. Arrange the five cards as follows:

♡ ? ?︸︷︷︸
x

? ?︸︷︷︸
y

→ ?
♡
? ?︸︷︷︸
x

? ?︸︷︷︸
y

.

2. Rearrange the order of the sequence as

? ? ? ? ?
PPPPq

����)
? ? ? ? ? .

The resulting sequence of cards becomes

?
♡
?
y0

?
x1

?
y1

?
x0

.

Note that the three ♡ s are cyclically consecutive if and only if x ∨ y = 1.
3. Apply a random cut to the sequence of five cards:

⟨ ? ? ? ? ? ⟩ → ? ? ? ? ? .

4. Reveal all the five cards. If the three red cards are cyclically consecutive
♡ ♡ ♡ , we have x ∨ y = 1; otherwise, we have x ∨ y = 0.

The ♣-based AND protocol.

1. Perform Steps 1 and 2 of the ♡-based OR protocol where the additional card
is ♣ instead of ♡ . The resulting sequence of cards becomes

♣ ? ?︸︷︷︸
x

? ?︸︷︷︸
y

→ ?
♣
?
y0

?
x1

?
y1

?
x0

.

Note that the three ♣ s are not cyclically consecutive if and only if x∧y = 1.
2. Apply a random cut to the sequence of five cards:

⟨ ? ? ? ? ? ⟩ → ? ? ? ? ? .

3. Reveal all the five cards. If the three black cards are cyclically consecutive
♣ ♣ ♣ , x ∧ y = 0; otherwise, x ∧ y = 1.

8 K. Toyoda, D. Miyahara, and T. Mizuki

The ♣-based OR protocol.

1. Perform Step 1 of the ♡-based AND protocol (namely, the five-card trick)
where the additional card is ♣ instead of ♡ . The resulting sequence of cards
becomes

♣ ? ?︸︷︷︸
x

? ?︸︷︷︸
y

→ ?
♣
? ?︸︷︷︸
x

? ?︸︷︷︸
y

.

Note that the three ♣ s are not cyclically consecutive if and only if x∨y = 1.
2. Apply a random cut to the sequence of five cards:

⟨ ? ? ? ? ? ⟩ → ? ? ? ? ? .

3. Reveal all the five cards. If the three black cards are cyclically consecutive
♣ ♣ ♣ , we have x ∨ y = 0; otherwise, we have x ∨ y = 1.

These four protocols satisfy the following relationship:

♡ ? ? ? ?

The ♡-based AND

𝑥 ത𝑦

Rearrange the 2nd and 5th cards

♡ ? ? ? ?

The ♡-based OR

𝑥1𝑦1𝑥0𝑦0

♣ ? ? ? ?

The ♣-based OR

𝑥 ത𝑦

Rearrange the 2nd and 5th cards

♣ ? ? ? ?

The ♣-based AND

𝑥1𝑦1𝑥0𝑦0

Replace ♡ with ♣
and vice versa

Replace ♡ with ♣
and vice versa

2.2 Idea

Here, we explain the idea behind our card-minimal three-input majority protocol.
Consider an initial state

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

, (4)

where we have a commitment to c by applying the NOT computation to a
commitment to c. Let us apply a random cut to the second through sixth cards
in this sequence; since the ♡-based AND will be applied (to the commitments
to b and c) if a = 0 and the ♣-based OR will be applied if a = 1, we can derive
the value of maj(a, b, c) because of the fact (3). However, depending on whether
the output is ♡-based or ♣-based, the value of a will be leaked.

To resolve this issue, using the aforementioned relationship between the four
protocols, we “randomize” the state so that if a = 0, either the ♡-based AND or
the ♣-based AND is applied with the equal probability, as follows. (Automati-
cally, if a = 1, either the ♣-based OR or the ♡-based OR is applied in the same
way.)

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

→

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

with prob. 1
2 ,

? ?︸︷︷︸
a

?
c0
?
b1
?
c1
?
b0

with prob. 1
2 .

(5)

Card-Minimal Secure Three-Input Majority Function Evaluation 9

It is easy to see that if we apply a random cut to the second through sixth cards
in the above randomized state in (5), then either the ♡- or ♣-based AND is
applied when a = 0 (with the equal probability) and either the ♡- or ♣-based
OR is applied when a = 1; hence, the value of a cannot be leaked while the value
of maj(a, b, c) can be derived.

To realize the randomization in (5), we introduce a practical shuffle, called a
random bisection cut, invented by Mizuki and Sone [15]. It bisects a sequence of
cards and swaps the two halves at random (denoted by [·|·]) as follows:

[1

? ?
∣∣ 2

? ?
]
→

1

? ?
2

? ? with prob. 1
2 ,

2

? ?
1

? ? with prob. 1
2 .

We will apply a random bisection cut to the commitment to a, the third card,
and the sixth card, as seen later.

A random bisection cut can be securely implemented using familiar tools;
a few implementations (that can be conducted publicly) were shown in [24]. If
the backs of cards are asymmetric, a random bisection cut can be reduced to
applying a random cut without using any auxiliary tools [24].

2.3 Description

Here, we present the complete description of our three-input majority protocol.
This protocol starts with six cards of commitments to input bits a, b, and c.

1. Given commitments to a, b, and c, take the negation of the commitment to
c:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

→ ? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

.

2. Apply a random bisection cut to the commitment to a, the third card, and
the sixth card, and return the four cards, as follows:

1

?
2

?
3

? ? ?
6

? →
[1

?
3

?
∣∣ 2

?
6

?
]
? ?

→
1

?
2

?
3

?
4

? ? ? →
1

?
3

?
2

? ? ?
4

? .

Note that the state of the resulting sequence becomes what is in (5).
3. Apply a random cut to the second to sixth cards as follows:

? ⟨ ? ? ? ? ? ⟩ → ? ? ? ? ? ? .

4. Reveal the first card.

(a) If ♣ appears, the result is ♡-based. Reveal all the remaining five cards. If
the three red cards are cyclically consecutive ♡ ♡ ♡ , we havemaj(a, b, c) =

10 K. Toyoda, D. Miyahara, and T. Mizuki

1; otherwise, we have maj(a, b, c) = 0.

♣ ♡ ♣ ♡ ♡ ♣ ♣ ♡ ♡ ♣ ♣ ♡
♣ ♣ ♡ ♡ ♣ ♡ ♣ ♡ ♣ ♣ ♡ ♡
♣ ♡ ♡ ♣ ♡ ♣ ♣ ♣ ♣ ♡ ♡ ♡
♣ ♡ ♣ ♡ ♣ ♡ ♣ ♣ ♡ ♡ ♡ ♣
♣ ♣ ♡ ♣ ♡ ♡ ♣ ♡ ♡ ♡ ♣ ♣
maj(a, b, c) = 0 maj(a, b, c) = 1

or

(b) If ♡ appears, the result is ♣-based. Reveal all the remaining five cards. If
the three black cards are cyclically consecutive ♣ ♣ ♣ , we havemaj(a, b, c) =
0; otherwise, we have maj(a, b, c) = 1.

♡ ♣ ♣ ♡ ♡ ♣ ♡ ♣ ♣ ♡ ♣ ♡
♡ ♣ ♡ ♡ ♣ ♣ ♡ ♣ ♡ ♣ ♡ ♣
♡ ♡ ♡ ♣ ♣ ♣ ♡ ♡ ♣ ♡ ♣ ♣
♡ ♡ ♣ ♣ ♣ ♡ ♡ ♣ ♡ ♣ ♣ ♡
♡ ♣ ♣ ♣ ♡ ♡ ♡ ♡ ♣ ♣ ♡ ♣
maj(a, b, c) = 0 maj(a, b, c) = 1

or

Thus, this protocol does not need any additional card, and uses only two
shuffles. It is easy-to-understand as well as easy-to-implement.

We will provide a committed-format version as well in Appendix A.

3 Formal Treatment

In this section, we give a description of our majority protocol (presented in
Section 2) in a formal way based on the computation model of card-based cryp-
tography [13]. We also prove the correctness and security of our protocol by
using the KWH-tree invented by Koch et al. [10].

3.1 Operations in Card-Based Cryptography

In card-based cryptography, there are three main operations performed on a
sequence of cards, namely, permuting, turning, and shuffling. Below, we assume
a sequence of n cards.

Permute. This is denoted by (perm, π) where π is a permutation applied to the
sequence of cards as follows:

1

?
2

? · · ·
n

?
(perm,π)−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

Turn. This is denoted by (turn, T) where T is a set of indexes, indicating that
the t-th card is turned over for every t ∈ T as follows:

1

?
2

? · · ·
t

? · · ·
n

?
(turn,T)−−−−−→

1

?
2

? · · ·
t∈T

♣ · · ·
n

? .

Card-Minimal Secure Three-Input Majority Function Evaluation 11

Algorithm 1 Our majority protocol
input set:{(?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣

)
,
(?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♣ ,
?

♡

)
,
(?

♡ ,
?

♣ ,
?

♣ ,
?

♡ ,
?

♡ ,
?

♣

)
,(?

♡ ,
?

♣ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡

)
,
(?

♣ ,
?

♡ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣

)
,
(?

♣ ,
?

♡ ,
?

♡ ,
?

♣ ,
?

♣ ,
?

♡

)
,(?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♡ ,
?

♣

)
,
(?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡

)}
1. (perm, (5 6))
2. (shuf, {id, (1 2)(3 6)})
3. (shuf,RC2,3,4,5,6)
4. (turn, {1})
5. if visible sequence = (♡, ?, ?, ?, ?, ?) then
6. (result, 2, 3, 4, 5, 6)
7. else if visible sequence = (♣, ?, ?, ?, ?, ?) then
8. (result, 2, 3, 4, 5, 6)

Shuffle. This is denoted by (shuf, Π, F) where Π is a permutation set and F
is a probability distribution on Π, indicating that π ∈ Π is drawn according
to F and is applied to the sequence of cards as follows:

1

?
2

? · · ·
n

?
(shuf,Π,F)−−−−−−−→

π−1(1)

?
π−1(2)

? · · ·
π−1(n)

? .

We note that nobody knows which permutation in Π was applied. If the
probability distribution F is uniform, we may omit it.

3.2 Pseudocode

A pseudocode for our majority protocol is depicted in Algorithm 1, where we
define

RC2,3,4,5,6 := {id, (2 3 4 5 6), (2 3 4 5 6)2, (2 3 4 5 6)3, (2 3 4 5 6)4},

and (result, i, j, k, l,m) specifies output positions. The shuffle (shuf,RC2,3,4,5,6)
means that a random cut is applied to the second through sixth cards. The shuf-
fle (shuf, {id, (1 2)(3 6)}) in Algorithm 1 represents the application of a random
bisection cut in Step 2 shown in Section 2.3.

3.3 Correctness and Security

In this subsection, we verify the correctness and security of our non-committed-
format majority protocol. A three-input majority protocol is said to be correct if,
given input commitments to a, b and c, it always evaluates the value ofmaj(a, b, c)

12 K. Toyoda, D. Miyahara, and T. Mizuki

correctly. We say that such a protocol is secure if it leaks no information beyond
the value of maj(a, b, c) for any run of the protocol.

To verify that our majority protocol is correct and secure, we make use of the
KWH-tree, which is an excellent tool developed by Koch, Walzer, and Härtel [10].
That is, if one is able to write a KWH-tree satisfying some properties for a
protocol, then it automatically implies that the protocol is correct and secure;
see [8,9,10,14] for the details.

We describe the KWH-tree of our non-committed-format majority protocol
in Figure 1, following Chapter 7 of [9]. The first box in Figure 1 corresponds to an
initial sequence, consisting of three input commitments; X111, X110, X101, X100,
X011, X010, X001, and X000 represent the probabilities of (a, b, c) = (1, 1, 1),
(a, b, c) = (1, 1, 0), (a, b, c) = (1, 0, 1), (a, b, c) = (1, 0, 0), (a, b, c) = (0, 1, 1),
(a, b, c) = (0, 1, 0), (a, b, c) = (0, 0, 1), and (a, b, c) = (0, 0, 0), respectively. In
the bottom boxes, we write X1 instead of X111 + X110 + X101 + X011 and
write X0 instead of X100 + X010 + X001 + X000. A polynomial annotating a
card sequence in a state, such as 1/2X111, represents the conditional proba-
bility that the current sequence is the one next to the polynomial, given the
visible sequence trace observed so far on the table. From the two boxes at the
bottom, one can see that (turn, {2, 3, 4, 5, 6}) reveals the value of maj(a, b, c)
definitively. Furthermore, in each box, the sum of all polynomials is equal to
X111 +X110 +X101 +X100 +X011 +X010 +X001 +X000, implying that no in-
formation about a, b and c leaks, i.e., the inputs and visible sequence trace are
stochastically independent (before (turn, {2, 3, 4, 5, 6}) is applied finally).

Thus, the KWH-tree in Figure 1 guarantees that our proposed non-committed-
format majority protocol is correct and secure.

4 Conclusion

In this paper, we constructed a three-input majority protocol using only six cards
without depending on private operations. Therefore, this is the first card-minimal
protocol for the three-input majority function maj(a, b, c). We also show that we
can obtain a committed-format majority protocol with the minimum number of
cards.

The former protocol is so simple that lay-people can easily execute it; see the
pseudocode presented in Section 3.2 again to recall that the protocol is quite sim-
ple. Thus, we believe that our three-input majority protocol is no less practical
and beautiful than the five-card trick. We even think that our majority proto-
col is better than the five-card trick in a sense: lay-people will be able to learn
the concept of logical AND and OR operations and their relationship through
our majority protocol (because our protocol is based on the nice property that
maj(a, b, c) can be expressed simply using b∧ c and b∨ c, i.e., maj(a, b, c) is equal
to one of the four variants of the five-card trick according to the value of c)
while the five-card trick is just based on the fact that the three red cards are
consecutive only when x = y = 1.

Card-Minimal Secure Three-Input Majority Function Evaluation 13

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

��������	
�����������

������������������

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

�����������������������

�����������

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

������
�

�
��

���������
������

�

�
��

�

�����������������������

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

������
�

�
�
���

����������

������ ������

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

������ �
���

Fig. 1. The KWH-tree of our non-committed-format majority protocol

Our committed-format three-input majority protocol shown in Appendix A
is not finite-runtime. Since there is no committed-format finite-runtime protocol
other than the eight-card protocol proposed by Nishida et al. [17], it is an in-
teresting open problem to determine whether we can have a committed-format
finite-runtime three-input majority protocol using less than eight cards. It is
also interesting to investigate relationship between card-based general majority
function protocols and Turing world computations (cf. [7]).

Acknowledgements

We thank the anonymous referees, whose comments have helped us improve
the presentation of the paper. We would like to thank Hideaki Sone for his

14 K. Toyoda, D. Miyahara, and T. Mizuki

cooperation in preparing a Japanese draft version at an earlier stage of this
work. This work was supported in part by JSPS KAKENHI Grant Numbers
JP19J21153 and JP21K11881.

A Transformation to Committed Format

In this section, we show how to transform our non-committed-format protocol
proposed in Section 2 to a committed-format one. Subsequently, we give the
description of the derived committed-format majority protocol.

A.1 How to Transform

The transformation is inspired by the five-card Las Vegas AND protocol pro-
posed by Abe et al. [3]. Briefly, their protocol realizes to output a commitment
to x∧y , by adding further manipulations to the five-card trick. Since the output
in our proposed protocol is derived by using (the four variants of) the five-card
trick, it is possible to obtain a commitment to maj(a, b, c) in a similar way to
their protocol.

Here is the idea behind their protocol [3].

1. Perform Steps 1 to 3 of the five-card trick shown in Section 1.1:

♡ ? ?︸︷︷︸
a

? ?︸︷︷︸
b

→ · · · → ? ? ? ? ? .

2. Turn over the center card; suppose that ♣ appears:

? ? ? ? ? → ? ? ♣ ? ? .

At this time, the resulting sequence of cards is one of the following four cases:

(i) ♡♡♣♡♣ if a ∧ b = 0;
(ii) ♣♡♣♡♡ if a ∧ b = 0;
(iii) ♡♡♣♣♡ if a ∧ b = 1;
(iv) ♡♣♣♡♡ if a ∧ b = 1.

3. Turn the center card face down. For the sake of illustration, let us represent
the sequence as follows:

? ?︸︷︷︸
x

? ?︸︷︷︸
y

? .

Observe that, in the cases (ii) and (iv), if we let the first and second cards be
a commitment to x ∈ {0, 1} and the third and fourth ones be a commitment
to y ∈ {0, 1}, we have x⊕ y = a ∧ b. Therefore, by applying the committed-
format XOR protocol [15] to them, one can obtain a commitment to x⊕y =
a ∧ b :

? ?︸︷︷︸
x

? ?︸︷︷︸
y

? → ♣ ♡ ? ?︸︷︷︸
a∧b

? or ♡ ♣ ? ?︸︷︷︸
a∧b

? .

Note that, even if it is the case (i) or (iii), one can still continue to execute
the protocol without leaking information, as seen below.

Card-Minimal Secure Three-Input Majority Function Evaluation 15

In the next subsection, we present the description of our committed-format pro-
tocol using this idea.

A.2 Description

The following is our committed-format three-input majority protocol.

1. Perform Steps 1 to 3 of our non-committed-format protocol presented in
Section 2.3:

? ?︸︷︷︸
a

? ?︸︷︷︸
b

? ?︸︷︷︸
c

→ · · · → ? ? ? ? ? ? .

2. Reveal the first card. Assume that it is black, i.e., the result will be ♡-based:

reveal︷︸︸︷
? ? ? ? ? ? → ♣ ? ? ? ? ? .

(In the case where a red card is shown, it works by interchanging the black
cards and the red cards.)

3. Reveal the fourth card. If ♡ appears, turn it over and apply a random cut
to the second through sixth cards; then, return to this step. If ♣ appears,
turn it over and go to the next step.

4. Apply the XOR protocol [15] to the second through fifth cards as follows.
(a) Rearrange the order of the sequence as

♣ ? ? ? ? ?
��	@@R

♣ ? ? ? ? ? .

(b) Apply a random bisection cut to the second through fifth cards:

♣
[
? ?

∣∣∣ ? ?
]
? → ♣ ? ? ? ? ? .

(c) Rearrange the order of the sequence as

♣ ? ? ? ? ?

��	@@R
♣ ? ? ? ? ? .

5. Reveal the second and third cards.
(a) If ♣ ♡ or ♡ ♣ appears, we obtain a commitment tomaj(a, b, c) as follows:

♣ ♣ ♡ ? ?︸︷︷︸
maj(a,b,c)

? or ♣ ♡ ♣ ? ?︸︷︷︸
maj(a,b,c)

? .

In the latter case, by swapping the left and right cards, we obtain a
commitment to maj(a, b, c).

16 K. Toyoda, D. Miyahara, and T. Mizuki

(b) If ♡ ♡ appears, then turn them over:

♣ ♡ ♡ ? ? ? → ♣ ? ? ? ? ? ,

and rearrange the order of the sequence as

♣ ? ? ? ? ?

@@R@@R@@R
����)

♣ ? ? ? ? ? .

Then, apply a random cut to the second through sixth cards and return
to Step 3.

♣ ⟨ ? ? ? ? ? ⟩ → ♣ ? ? ? ? ? .

Let us find the number of required shuffles for this committed-format proto-
col. The AND protocol proposed by Abe et al. takes the average of seven shuffles
to terminate [3]. Since we apply a random bisection cut first in our protocol, it
terminates with the expected number of eight shuffles in total. (It should be
noted that a recent technique presented in [4] will reduce the number of shuffles
further.)

A.3 Pseudocode

A pseudocode for our committed-format majority protocol is depicted in Algo-
rithm 2.

A.4 Correctness and Security

To verify the correctness and security of our proposed committed-format ma-
jority protocol, we describe its KWH-tree in Figure 2; it guarantees that our
protocol is correct and secure.

References

1. Abe, Y., Iwamoto, M., Ohta, K.: Efficient private PEZ protocols for symmet-
ric functions. In: Hofheinz, D., Rosen, A. (eds.) Theory of Cryptography. Lec-
ture Notes in Computer Science, vol. 11891, pp. 372–392. Springer, Cham (2019),
https://doi.org/10.1007/978-3-030-36030-6_15

2. Abe, Y., Iwamoto, M., Ohta, K.: How to detect malicious behaviors in a card-based
majority voting protocol with three inputs. In: 2020 International Symposium on
Information Theory and Its Applications (ISITA). pp. 377–381 (2020), https:

//doi.org/10.34385/proc.65.C01-9

3. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card AND protocol in committed
format using only practical shuffles. In: 5th ACM on ASIA Public-Key Cryptog-
raphy Workshop. pp. 3–8. APKC ’18, Association for Computing Machinery, New
York, NY, USA (2018), https://doi.org/10.1145/3197507.3197510

https://doi.org/10.1007/978-3-030-36030-6_15
https://doi.org/10.34385/proc.65.C01-9
https://doi.org/10.34385/proc.65.C01-9
https://doi.org/10.1145/3197507.3197510

Card-Minimal Secure Three-Input Majority Function Evaluation 17

4. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card AND computations in com-
mitted format using only uniform cyclic shuffles. New Generation Computing
39(1), 97–114 (2021), https://doi.org/10.1007/s00354-020-00110-2

5. Balogh, J., Csirik, J.A., Ishai, Y., Kushilevitz, E.: Private computation using a PEZ
dispenser. Theoretical Computer Science 306(1), 69–84 (2003), https://doi.org/
10.1016/S0304-3975(03)00210-X

6. Den Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.J., Vandewalle, J. (eds.) Advances in Cryptology—EUROCRYPT
’89. Lecture Notes in Computer Science, vol. 434, pp. 208–217. Springer, Berlin,
Heidelberg (1990), https://doi.org/10.1007/3-540-46885-4_23

7. Dvořák, P., Koucký, M.: Barrington plays cards: The complexity of card-based
protocols. In: Bläser, M., Monmege, B. (eds.) Theoretical Aspects of Computer
Science. Leibniz International Proceedings in Informatics, vol. 187, pp. 26:1–
26:17. Schloss Dagstuhl, Dagstuhl (2021), https://doi.org/10.4230/LIPIcs.

STACS.2021.26

8. Kastner, J., Koch, A., Walzer, S., Miyahara, D., Hayashi, Y., Mizuki, T., Sone,
H.: The minimum number of cards in practical card-based protocols. In: Takagi,
T., Peyrin, T. (eds.) Advances in Cryptology—ASIACRYPT 2017. Lecture Notes
in Computer Science, vol. 10626, pp. 126–155. Springer, Cham (2017), https:

//doi.org/10.1007/978-3-319-70700-6_5

9. Koch, A.: Cryptographic Protocols from Physical Assumptions. Ph.D. thesis, Karl-
sruhe Institute of Technology (2019), https://doi.org/10.5445/IR/1000097756

10. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using
a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) Advances in
Cryptology—ASIACRYPT 2015. Lecture Notes in Computer Science, vol. 9452,
pp. 783–807. Springer, Berlin, Heidelberg (2015), https://doi.org/10.1007/

978-3-662-48797-6_32

11. Manabe, Y., Ono, H.: Secure card-based cryptographic protocols using private
operations against malicious players. In: Maimut, D., Oprina, A.G., Sauveron,
D. (eds.) Innovative Security Solutions for Information Technology and Com-
munications. pp. 55–70. Springer, Cham (2021), https://doi.org/10.1007/

978-3-030-69255-1_5

12. Marcedone, A., Wen, Z., Shi, E.: Secure dating with four or fewer cards. Cryptology
ePrint Archive, Report 2015/1031 (2015), https://eprint.iacr.org/2015/1031

13. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols
via abstract machine. International Journal of Information Security 13(1), 15–23
(2014), https://doi.org/10.1007/s10207-013-0219-4

14. Mizuki, T., Shizuya, H.: Computational model of card-based cryptographic pro-
tocols and its applications. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences E100.A(1), 3–11 (2017), https:

//doi.org/10.1587/transfun.E100.A.3

15. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) Frontiers in Algorithmics. Lecture Notes in Computer
Science, vol. 5598, pp. 358–369. Springer, Berlin, Heidelberg (2009), https://doi.
org/10.1007/978-3-642-02270-8_36

16. Nakai, T., Shirouchi, S., Iwamoto, M., Ohta, K.: Four cards are sufficient for a
card-based three-input voting protocol utilizing private permutations. In: Shikata,
J. (ed.) Information Theoretic Security. Lecture Notes in Computer Science,
vol. 10681, pp. 153–165. Springer, Cham (2017), https://doi.org/10.1007/

978-3-319-72089-0_9

https://doi.org/10.1007/s00354-020-00110-2
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1016/S0304-3975(03)00210-X
https://doi.org/10.1007/3-540-46885-4_23
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2021.26
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.1007/978-3-319-70700-6_5
https://doi.org/10.5445/IR/1000097756
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-030-69255-1_5
https://doi.org/10.1007/978-3-030-69255-1_5
https://eprint.iacr.org/2015/1031
https://doi.org/10.1007/s10207-013-0219-4
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1587/transfun.E100.A.3
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-72089-0_9
https://doi.org/10.1007/978-3-319-72089-0_9

18 K. Toyoda, D. Miyahara, and T. Mizuki

17. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) Theory and Practice of Natural Computing. Lecture Notes
in Computer Science, vol. 8273, pp. 193–204. Springer, Berlin, Heidelberg (2013),
https://doi.org/10.1007/978-3-642-45008-2_16

18. Ono, H., Manabe, Y.: Card-based cryptographic protocols with the minimum
number of cards using private operations. In: Zincir-Heywood, N., Bonfante, G.,
Debbabi, M., Garcia-Alfaro, J. (eds.) Foundations and Practice of Security. Lec-
ture Notes in Computer Science, vol. 11358, pp. 193–207. Springer, Cham (2019),
https://doi.org/10.1007/978-3-030-18419-3_13

19. Ono, H., Manabe, Y.: Card-based cryptographic logical computations using private
operations. New Generation Computing 39, 19–40 (2021), https://doi.org/10.
1007/s00354-020-00113-z

20. Pass, R., Shelat, A.: A course in cryptography (2010), www.cs.cornell.edu/

~rafael/

21. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bev-
ern, R., Kucherov, G. (eds.) Computer Science–Theory and Applications. Lec-
ture Notes in Computer Science, vol. 11532, pp. 349–358. Springer, Cham (2019),
https://doi.org/10.1007/978-3-030-19955-5_30

22. Salomaa, A.: Public-Key Cryptography. Texts in Theoretical Computer Science.
An EATCS Series, Springer, Berlin Heidelberg (2013)

23. Shinagawa, K.: On the Construction of Easy to Perform Card-Based Protocols.
Ph.D. thesis, Tokyo Institute of Technology (2020)

24. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure
implementations of a random bisection cut. International Journal of Information
Security 19(4), 445–452 (2020), https://doi.org/10.1007/s10207-019-00463-w

25. Watanabe, Y., Kuroki, Y., Suzuki, S., Koga, Y., Iwamoto, M., Ohta, K.: Card-
based majority voting protocols with three inputs using three cards. In: 2018 In-
ternational Symposium on Information Theory and Its Applications (ISITA). pp.
218–222 (2018), https://doi.org/10.23919/ISITA.2018.8664324

26. Yasunaga, K.: Practical card-based protocol for three-input majority. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer
Sciences E103.A(11), 1296–1298 (2020), https://doi.org/10.1587/transfun.

2020EAL2025

https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-030-18419-3_13
https://doi.org/10.1007/s00354-020-00113-z
https://doi.org/10.1007/s00354-020-00113-z
www.cs.cornell.edu/~rafael/
www.cs.cornell.edu/~rafael/
https://doi.org/10.1007/978-3-030-19955-5_30
https://doi.org/10.1007/s10207-019-00463-w
https://doi.org/10.23919/ISITA.2018.8664324
https://doi.org/10.1587/transfun.2020EAL2025
https://doi.org/10.1587/transfun.2020EAL2025

Card-Minimal Secure Three-Input Majority Function Evaluation 19

Algorithm 2 Our committed-format majority protocol
input set:{(?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣

)
,
(?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♣ ,
?

♡

)
,
(?

♡ ,
?

♣ ,
?

♣ ,
?

♡ ,
?

♡ ,
?

♣

)
,(?

♡ ,
?

♣ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡

)
,
(?

♣ ,
?

♡ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣

)
,
(?

♣ ,
?

♡ ,
?

♡ ,
?

♣ ,
?

♣ ,
?

♡

)
,(?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♡ ,
?

♣

)
,
(?

♣ ,
?

♡ ,
?

♣ ,
?

♡ ,
?

♣ ,
?

♡

)}
1. (perm, (5 6))
2. (shuf, {id, (1 2)(3 6)})
3. (shuf,RC2,3,4,5,6)
4. (turn, {1})
5. if visible sequence = (♡, ?, ?, ?, ?, ?) then
6. (turn, {4})
7. if visible sequence = (♡, ?, ?,♡, ?, ?) then
8. (turn, {4})
9. (shuf,RC2,3,4,5,6)

10. go to 6
11. else if visible sequence = (♡, ?, ?,♣, ?, ?) then
12. (turn, {4})
13. (shuf, {id, (2 3)(4 5)})
14. (turn, {2, 3})
15. if visible sequence = (♡,♡,♡, ?, ?, ?) then
16. (turn, {2, 3})
17. (perm, (3 4 5 6))
18. (shuf,RC2,3,4,5,6)
19. go to 6
20. else if visible sequence = (♡,♡,♣, ?, ?, ?) then
21. (result, 4, 5)
22. else if visible sequence = (♡,♣,♡, ?, ?, ?) then
23. (result, 5, 4)
24. else if visible sequence = (♣, ?, ?, ?, ?, ?) then
25. (turn, {4})
26. if visible sequence = (♣, ?, ?,♣, ?, ?) then
27. (turn, {4})
28. (shuf,RC2,3,4,5,6)
29. go to 25
30. else if visible sequence = (♣, ?, ?,♡, ?, ?) then
31. (turn, {4})
32. (shuf, {id, (2 3)(4 5)})
33. (turn, {2, 3})
34. if visible sequence = (♣,♣,♣, ?, ?, ?) then
35. (turn, {2, 3})
36. (perm, (3 4 5 6))
37. (shuf,RC2,3,4,5,6)
38. go to 25
39. else if visible sequence = (♣,♣,♡, ?, ?, ?) then
40. (result, 4, 5)
41. else if visible sequence = (♣,♡,♣, ?, ?, ?) then
42. (result, 5, 4)

20 K. Toyoda, D. Miyahara, and T. Mizuki

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

��������	
�����������

������������������

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

�����������

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

������
�

�
����

����������

������ ������

������
�

�
���

������
�

�
���

������
�

�
���

������
�

�
���

������
�

�
���

������
�

�
���

������
�

�
�����������������

�

�
����

������
�

�
��� ������

�

�
���

������
�

�
��� ������

�

�
����

������
�

�
��� ������

�

�
����

������
�

�
��� ������

�

�
���

������
�

�
���

������ ��

������ ��

����������������������

������ ��

������ ��

����������������������

������ ��

������
�

�
����

������
�

�
����

����������

������ ������

��������	
�����������

�������������

������
������ ������

�����������������	

�����������������	

���������������

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������

������
�

�
���

������
�

�
�����������

������
�

�
���

������
�

�
���

������
�

�
���

������
�

�
�����������������

�

�
���

������
�

�
�����������������

�

�
���

������
�

�
��� ������

�

�
���

������
�

�
���

������ ��

������ ��

����������������������

������ ��

������ ���

����������������������

������
�

�
�����������

������
�

�
���

������ ��

����������

������ ������

��������	
�����������

�������������

������ ������

�����������������	

�����������������	

���������������

������

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

������ ����

Fig. 2. The KWH-tree of our committed-format majority protocol.

	Another Use of the Five-Card Trick: Card-Minimal Secure Three-Input Majority Function Evaluation

