
Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 84

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 84

Espoo 2003 HUT-TCS-A84

ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF

ADDITION

Johan Wallén

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI





Helsinki University of Technology Laboratory for Theoretical Computer Science

Research Reports 84

Teknillisen korkeakoulun tietojenkäsittelyteorian laboratorion tutkimusraportti 84

Espoo 2003 HUT-TCS-A84

ON THE DIFFERENTIAL AND LINEAR PROPERTIES OF

ADDITION

Johan Wallén

Helsinki University of Technology

Department of Computer Science and Engineering

Laboratory for Theoretical Computer Science

Teknillinen korkeakoulu

Tietotekniikan osasto

Tietojenkäsittelyteorian laboratorio



Distribution:

Helsinki University of Technology

Laboratory for Theoretical Computer Science

P.O.Box 5400

FIN-02015 HUT

Tel. +358-0-451 1

Fax. +358-0-451 3369

E-mail: lab@tcs.hut.fi

©c Johan Wallén

ISBN 951-22-6880-9

ISSN 1457-7615

Multiprint Oy

Helsinki 2003



ABSTRACT: We present a detailed analysis of some of the fundamental dif-
ferential and linear properties of addition modulo 2n: the differential prob-
ability xdp+ of addition modulo 2n when differences are expressed using
exclusive-or, the dual differential probability adp⊕ of exclusive-or when dif-
ferences are expressed using addition modulo 2n and the correlation lca of
F2-linear approximations of addition modulo 2n. We show that xdp+, adp⊕

and lca can be viewed as formal rational series with linear representations in
base 8. For xdp+ and lca, the linear representations give Θ(log n)-time algo-
rithms for computing xdp+ and lca, explicit descriptions of all differentials
or linear approximations with a given probability or correlation, and allows
us to determine the distributions of xdp+ and lca. For adp⊕, the linear rep-
resentation immediately gives a linear-time algorithm for computing adp⊕.
We analyse the asymptotic average behaviour of adp⊕. In particular, we de-
rive a Fourier representation of a first-order summation function obtained by
interpreting differentials as integers in a natural way.

KEYWORDS: Differential cryptanalysis, linear cryptanalysis, arithmetic op-
erations, rational series
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1 DIFFERENTIAL AND LINEAR CRYPTANALYSIS

Differential [8, 9] and linear [34, 35] cryptanalysis are two of the most pow-
erful general cryptanalytic methods for symmetric ciphers proposed by date.
Since their introduction, resistance against these attacks has been a standard
design goal for ciphers. Although some design methodologies to achieve this
goal have been proposed—for example [40, 39, 37, 17, 50]—many ciphers
are still designed in a rather ad hoc manner, or dictated by other primary
design goals. For these ciphers, it it important to have efficient methods for
evaluating their resistance against differential and linear cryptanalysis.

At the heart of differential cryptanalysis lies the study of difference propa-
gations through functions, whereas linear cryptanalysis is based on linear ap-
proximate relations between the input and output of functions. Good differ-
entials and linear approximations for ciphers are usually found heuristically,
or their strength is upper bounded [26, 42], by forming trails of differentials
or linear approximations of the components of the cipher. To evaluate the
security of a cipher against these cryptanalytic attacks, we thus need detailed
analyses of the differential and linear properties of the components of the ci-
pher. In order to search the space of trails, e.g. using a Branch-and-bound
algorithm, we especially need efficient methods for generating the relevant
differentials or linear approximations of the components. Towards this goal,
we study a few basic functions often used as building blocks in symmetric
ciphers.

Currently, symmetric primitives like block ciphers are usually build from
local nonlinear mappings (usually called S-boxes), global linear mappings
and arithmetic operations. The mixture of linear mappings and arithmetic
operations seems fruitful, since they are suitable for software implementa-
tion, and their mixture is difficult to analyse mathematically. While the latter
property intuitively should make standard cryptanalysis intractable, it also
makes it difficult to say something concrete about the security of the cipher.

Perhaps the simplest arithmetic operation in wide use is addition mod-
ulo 2n used e.g. in the block ciphers [32, 44, 47, 33], the stream ciphers [45,
19, 20] and the hash functions [41]. Surprisingly little is known about how
this arithmetic operation interacts with F2-linear mappings in concrete cryp-
tographic settings like differential and linear cryptanalysis. Even some of the
most basic differential and linear properties of addition have been established
only very recently [30, 29, 52]. When applying differential cryptanalysis to a
cipher that uses both addition modulo 2n and bitwise exclusive-or, both op-
erations are natural choices for the difference operator (depending on how
the round keys are added). Depending on this choice, we must study either
the differential properties of addition when differences are expressed using
exclusive-or, or the differential properties of exclusive-or when differences are
expressed using addition modulo 2n. Similarly, when applying linear crypt-
analysis to these kinds of ciphers, one needs good tools for studying linear
approximations of addition modulo 2n.

In this thesis, we present a unifying framework for studying the differen-
tial and linear properties of addition. This framework gives straightforward
proofs of the results in [30, 52] as well as generalisations to more complex
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functions. Within the same framework, we also study the differential prop-
erties of bitwise exclusive-or when differences are expressed using addition
modulo 2n. We hope that our results will facilitate advanced differential and
linear cryptanalysis of ciphers using arithmetic operations.

In the rest of this chapter, we first give a short overview of differential and
linear cryptanalysis. A more thorough discussion can be found e.g. in [18].
Readers already familiar with differential and linear cryptanalysis might want
to skip directly to Section 1.3, where we define the differential and linear
properties of addition studied in this thesis and give an overview of our results.

1.1 DIFFERENTIAL CRYPTANALYSIS

Most conventional cryptanalytic methods can be classified as either algebraic
or statistical cryptanalysis. In algebraic attacks, the analyst tries to expresses
the cipher as a relatively simple system of algebraic equations and then solve
it. Algebraic attacks have achieved some attention recently [16, 15, 4, 14]. In
statistical attacks, the analyst tries to find some form of exploitable statistical
correlation between the input and output of a part of the cipher. This corre-
lation can then e.g. be used to distinguish the cipher from an ideal one or to
launch a key recovery attack. One of the best known examples of statistical
cryptanalysis is differential cryptanalysis.

Differential cryptanalysis [9] is a chosen-plaintext attack that studies the
propagation of input differences to output differences in iterated transforma-
tions. These difference propagations are formalised as follows. We will con-
sider a generic iterated cipher fr ◦ · · · ◦ f1, where each fi may depend on an
unknown key. Each function fi is modelled as a function between arbritrary
finite Abelian groups. Let G, H be Abelian groups, let f : G→ H be a func-
tion, and let a, a∗ ∈ G. The difference a′ = a− a∗ is said to propagate to the

difference b′ = f(a)− f(a∗) trough f . This is denoted by a′ f
−→ b′, or simply

a′ −→ b′ when f is clear from context. A differential is a pair (α, β) ∈ G×H ,

usually denoted by α
f
−→ β or α −→ β

If the input difference of a pair is α, the differential α −→ β can be used
to predict the corresponding output difference. It is thus natural to measure
the efficiency of a differential as the fraction of all input pairs with differ-
ence α that result in the output difference β. This is called the differential
probability of α

f
−→ β and is defined by

Pr[α
f
−→ β] =

1

|G|
|{x ∈ G | f(x + α)− f(x) = β}| .

A generic differential attack against an r round iterated block cipher is the

following. Suppose that α
fr−1···f1

−−−−−→ β is an r− 1 round differential for the ci-
pher with high enough probability p. If a uniformly chosen pair of plaintexts
(x, x∗) with difference α is encrypted, the difference between the intermedi-
ate values after r − 1 rounds is β with probability p. If p is relatively large,
the other intermediate differences after r − 1 rounds are usually assumed to
have significantly lower probability and be fairly evenly distributed. If the
intermediate difference indeed is β, (x, x∗) is said to be a right pair. Oth-
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erwise, it is said to be a wrong pair. Assuming that (x, x∗) is a right pair,
one can check which round keys at the last round are compatible with the
assumed input difference β to the last round and the observed ciphertext
pair (y, y∗). Typically, this only puts restrictions on some part of the round
key. We call this part of the key the round subkey. The pair (x, x∗) is said
to suggest all these compatible subkey values. Note that a right pair always
suggests the correct subkey value (and some incorrect ones), while a wrong
pair might not suggest the right value at all. Assuming that incorrect subkey
values suggested both by right and wrong pairs are fairly evenly distributed,
one would expect that the correct subkey value is suggested more often than
the incorrect ones. If L denotes the number of possible round subkeys and γ
denotes the average number of suggested subkeys per pair, the signal-to-noise
S/N ratio is defined by

S/N =
Pr[α −→ β]

γ
L .

Experimental results for DES [9] indicate that only a few right pairs are
needed if the S/N ratio is significantly above 1. A S/N ratio significantly
below 1 makes the required number of right pairs too large for a practical
attack.

This gives the following chosen-plaintext key-recovery attack using an r−1
round differential α −→ β with sufficiently high probability:

1. Keep a counter for each possible round subkey kr at round r. Initialise
the counters to zero.

2. Pick a plaintext x uniformly at random and set x∗ = x+α. Obtain the
corresponding ciphertexts y, y∗ (two chosen plaintexts). For each pos-
sible round subkey kr compatible with the assumed input difference β
and the observed outputs y, y∗ at round r, add one to the corresponding
counter.

3. Repeat step 2 until some round subkeys are counted significantly more
often than the others. Output these keys as the most likely candidates
for the actual subkey at the last round.

This basic attack can be improved by filtering out obviously wrong pairs.
There are several other improvements that reduce the number of plaintexts
needed. The attack can also be carried out using a r − 2 round differential
and counting on the round subkeys of the last two rounds. See [9] for further
details. There are also other types of differential attacks [28, 27, 7, 51].

Under a suitable set of assumptions, it can be shown that the correct round
key can be distinguished from a randomly selected key with sufficient confi-
dence, provided that the number of plaintexts available is inversely propor-
tional to the probability of the used differential. It follows that a necessary
condition for resistance against conventional differential attacks for block ci-
phers is that there does not exist any differential ranging over all but a few
rounds with probability significantly larger than 2−n, where n is the block
size. A more detailed analysis of differential distinguishers can be found
in [25].
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1.1.1 Differential Trails

In practice, good differentials ranging over several rounds are found heuristi-
cally, or their probability is upper bounded, by forming trails of differentials

of the components of the cipher. From the differentials αi
fi
−→ αi+1, one can

form the differential trail

α1
f1
−→ α2

f2
−→ · · ·

fr
−→ αr+1

for the iterated mapping f = fr◦· · ·◦f1. The probability of a differential trail
is defined to be the probability that a pair with input difference α1 propagate
to the intermediate difference αi+1 after the ith round for i = 1, . . . , r. Since
the events are disjoint,

Pr[α
f
−→ β] =

∑

α1,...,αr+1

α1=α,αr+1=β

Pr[α1
f1

−→ α2
f2

−→ · · ·
fr
−→ αr+1] . (1.1)

If the difference propagations of each round are independent, or only weakly
dependent, one can approximate

Pr[α1
f1
−→ α2

f2
−→ · · ·

fr
−→ αr+1] ≈

r∏

i=1

Pr[αi
fi−→ αi+1] .

If the sum in (1.1) is dominated by a single differential trail α1
f1
−→ α2

f2
−→

· · ·
fr
−→ αr+1, one can estimate Pr[α1

f
−→ αr+1] ≈

∏r
i=1 Pr[αi

fi
−→ αi+1] for

the differential probability, but one should be careful when interpreting this
estimate, since many trails might contribute to the same differential, and the
probability of trails is usually key dependent. In order to search the space of
differential trails, e.g. using a Branch-and-bound algorithm (see e.g. [24, 36,
2]), we need efficient methods for computing the differential probability for
the simplest components of the cipher, as well as methods for generating the
relevant differentials for the components.

1.1.2 Some Special Functions

The differential probability of some special functions is straightforward to
compute. If L is a linear function and f is the affine function f(x) = L(x)+
a, where a is a constant, we see that f(x + α) − f(x) = L(α) and hence
Pr[α

f
−→ β] = 1 if β = L(α) and Pr[α

f
−→ β] = 0 otherwise. The effect of a

linear or affine function before or after a nonlinear function is simple.
Let fi : Gi → Hi and define f : G1 × · · · ×Gk → H1 × · · · ×Hk by

f(x1, x2, . . . , xk) = (f1(x1), f2(x2), . . . , fk(xk)) .

Since the difference propagations through the components of f are indepen-
dent, we see that

Pr[(α1, . . . , αk)
f
−→ (β1, . . . , βk)] =

k∏

i=1

Pr[αi
fi−→ βi] .

4 1. DIFFERENTIAL AND LINEAR CRYPTANALYSIS



If the groups Gi are small, Pr[αi
fi−→ βi] can be computed directly from its

definition. It is thus easy to compute the differential probability for the paral-
lel application of small functions. For arithmetic operations, the situation is
more complicated, since the operations are nonlinear and the input domain
is large.

1.2 LINEAR CRYPTANALYSIS

Another prime example of statistical cryptanalysis is linear cryptanalysis [34].
In the basic version of linear cryptanalysis, we consider a generic iterated ci-
pher f = fr ◦ · · · ◦ f1, where each fi is a (possibly key dependent) function
between vector spaces over F2, fi : Fni

2 → Fmi
2 . Linear cryptanalysis views

(a part of) the cipher as a relation between the plaintext, the ciphertext and
the key, and tries to approximate this relation using linear relations. The
following standard terminology is convenient for discussing these linear ap-
proximations.

Let f, g : Fn
2 → F2 be Boolean functions. The correlation between f and

g is defined by

c(f, g) = 21−n
∣∣{x ∈ Fn

2 | f(x) = g(x)}
∣∣− 1 .

This is simply the probability taken over x that f(x) = g(x) scaled to a value
in [−1, 1]. Let u = (um−1, . . . , u0) ∈ Fm

2 and w = (wn−1, . . . , w0) ∈ Fn
2

be binary column vectors, and let h : Fn
2 → Fm

2 be a function. Let w · x =
wn−1xn−1+· · ·+w1x1+w0x0 ∈ F2 denote the standard dot product. Define
the linear function lw : Fn

2 → F2 by lw(x) = w · x for all w ∈ Fn
2 . A linear

approximation of h is an approximate relation of the form u · h(x) = w · x.
Such a linear approximation will be denoted by u

h
←− w, or simply u ←−

w when h is clear from context. Here, u and w are the output and input
selection vectors, respectively. The efficiency of a linear approximation is
measured by its correlation

C(u
h
←− w) = c(lu ◦ h, lw) = 21−n

∣∣{x ∈ Fn
2 | u · h(x) = w · x}

∣∣− 1 .

This is just the probability that the approximation holds scaled to a value in
[−1, 1].

In the basic form of linear cryptanalysis of an r round iterated block ci-
pher, the analyst tries to find a linear approximation over r − 2 rounds from
the second round to the second to last round—that is, an approximation of
the form

a ·X + b · Y = c · k , (1.2)

where x is the plaintext, X = f1(x, k1) is the intermediate value after the
first round, Y is the intermediate value before the last round, y = fr(Y, kr)
is the ciphertext, and k = (k2, . . . , kr−1) is a vector of all the unknown round
keys at rounds 2 to r − 1. For a fixed key, the right hand side of (1.2) is a
constant. Given N known plaintext-ciphertext pairs (x, y), we can find parts
of the round keys at the first and last rounds as follows. By guessing parts
of the round keys k1 and kr, one can compute a · f1(x, k1) + b · f−1

r (y, kr)

1. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 5



and count the number of times N0 that it is zero. We call the parts of the
round keys the attacker tries to guess the round subkeys. If the key guess is
correct, one would expect that 2N0/N − 1 is approximately plus or minus
the correlation of the approximation (1.2), depending on the value of the
constant c ·k. If the key guess is incorrect, the values f1(x, k1) and f−1

r (y, kr)
are probably incorrect and one would expect that the correlation between
a · f1(x, k1) and b · f−1

r (y, kr) is zero. Given N known plaintext-ciphertext
pairs (x, y), we can thus try all possible round subkeys at rounds 1 and r, and
count the number N0 of plaintext for which

a · f1(x, k1) + b · f−1
r (y, kr) = 0

holds. The round subkeys that maximise |N0/N − 1/2| are chosen as the
most likely candidates.

In [34], it was shown that the number of known plaintexts needed for
the attack above is inversely proportional to the square of the correlation of
the used linear approximation. A necessary condition for resistance against
conventional linear cryptanalysis for block ciphers is thus that there does not
exist any linear approximation ranging over all but a few rounds, such that
the square of its correlation is significantly larger that 2−n, where n is the
block size. A more detailed analysis of linear distinguishers can be found
in [25].

1.2.1 Fourier Analysis

There is a well-known Fourier-based framework for studying linear approx-
imations [13]. Let f : Fn

2 → F2 be a Boolean function. The correspond-
ing real-valued function f̂ : Fn

2 → R is defined by f̂(x) = (−1)f(x). With
this notation, c(f, g) = 2−n

∑
x∈Fn

2
f̂(x)ĝ(x). Note also that the real-valued

function corresponding to x 7→ f(x) + g(x) is x 7→ f̂(x)ĝ(x). Recall that
an algebra A over a field F is a ring, such that A is a vector space over
F, and a(xy) = (ax)y = x(ay) for all a ∈ F and x, y ∈ A. We let
Bn = 〈f̂ | f : Fn

2 → F2〉 be the real algebra generated by the n-variable
Boolean functions. As usual, the addition, multiplication, and multiplica-
tion by scalars are given by (ξ + η)(x) = ξ(x) + η(x), (ξη)(x) = ξ(x)η(x)
and (aξ)(x) = a(ξ(x)) for all ξ, η ∈ Bn and a ∈ R. The algebra Bn is of
course unital and commutative.

The vector space Bn is turned into an inner-product space by adopting the
standard inner-product for real-valued discrete functions. This inner-product
is defined by

(ξ, η) = 2−n
∑

x∈F
n
2

(ξη)(x) , ∀ξ, η ∈ Bn .

For Boolean functions, f, g : Fn
2 → F2, (f̂ , ĝ) = c(f, g). It is easy to see that

the set of linear functions {l̂w | w ∈ Fn
2} forms an orthonormal basis for Bn.

Thus, every ξ ∈ Bn has a unique representation as

ξ =
∑

w∈F
n
2

αw l̂w , where αw = (ξ, l̂w) ∈ R .

6 1. DIFFERENTIAL AND LINEAR CRYPTANALYSIS



The corresponding Fourier transform F : Bn → Bn is given by

F(ξ) = Ξ , where Ξ is the mapping w 7→ (ξ, l̂w) .

This is often called the Walsh-Hadamard transform of ξ. For a Boolean func-
tion f : Fn

2 → F2, the Fourier transform F̂ = F(f̂) simply gives the correla-
tion between f and the linear functions: F̂ (w) = c(f, lw).

For ξ, η ∈ Bn, their convolution ξ ∗ η ∈ Bn is given by

(ξ ∗ η)(x) =
∑

t∈Fn
2

ξ(x + t)η(t) .

Clearly, the vector space Bn is a commutative, unital real algebra also when
convolution is the multiplicative operation. The unity with respect to convo-
lution is the function δ such that δ(0) = 1 and δ(x) = 0 for x 6= 0. As usual,
the Fourier transform is an algebra isomorphism between the commutative,
unital real algebras 〈Bn, +, ·〉 and 〈Bn, +, ∗〉.

Let f : Fn
2 → Fm

2 be a Boolean function. Since the correlation of a linear
approximation of f is given by C(u

f
←− w) = F(l̂uf)(w), the correlation of

linear approximations can conveniently be studied using the Fourier trans-
form. Since luf can be expressed as

∑
i:ui=1 fi, where fi denotes the ith

component of f , C(u
f
←− w) is given by the convolution of the F(f̂i) for

which ui = 1. Especially when using this convolutional representation, it

will be convenient to consider C(u
f
←− w) as a function of w with u fixed.

1.2.2 Linear Trails

In practice, good linear approximations ranging over more than one round
are found heuristically, or their correlation is upper bounded, by forming
trails of linear approximations of the components of the cipher. From the
approximations ξi+1

fi←− ξi, one can form the linear trail

ξr+1
fr
←− ξr

fr−1

←−− · · ·
f1

←− ξ1

for the iterated mapping f = fr ◦ · · · ◦ f1. The correlation of a linear trail is
defined to be

C(ξr+1
fr
←− ξr

fr−1

←−− · · ·
f1

←− ξ1) =

r∏

i=1

C(ξi+1
fi
←− ξi) .

Let g : Fn
2 → F`

2 and h : F`
2 → Fm

2 . Using the Fourier-based framework, it is
easy to show that

C(u
h◦g
←−− w) =

∑

v∈F
`
2

C(u
h
←− v)C(v

g
←− w) .

If we let Cg be the real 2`×2n matrix whose element in row v and column w
is Cg

vw = C(v
g
←− w), we see that Ch◦g = ChCg. These correlation matrices

are discussed in [17]. In this way the Fourier transform induces a group
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monomorphism (injective homomorphism) from the group of permutations
Fn

2 → Fn
2 to the general linear group GLn(R). For iterated mappings, it

follows that

C(u
f
←− w) =

∑

ξ1,...,ξr+1

ξ1=w,ξr+1=u

C(ξr+1
fr
←− ξr

fr−1

←−− · · ·
f1

←− ξ1) .

If the sum is dominated by a single linear trail ξr+1
fr
←− · · ·

f2

←− ξ2
f1

←− ξ1, one
can estimate

|C(ξr+1
fr···f1
←−−− ξ1)| ≈

r∏

i=1

|C(ξi+1
fi←− ξi)| ,

but one should be careful when interpreting this estimate, since many trails
might contribute to the same approximation, some with negative correlation
and some with positive, and the correlation is usually key dependent. Like in
the differential case, we need efficient methods for computing the correlation
of linear approximations of the simplest components of the cipher, as well as
methods for generating the relevant approximations in order to search the
space of linear trails.

1.2.3 Some Special Functions

The correlation of linear approximations of some special functions is straight-
forward to compute. Let L be a linear function and let f be the affine func-
tion f(x) = L(x) + a, where a is a constant. Since u · Lx = utLx =

(Ltu)tx = (Ltu) · x, we see that C(u L
←− w) = δ(Ltu + w). With this obser-

vation, it is easy to see that C(u f
←− w) = (−1)u·aδ(Ltu + w). The effect of a

linear or affine function before or after a nonlinear function is simple.
Let fi : Fni

2 → Fmi
2 and define f : F

n1+···+nk
2 → F

m1+···+mk
2 by

f(x1, x2, . . . , xk) = (f1(x1), f2(x2), . . . , fk(xk)) .

Since the components of f are independent, we see that

C((u1, . . . , uk)
f
←− (w1, . . . , wk)) =

k∏

i=1

C(ui
fi←− wi) .

If ni is small, C(ui
fi←− wi) can be computed directly from its definition. It is

thus easy to compute the correlation of linear approximations of the parallel
application of small functions. For arithmetic operations, the situation is
more complicated, since the operations are nonlinear and the input domain
is large.

1.2.4 Fast Computation Using the FFT

Using the Fourier-based framework, the correlation of linear approximations
of small functions can efficiently be computed using the Fast Fourier Trans-
form (FFT). Let f : Fn

2 → Fm
2 be a Boolean function and let χf : Fn

2×Fm
2 →
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F2 be the characteristic function of f , χf(x, y) = δ(f(x) + y). Note that
each Boolean function g : Fn

2 → F2 ∈ Bn, since g(x) = 1
2
(1− ĝ(x)) for all

x. Thus, we can compute the Fourier transform of χf ,

F(χf)(w, u) = 2−m−n
∑

x,y

χf (x, y)(−1)u·y+w·x

= 2−m−n
∑

x

(−1)u·f(x)+w·x = 2−mC(u
f
←− w) .

Using the FFT (see e.g. [43]), the correlation of all linear approximations of f
can be computed in time O((n+m)2n+m), or O(m+n) per approximation.

Similarly, the convolution χf ∗ χf is

(χf ∗ χf )(α, β) =
∑

x,y

χf (x, y)χf(x + α, y + β)

=
∑

x

χf (x + α, f(x) + β)

=
∑

x

δ(f(x + α) + f(x) + β) = 2n Pr[α
f
−→ β] .

On the other hand, since the inverse Fourier transform isF−1 = 2m+nF and
hence F(χf ∗ χf ) = 2m+nF(χf)

2, we have

Pr[α
f
−→ β] = 22m+nF(F(χf)

2)(α, β) . (1.3)

If follows that the probability of all differentials for f : Fn
2 → Fm

2 can be com-
puted using the FFT in time O((m + n)2m+n), or O(m + n) per differential.
For large m, n, this FFT based approach to computing correlations of linear
approximations and differential probabilities becomes infeasible. From (1.3),
it is also easy to derive the well-known relationships

Pr[α
f
−→ β] = 2−m

∑

u,w

(−1)w·α+u·βC(u
f
←− w)2 and

C(u
f
←− w)2 = 2−n

∑

α,β

(−1)w·α+u·β Pr[α
f
−→ β]

between the squares of the correlation coefficients and the differential prob-
abilities.

1.3 DIFFERENTIAL AND LINEAR PROPERTIES OF ADDITION

In this thesis, we study the differential and linear properties of addition mod-
ulo 2n. For the differential properties, we exclusively deal with the set of
integers modulo 2n, {0, 1, . . . , 2n− 1}, equipped with two group operations.
On one hand, we have the usual addition modulo 2n, which we denote by
+. On the other hand, we identify {0, 1, . . . , 2n − 1} and the vector space
Fn

2 using the natural correspondence

(xn−1, . . . , x1, x0) ∈ Fn
2 ↔ xn−12

n−1 + · · ·+ xn2 + x0 ∈ Z2n .

1. DIFFERENTIAL AND LINEAR CRYPTANALYSIS 9



In this way the addition in Fn
2 (or bitwise exclusive-or) carries over to a group

operation in {0, 1, . . . , 2n} which we denote by ⊕. We can thus especially
view⊕ as a function⊕ : Z2n×Z2n → Z2n . We call the differential probability
of the resulting mapping the additive differential probability of exclusive-or
and denote it by adp⊕ : Z3

2n → [0, 1],

adp⊕(α, β → γ) = Pr
x,y

[((x + α)⊕ (y + β))− (x⊕ y) = γ] .

The dual mapping, the exclusive-or differential probability of addition, de-
noted xdp+ : Z3

2n → [0, 1], is given by

xdp+(α, β → γ) = Pr
x,y

[((x⊕ α) + (y ⊕ β))⊕ (x + y) = γ] .

This dual mapping was studied in detail by [30], who gave a closed formula
for xdp+. Their formula in particular lead to an O(logn)-time algorithm for
computing xdp+.

We show that xdp+ can be expressed as rational series in the sense of
formal language theory with linear representations in base 8. That is, if we
write the differential (α, β → γ) as an octal word w = wn−1 · · ·w1w0 in a
natural way by identifying (Fn

2 )3 and {0, 1, . . . , 7}n, there are eight square
matrices Ai, a column vector C and a row vector L such that

xdp+(α, β → γ) = xdp+(w) = LAwn−1
· · ·Aw1

Aw0
C .

The simple structure of the linear representation allows us to give a straight-
forward proof of the closed formula from [30]. Using the linear represen-
tation, we also give an explicit description of all differentials with a given
probability and determine the distribution of the differential probabilities.
Using this approach, we obtain simpler and more intuitive proofs of the re-
sults in [30]. The approach can be generalised to more complex functions.

Similarly, we show that adp⊕ can be seen as a rational series with a linear
representation in base 8. This representation immediately gives a linear-time
algorithm for computing adp⊕. While some other properties (like the frac-
tion of differentials with nonzero probability) are easily derived from it, the
detailed analysis of the distribution of adp⊕ requires more advanced meth-
ods. We study the asymptotic average behaviour of adp⊕ using tools from
analytic number theory. For this, we introduce a sequence sbs(n) (for side-
by-side) by putting side-by-side the values of adp⊕(w) according to the length
and rank in the lexicographic order of the octal word w. We derive an asymp-
totic expression for the sum of the first order,

∑

1≤n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + o(ν2/3) ,

where G2/3 is a 1-periodic continuous function. The first terms of the Fourier
series of G2/3 can be numerically computed. These new results on adp⊕ are
joint work with Philippe Dumas and Helger Lipmaa.

For the linear properties, we exclusive deal with the vector space Fn
2 . Us-

ing the natural correspondence between Fn
2 and Z2n , the addition in Z2n

carries over to a function Fn
2 × Fn

2 → F2 which we denote by �. We can
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thus study the correlation of F2-linear approximations of addition modulo 2n,
lca(u, v, w) = C(u

�
←− v, w). We show that lca also can be seen as a formal

rational series with a linear representation in base 8. The simple structure
of the linear representation allows us to derive an O(log n)-time algorithm
for computing lca, a description of all linear approximations with a given
correlation and determine the distribution of the correlation coefficients. All
of these results are new and have originally been published in [52], but the
presentation in this thesis uses a different approach giving simpler and more
intuitive proofs. The approach can be generalised to more complex func-
tions.

We will present our results in increasing difficulty. Thus, we start with the
exclusive-or differential probability of addition in Chapter 2 and the linear
approximations of addition in Chapter 3. Finally, we treat the additive differ-
ential probability of exclusive-or in Chapter 4. The chapters are written to be
as independent as possible at the cost of repeating some definitions.
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2 THE XOR DIFFERENTIAL PROBABILITY OF ADDITION

When studying the exclusive-or differential probability of addition modulo
2n, we consider addition as a function Fn

2 × Fn
2 → Fn

2 using the natural
correspondence

(xn−1, xn−2, . . . , x0) ∈ Fn
2 ↔ xn−12

n−1 + xn−22
n−2 + · · ·+ x0 ∈ Z2n

and express differences with respect to Fn
2 -addition. In this chapter, we will

denote addition modulo 2n by + and addition in Fn
2 by⊕. With this notation,

the exclusive-or differential probability of addition is defined by

xdp+(α, β −→ γ) = Pr[α, β
+
−→ γ] = Pr

x,y
[((x⊕α)+(y⊕β))⊕ (x+y) = γ] .

This function was studied by [30], who gave a closed formula for xdp+. Their
formula in particular lead to a O(log n)-time algorithm for computing xdp+.
In this chapter, we reformulate their main results in our framework. Our
approach gives simpler and more intuitive proofs of the results as well as
generalisations to more complex mappings.

The analysis proceeds as follows. We first show that xdp+ can be seen as a
rational series and derive a linear representation for it. Using the linear repre-
sentation, we then give an explicit description of all differentials with a given
probability and determine the distribution of the differential probabilities.
This also gives the closed formula for xdp+ from [30] and an O(logn)-time
algorithm for computing xdp+. Finally, we discuss generalisations to some
other mappings.

2.1 THE RATIONAL SERIES xdp+

We will consider xdp+ as a function of octal words by writing the differential
(α, β −→ γ) as the octal word w = wn−1 · · ·w0, where wi = αi4 + βi2 +
γi. This defines xdp+ as a function from the octal words of length n to the
interval [0, 1] ⊆ R. As n varies in the set of nonnegative integers, we obtain
a function from the set of all octal words to [0, 1].

In the terminology of formal language theory, the exclusive-or differential
probability xdp+ is a formal series over the monoid of octal words with co-
efficients in the field of real numbers. A remarkable subset of these series is
the set of rational series [6]. One possible characterisation of such a rational
series S is the following: there exists a square matrix Ax of size d× d for each
letter x in the alphabet, a row matrix L of size 1× d and a column matrix C
of size d× 1 such that for each word w = w1 . . . w`, the value of the series is

S(w) = LAw1
· · ·Aw`

C .

The family L, (Ax)x, C is called a linear representation of dimension d of
the rational series. In our case, the alphabet is the octal alphabet {0, . . . , 7}.

Theorem 2.1 (Linear representation of xdp+). The formal series xdp+ has
the 2-dimensional linear representation L, (Ak)

7
k=0, C, where L =

(
1 1

)
,
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C =
(
1 0

)t and Ak is given by

(Ak)ij =





1− T (k2 + k1 + j) if i = 0 and k2 ⊕ k1 ⊕ k0 = j ,

T (k2 + k1 + j) if i = 1 and k2 ⊕ k1 ⊕ k0 = j ,

0 otherwise

for i, j ∈ {0, 1}, where k = k24 + k12 + k0 and T : {0, 1, 2, 3} → R is the
mapping T (0) = 0, T (1) = T (2) = 1

2
and T (3) = 1. (For completeness, all

the matrices Ak are given in Table 2.1.) Thus, xdp+ is a rational series.

Table 2.1: All the eight matrices Ak in Theorem 2.1.

A0 = 1
2

(
2 0
0 0

)
A1 = 1

2

(
0 1
0 1

)
A2 = 1

2

(
0 1
0 1

)
A3 = 1

2

(
1 0
1 0

)

A4 = 1
2

(
0 1
0 1

)
A5 = 1

2

(
1 0
1 0

)
A6 = 1

2

(
1 0
1 0

)
A7 = 1

2

(
0 0
0 2

)

For example, if (α, β −→ γ) = (11100, 00110 −→ 10110), we have w =
54730 and xdp+(α, β −→ γ) = xdp+(w) = LA5A4A7A3A0C = 1

4
. In order

to prove this result, we introduce the following notation. Define the carry
function carry : Fn

2 × Fn
2 → Fn

2 of addition modulo 2n by

carry(x, y) = (x + y)⊕ x⊕ y .

It is easy to see that

xdp+(α, β −→ γ) = Pr
x,y

[carry(x, y)⊕ carry(x⊕ α, y ⊕ β) = α⊕ β ⊕ γ] .

Denote c = carry(x, y) and c∗ = carry(x⊕α, y⊕β), where x, y, α and β are
understood from context. Note that ci can be recursively defined as c0 = 0
and ci+1 = 1 if and only if at least two of xi, yi and ci are 1. To simplify some
of the formulas, denote xor(x, y, z) = x ⊕ y ⊕ z and ∆c = c ⊕ c∗. Then
xdp+(α, β −→ γ) = Prx,y[∆c = xor(α, β, γ)]. Let furthermore xy denote
the componentwise product of x and y, (xy)i = xiyi.

The linear representation of xdp+ follows easily from the following re-
sult [30, Lemma 2].

Lemma 2.1. Fix α, β ∈ Fn
2 and i ≥ 0. Then

Pr
x,y

[∆ci+1 = 1 | ∆ci = r] = T (αi + βi + r) .

Proof. Since ci+1 = xiyi ⊕ xici ⊕ yici, we have that ∆ci+1 = xiyi ⊕ xici ⊕
yici⊕(xi⊕αi)(yi⊕βi)⊕(xi⊕αi)c

∗
i⊕(yi⊕βi)c

∗
i . We consider the probability

case-by-case.
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(αi, βi, ∆ci) ∆ci+1 Pr[∆ci+1 = 1 | ∆ci]
(0, 0, 0) 0 0
(0, 0, 1) xi ⊕ yi

1
2

(0, 1, 0) xi ⊕ ci
1
2

(0, 1, 1) yi ⊕ ci ⊕ 1 1
2

(1, 0, 0) yi ⊕ ci
1
2

(1, 0, 1) xi ⊕ ci ⊕ 1 1
2

(1, 1, 0) xi ⊕ yi ⊕ 1 1
2

(1, 1, 1) 1 1

In all cases, Pr[∆ci+1 = 1 | ∆ci = r] = T (αi + βi + r).

Proof (of Theorem 2.1). Let (α, β −→ γ) be the differential associated with
the word w. Let x, y be uniformly distributed independent random variables
over F

|w|
2 . For compactness, we denote xor(w) = α⊕ β ⊕ γ. Let P (w, k) be

the 2× 1 substochastic matrix given by

Pj(w, k) = Pr
x,y

[∆c ≡ xor(w) (mod 2k), ∆ck = j]

for 0 ≤ k ≤ |w| and let M(w, k) be the 2× 2 substochastic transition matrix

Mij(w, k) = Pr
x,y

[∆ck = xor(w)k, ∆ck+1 = i |

∆c ≡ xor(w) (mod 2k), ∆ck = j]

for 0 ≤ k < |w|. Since Pi(w, k+1) =
∑

j Mij(w, k)Pj(w, k), P (w, k+1) =

M(w, k)P (w, k). Note furthermore that P (w, 0) = C and that xdp+(w) =∑
j Pj(w, |w|) = LP (w, |w|). By Lemma 2.1, it is clear that

Mij(w, k) =





1− T (αk + βk + j) if i = 0 and xor(w)k = j ,

T (αk + βk + j) if i = 1 and xor(w)k = j and
0 otherwise .

That is, M(w, k) = Awk
for all k. It follows by induction that xdp+(w) =

LAw|w|−1
· · ·Aw0

C.

2.2 ENUMERATIVE ASPECTS

The simplicity of the linear representation of xdp+ allows us to derive an
explicit description of all words with a certain differential probability. We
will use the notation of formal languages to describe words. For example,
(1+2+4+7)0∗ denotes the set of all words with one of {1, 2, 4, 7} followed
by any number of zeros.

Theorem 2.2. For all nonempty words w, xdp+(w) ∈ {0} ∪ {2−k | k ∈
{0, 1, . . . , |w| − 1}}. The differential probability xdp+(w) = 0 if and only
if w has the form w = w′(1 + 2 + 4 + 7), w = w′(1 + 2 + 4 + 7)0w′′ or
w = w′(0 + 3 + 5 + 6)7w′′ for arbritrary words w′, w′′, and xdp+(w) = 2−k

if and only if xdp+(w) 6= 0 and |{0 ≤ i < n− 1 | wi 6= 0, 7}| = k.
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Proof. Let L, Ak and C be as in Theorem 2.1 and denote e0 =
(
1 0

)t and
e1 =

(
0 1

)t. Then the kernels of Ai are ker A0 = ker A3 = ker A5 =
ker A6 = 〈e1〉 and ker A1 = ker A2 = ker A4 = ker A7 = 〈e0〉. By direct
calculation, A0e0 = e0, A3e0 = A5e0 = A6e0 = 1

2
(e0 + e1), A1e1 = A2e1 =

A4e1 = 1
2
(e0 +e1) and A7e1 = e1. Since C = e0, we thus have xdp+(w) = 0

if and only if w has the form w = w′(1+2+4+7), w = w′(1+2+4+7)0w′′ or
w = w′(0+3+5+6)7w′′ for arbritrary words w′, w′′. Similarly, when w is such
that adp+(w) 6= 0, we see that Awn−1

· · ·Aw0
C has the form

(
2−` 2−`

)t,(
2−` 0

)t or
(
0 2−`

)t, where ` = |{wi | wi 6∈ {0, 7}, 0 ≤ i < n}| for all n.
Thus, xdp+(w) = 2−k, where k = |{0 ≤ i < n− 1 | wi 6= 0, 7}|.

For example, if w is the word w = 54730, we see that xdp+(w) 6= 0 and
|{0 ≤ i < 4} | wi 6= 0, 7}| = 2. Thus, xdp+(w) = 2−2.

Based on this explicit description of all words with a certain differential
probability, it is easy to determine the distribution of xdp+. Let A(n, k),
B(n, k) and C(n, k) denote the languages that consist of the words of length
n with xdp+(w) = 2−k, and wn−1 = 0, wn−1 = 7 and wn−1 6= 0, 7, respec-
tively. The languages are clearly given recursively by

A(n, k) = 0A(n− 1, k) + 0C(n− 1, k − 1) ,

B(n, k) = 7B(n− 1, k) + 7C(n− 1, k − 1) ,

C(n, k) = Σ0A(n− 1, k) + Σ1B(n− 1, k) + (Σ0 + Σ1)C(n− 1, k − 1) ,

where Σ0 = 3 + 5 + 6 and Σ1 = 1 + 2 + 4. The base cases are A(1, 0) = 0,
B(1, 0) = ∅ and C(1, 0) = 3 + 5 + 6. Let A(z, u) =

∑
n,k|A(n, k)|ukzn,

B(z, u) =
∑

n,k|B(n, k)|ukzn and C(z, u) =
∑

n,k|C(n, k)|ukzn be the cor-
responding ordinary generating functions. By the recursive description of
the languages, the generating functions are given by the linear system (see
e.g. [22])





A(z, u) = zA(z, u) + uzC(z, u) + z ,

B(z, u) = zB(z, u) + uzC(z, u) ,

C(z, u) = 3zA(z, u) + 3zB(z, u) + 6uzC(z, u) + 3z .

Denote D(z, u) = A(z, u) + B(z, u) + C(z, u) + 1. Then the coefficient of
ukzn in D(z, u), [ukzn]D(z, u), gives the number of words of length n with
xdp+(w) = 2−k (the extra 1 comes from the case n = 0). By solving the
linear system, we see that

D(z, u) = 1 +
4z

1− (1 + 6u)z
.

Since the coefficient of zn in D(z, u) for n > 0 is

[zn]D(z, u) = 4[zn]z

∞∑

m=0

(1 + 6u)mzm = 4(1 + 6u)n−1 ,

we see that

[ukzn]D(z, u) = 4 · 6k

(
n− 1

k

)

for all 0 ≤ k < n. The coefficient of zn in D(z, 1) for n > 0, [zn]D(z, 1) =
4[zn] z

1−7z
= 4·7n−1 gives the number of words of length n with xdp+(w) 6= 0.

2. THE XOR DIFFERENTIAL PROBABILITY OF ADDITION 15



Theorem 2.3 ([30, Theorem 2]). There are 4 · 7n−1 words of length n > 0
with xdp+(w) 6= 0. Of these, 4 · 6k

(
n−1

k

)
have probability 2−k for all 0 ≤ k <

n.

Note that

Pr
|w|=n

[xdp+(w) 6= 0] =
1

2

(
7

8

)n−1

and

Pr
|w|=n

[− log2 xdp+(w) = k | xdp+(w) 6= 0] =

(
6

7

)k (
1

7

)n−1−k (
n− 1

k

)

for 0 ≤ k < n. Conditioned on xdp+(w) 6= 0, − log2 xdp+(w) is thus
binomially distributed with mean 6

7
(n− 1) and variance 6

49
(n− 1) for words

of length n > 0.

2.3 EFFICIENT ALGORITHMS FOR xdp+

The simple structure of the linear representation of xdp+ can be used to
derive very efficient algorithms for computing differential properties of addi-
tion. Let eq : (Fn

2 )3 → Fn
2 be the bitwise equality function, eq(x, y, z)i = 1 if

and only if xi = yi = zi. Let mask(`) ∈ Fn
2 be such that mask(`)i = 1 if and

only if 0 ≤ i < ` and let wh(x) = |{i | xi 6= 0}| denote the Hamming weight
of x. Let x ∧ y denote the componentwise product (or bitwise and) of the
binary vectors x and y, (x∧y)i = xiyi and let ¬x denote the componentwise
negation of x, ¬xi = xi ⊕ 1. Let x � k ∈ Fn

2 denote the vector x shifted
left k positions, (x � k)i = xi−k if i ≥ k and (x � k)i = 0 otherwise.
To simplify the formulas, denote xor(x, y, z) = x ⊕ y ⊕ z. The main result
of [30] is

Theorem 2.4 ([30, Theorem 1]). Let α, β, γ ∈ Fn
2 . Then xdp+(α, β −→

γ) = 0 when

eq(α� 1, β � 1, γ � 1) ∧ (xor(α, β, γ)⊕ (α� 1)) 6= 0

and
xdp+(α, β −→ γ) = 2−wh(¬ eq(α,β,γ)∧mask(n−1))

otherwise.

Proof. Follows directly from Theorem 2.2.

Since the Hamming weight can be computed in time O(log n), this gives
a O(log n)-time algorithm for computing the exclusive-or differential prob-
ability of addition. Based on Theorem 2.2, it is trivial to derive an optimal
(that is, linear-time in the size of the output) algorithm that generates all dif-
ferentials with a given differential probability. Moreover, one or two of the
input or output differences can optionally be fixed. Using similar ideas, it is
also easy to come up with an efficient algorithm that given (α, β) finds all γ
such that

xdp+(α, β −→ γ) = max
γ′

xdp+(α, β −→ γ′) .
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An explicit algorithm can be found in [30]. Although these kinds of opti-
misation problems falls out of scope of our problem statement, we mention
that [30] also gives an O(log n)-time algorithm that finds one γ achieving the
maximum differential probability and an O(log n)-time algorithm that given
α computes

max
β,γ

xdp+(α, β −→ γ) .

Since xdp+ is a symmetric function, the algorithms can also be used for
maximisation with respect to the other inputs.

2.4 GENERALISATIONS TO SOME OTHER MAPPINGS

The results for xdp+ are easy to generalise to mappings of the form (x, y) 7→
2kx± 2`y mod 2n, k, ` ≥ 0. The differential probability of this type of map-
pings was derived using a linear-algebraic approach in [29]. We will, how-
ever, take a more direct approach.

Let xdp− denote the exclusive-or differential probability of subtraction
modulo 2n,

xdp−(α, β −→ γ) = Pr
x,y

[((x⊕ α)− (y ⊕ β))⊕ (x− y)] = γ] .

Let borrow(x, y) = (x− y)⊕ x⊕ y be the borrows in the subtraction x− y
modulo 2n as an n-tuple of bits. It is easy to see that the exclusive-or differen-
tial probability of subtraction is given by

xdp−(α, β −→ γ) = Pr
x,y

[borrow(x, y)⊕borrow(x⊕α, y⊕β) = α⊕β⊕ γ] .

Denote b = borrow(x, y) and b∗ = borrow(x ⊕ α, y ⊕ β), where x, y, α
and β are understood from context. Note that bi can be recursively defined
as b0 = 0 and bi+1 = 1 if and only if xi < yi + bi as integers. Denote
∆b = b⊕ b∗. Then xdp−(α, β −→ γ) = Prx,y[∆b = α⊕ β ⊕ γ].

Lemma 2.2. Fix α, β ∈ Fn
2 and let i ≥ 0. Then

Pr
x,y

[∆bi+1 = 1 | ∆bi = r] = T (αi + βi + r) ,

where T is as in Theorem 2.1.

Proof. By the recursive definition of borrow(x, y), we see that bi+1 = 1 if
and only if either yi = bi and at least two of xi, yi and bi are 1, or yi 6= bi and
at least two of xi, yi and bi are 0. Thus, bi+1 = yi⊕ bi⊕maj(xi, yi, bi), where
maj(u, v, w) denotes the majority of the bits u, v, w. Since maj(u, v, w) =
uv ⊕ uw ⊕ vw, we have bi+1 = yi ⊕ bi ⊕ xiyi ⊕ xibi ⊕ yibi. This gives a
recursive description of ∆bi+1. As in the proof of Lemma 2.1, we consider
∆bi+1 case-by-case.
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(αi, βi, ∆bi) ∆bi+1 Pr[∆bi+1 = 1 | ∆bi = r]
(0, 0, 0) 0 0
(0, 0, 1) 1⊕ xi ⊕ yi

1
2

(0, 1, 0) 1⊕ xi ⊕ bi
1
2

(0, 1, 1) 1⊕ yi ⊕ bi
1
2

(1, 0, 0) yi ⊕ bi
1
2

(1, 0, 1) xi ⊕ bi
1
2

(1, 1, 0) xi ⊕ yi
1
2

(1, 1, 1) 1 1

In all cases, Pr[∆bi+1 = 1 | ∆bi = r] = T (αi + βi + r).

Using this lemma, it is easy to show that xdp+ and xdp− have the same
linear representation.

Corollary 2.1. For all α, β, γ, xdp−(α, β −→ γ) = xdp+(α, β −→ γ).

Proof. Since xdp−(α, β −→ γ) = Pr[∆b = α ⊕ β ⊕ γ] and Pr[∆bi+1 = 1 |
∆bi = r] = T (αi + βi + r), the proof of Theorem 2.1 with borrow taking
the role of carry shows that xdp− is a rational series with the same linear
representation as xdp+.

Let f : Fn
2×Fn

2 → Fn
2 be a mapping of the form f(x, y) = 2kx±2`y mod

2n where k, ` ≥ 0. Since the mapping x 7→ 2kx mod 2n is F2-linear, it
follows that

Pr[α, β
f
−→ γ] = xdp+(2kα mod 2n, 2`β mod 2n) .

The differential properties of mappings like the pseudo-Hadamard transform
(PHT) pht : Z2

2n → Z2
2n ,

pht(x, y) =

(
2 1
1 1

)(
x
y

)
= (2x + y, x + y) (mod 2n) ,

used e.g. in [32, 33, 47] can also be studied using the same framework. The
exclusive-or differential probability of pht is given by

xdppht(α, β −→ γ, δ) = Pr
x,y

[(2(x⊕ α) + (y ⊕ β))⊕ (2x + y) = γ,

((x⊕ α) + (y ⊕ β))⊕ (x + y) = δ] .

We can consider xdppht as a function of hexadecimal words by writing the
differential (α, β −→ γ, δ) as the hexadecimal word w = wn−1 · · ·w0, where
wi = αi8 + βi4 + γi2 + δi. As n varies, we obtain a function from all hex-
adecimal words to [0, 1]. A linear representation for the rational series xdppht

can easily be derived as follows.
Let c = carry(2x, y), c∗ = carry(2(x ⊕ α), y ⊕ β), d = carry(x, y) and

d∗ = carry(x⊕ α, y ⊕ β), where x, y, α and β are understood from context.
Denote ∆c = c⊕ c∗ and ∆d = d⊕ d∗. Then

xdppht(α, β −→ γ, δ) = Pr
x,y

[∆c = (2α)⊕ β ⊕ γ, ∆d = α⊕ β ⊕ δ] .
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By the recursive description of the carry function, we see that ci+1 = xi−1yi⊕
xi−1ci ⊕ yici and di+1 = xiyi ⊕ xidi ⊕ yidi. Thus,

(ci, c
∗
i , di, d

∗
i , xi−1, αi−1) 7→ (ci+1, c

∗
i+1, di+1, d

∗
i+1, xi, αi)

forms a nonhomogenous Markov chain (see e.g. [11]) with easily computed
transition probabilities depending on αi and βi. If we set the probability of all
state transitions leading to states with ∆ci 6= αi−1⊕βi⊕γi or ∆di 6= αi⊕βi⊕δi

to zero, we obtain a linear representation of dimension 64 of xdppht. In a sim-
ilar manner, we obtain linear representations of the exclusive-or differential
probability of all functions of the form

(x, y) 7→

(
2k11 ±2k12

2k21 ±2k22

)(
x
y

)
(mod 2n) , (2.1)

where kij ≥ 0 and the signs are independent, although the dimensions of
the straightforward linear representations will be large. While we will not dis-
cuss the differential properties of these mappings, this observation illustrates
that it is trivial to obtain linear-time algorithms for computing the differen-
tial probability for large classes of mappings based on addition modulo 2n.
The exclusive-or differential probability of mappings of the form (2.1) was
studied using a linear-algebraic approach in [29], who gave a O(logn)-time
algorithm for computing xdppht.
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3 LINEAR APPROXIMATIONS OF ADDITION

When studying the F2-linear approximations of addition modulo 2n, we will
consider addition modulo 2n as a Boolean function Fn

2 ×Fn
2 → Fn

2 using the
natural correspondence

(xn−1, . . . , x1, x0) ∈ Fn
2 ↔ xn−12

n−1 + · · ·+ x12
1 + x02

0 ∈ Z2n .

To avoid confusion, we sometimes use⊕ and � to denote addition in Fn
2 and

addition modulo 2n, respectively. We furthermore let carry : Fn
2 × Fn

2 →
Fn

2 be the carry function for addition modulo 2n defined by carry(x, y) =
x ⊕ y ⊕ (x � y). For notational convenience, we define the functions
lca, lcc, lcs : (Fn

2 )3 → [−1, 1] (for linear correlation of addition, the carry
function and subtraction, respectively) by

lca(u, v, w) = C(u
�
←− v, w) ,

lcc(u, v, w) = C(u
carry
←−−− v, w) and

lcs(u, v, w) = C(u
�
←− v, w) .

We have previously studied these functions from an algorithmic point of view
in [52]. The simpler case with one addend fixed has previously been consid-
ered by [38]. In this chapter, we reformulate the results from [52] in our
framework. This approach gives a much simpler and more intuitive analysis
of these linear approximations.

Since the only nonlinear part of addition modulo 2n is the carry function,
it should be no surprise that the linear properties of addition completely re-
duce to those of the carry function. Subtraction is also straightforward. When
we are approximating the relation x � y = z by u

�
←− v, w, we are actually

approximating the relation z � y = x by v
�
←− u, w. With this observation, it

is trivial to prove that

lca(u, v, w) = lcc(u, v + u, w + u) and
lcs(u, v, w) = lcc(v, u + v, w + v) .

Moreover, the mappings (u, v, w) 7→ (u, v + u, w + u) and (u, v, w) 7→
(v, u+v, w+v) are permutations in (Fn

2 )3. The linear properties of addition
and subtraction modulo 2n under consideration thus completely reduce to
the corresponding properties of the carry function. In the sequel, we will
focus on the function lcc knowing that the generalisations to lca and lcs are
trivial.

Our analysis proceeds as follows. We first show that lcc can be seen as
a formal rational series and derive a linear representation for it. Using this
linear representation, we then derive an explicit description of all linear ap-
proximations with a given nonzero correlation, determine the distribution of
the correlation coefficients and derive a Θ(log n)-time algorithm for comput-
ing lcc. Finally, we discuss generalisations to some other functions.
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3.1 THE RATIONAL SERIES lcc

We will consider lcc as a function of octal words by writing the linear ap-
proximation (u

carry
←−−− v, w) as the octal word x = xn−1 · · ·x0, where xi =

ui4 + vi2 + wi. This defines lcc as a function form the octal words of length
n to the interval [−1, 1]. As n varies in the set of nonnegative integers, we
obtain a function from the set of all octal words to [−1, 1]. In the same way,
we consider lca and lcs as functions from the set of all octal words to [−1, 1].

In the terminology of formal language theory, lcc is a formal series over
the monoid of octal words with coefficients in the field of real numbers. A
remarkable subset of these series is the set of rational series [6]. One char-
acterisation of such a rational series S is: there exists an row matrix L of
dimension 1×d, a square matrix Ax of dimension d×d for each letter in the
alphabet, and a column matrix C of dimension d×1 such that for each word
w = w1 · · ·w`, the value of the series is

S(w) = LAw1
· · ·Aw`

C .

The family L, (Ax)x, L is called a linear representation of dimension d of the
rational series. For the series lcc, the alphabet is {0, . . . , 7}.

We will use the following bracket notation: if φ is any statement, [φ] = 1
when φ is true and [φ] = 0 when φ is false.

Theorem 3.1 (Linear representation of lcc). The formal series lcc has the
2-dimensional linear representation L, (Ak)

7
k=0, C, where L =

(
1 0

)
, C =(

1 1
)t, and

Ak =
1

2

(
2[k1 = k0 = 0] 0

[k1 6= k0] (−1)k0 [k1 = k0]

)
if k2 = 0 and

Ak =
1

2

(
0 2[k1 = k0 = 0]

(−1)k0[k1 = k0] [k1 6= k0]

)
if k2 = 1 ,

where k = k24 + k12 + k0. Thus, lcc is a rational series. (All the matrices Ak

are given in Table 3.1 on the next page.)

For example, if (u ←− v, w) = (10100 ←− 01110, 01000), x = 43620
and lcc(u, v, w) = lcc(x) = LA4A3A6A2A0C = −1

8
. In order to prove this

result, we will first give a simple recursive expression for lcc. If u 6= 0, let
k be maximal such that uk = 1. Since u · carry(x, y) is independent of x`

and y` when ` ≥ k, we see that lcc(u, v, w) = 0 whenever v` 6= 0 or w` 6= 0
for some ` ≥ k. This trivial observation is crucial in the proof. Let ei ∈ Fn

2

be a vector whose ith component is 1 and the others are 0. For x, y ∈ Fn
2 , x

denotes the componentwise negation of x, xi = xi + 1, and xy denotes the
componentwise product of x and y, (xy)i = xiyi.

Lemma 3.1. The function lcc(u, v, w) is given recursively as follows. First,
lcc(0, v, w) = lcc(e0, v, w) = δ(v, w). Second, if u 6∈ {0, e0}, let k be
maximal such that uk = 1 and let i ≥ k. Then

lcc(u + ei+1, v, w) =
1

2

{
lcc(u, vei, wei) if vi 6= wi and
(−1)vi lcc(u + ei, vei, wei) otherwise .
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Table 3.1: All the eight matrices Ak in Theorem 3.1.

A0 = 1
2

(
2 0
0 1

)
A1 = 1

2

(
0 0
1 0

)
A2 = 1

2

(
0 0
1 0

)
A3 = 1

2

(
0 0
0 −1

)

A4 = 1
2

(
0 2
1 0

)
A5 = 1

2

(
0 0
0 1

)
A6 = 1

2

(
0 0
0 1

)
A7 = 1

2

(
0 0
−1 0

)

Proof. Let ci = carryi denote the ith component of the carry function. This
function can be recursively computed as c0(x, y) = 0 and ci+1(x, y) = 1
if and only if at least two of xi, yi and ci(x, y) are 1. By considering the 8
possible values of xi, yi and ci(x, y), we see that ĉ0(x, y) = 1 and ĉi+1(x, y) =
1
2

(
(−1)xi + (−1)yi + ĉi(x, y)− (−1)xi+yi ĉi(x, y)

)
. The Fourier transform of

ĉi is thus given by the recurrence

Ĉ0(v, w) = δ(v, w) and

2Ĉi+1(v, w) = δ(v + ei, w) + δ(v, w + ei) + Ĉi(v, w)− Ĉi(v + ei, w + ei)

for all i.
Denote F̂ (v, w) = lcc(u, v, w). Using the recurrence for Ĉi+1, we have

lcc(u+ei+1, v, w) = (Ĉi+1∗F̂ )(v, w) = 1
2

(
F̂ (v+ei, w)+F̂ (v, w+ei)+(Ĉi∗

F̂ )(v, w)−(Ĉi∗F̂ )(v+ei, w+ei)
)
. Note that at most one of the terms in this

expression is nonzero. The four terms consider the cases (vi, wi) = (1, 0),
(0, 1), (0, 0) and (1, 1), respectively. It follows that

lcc(u + ei+1, v, w) =

{
1
2
lcc(u, vei, wei) if vi 6= wi and

1
2
(−1)vi lcc(u + ei, vei, wei) if vi = wi .

This completes the proof.

Using this lemma, it is easy to derive a linear representation of the series
lcc.

Proof (of Theorem 3.1). Fix a word x, n = |x|, and let (u
carry
←−−− v, w) be the

corresponding linear approximation. For z ∈ Fn
2 , b ∈ {0, 1} and 0 ≤ ` < n,

denote z|b` = (0, . . . , 0, b, z`−1, . . . , z0) and lccb
`(u, v, w) = lcc(u|b` v|0` , w|0`).

Let P ` be the 2 × 1 matrix P `
b = lccb

`(u, v, w). We show by induction on `
that P ` = Ax`−1

· · ·Ax0
C for all `. Since P 0 = C, the base case is clear, so

consider ` > 0. We consider the following four cases.

• If b = u`−1 = 0, P `
0 = P `−1

0 when v`−1 = w`−1 = 0 and P `
0 = 0

otherwise.

• If b = 1 and u`−1 = 0, Lemma 3.1 (with i > k) shows that P `
1 = 1

2
P `−1

0

when v`−1 6= w`−1 and P `
1 = 1

2
(−1)v`−1P `−1

1 when v`−1 = w`−1.

• If b = 0 and u`−1 = 1, P `
0 = P `−1

1 when v`−1 = w`−1 = 0 and P `
0 = 0

otherwise.
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• If b = u`−1 = 1, Lemma 3.1 (with i = k) shows that P `
1 = 1

2
P `−1

1 when
v`−1 6= w`−1 and P `

1 = 1
2
(−1)v`−1P `−1

0 when v`−1 = w`−1.

In all cases, P ` = AP `−1, where A is the 2× 2 matrix

A =
1

2

(
2[v`−1 = w`−1 = 0] 0

[v`−1 6= w`−1] (−1)v`−1 [v`−1 = w`−1]

)
if u`−1 = 0 and

A =
1

2

(
0 2[v`−1 = w`−1 = 0]

(−1)v`−1 [v`−1 = w`−1] [v`−1 6= w`−1]

)
if u`−1 = 1 .

In all cases, A = Ax`−1
. By induction, we have P ` = Ax`−1

· · ·Ax0
C for all

`. Since lcc(u, v, w) = lcc0
n(u, v, w) = LP n, it follows that lcc(u, v, w) =

lcc(x) = LAxn−1
· · ·Ax0

C.

An alternative proof of Theorem 3.1 was given by [12]. In this proof,
we let si =

∑
j≤i(uj · carry(x, y) + vjxj + wjyj) denote the partial sum

of the chosen input and output bits up to (and including) position i. Let
ci = carry(x, y) denote the ith carry bit. Then (si, ci+1) constitute a non-
homogenous Markov chain (see e.g. [11]) with different transition matrices
depending on (ui, vi, wi). Straightforward calculations give the eight 4 × 4
transition matrices. After a change of basis, the linear representation in The-
orem 3.1 is obtained. We omit the details.

3.2 ENUMERATIVE ASPECTS

The simplicity of the linear representation of lcc allows us to derive an ex-
plicit description of all words with a given correlation. We will use the no-
tation of formal languages to describe words. For example, (3 + 5 + 6)1∗

denotes the set of all words with one of {3, 5, 6} followed by any number
of ones. Let L, Ak and C be as in Theorem 3.1, and denote e0 =

(
1 0

)

and e1 =
(
0 1

)
. Then e0A0 = e0, e0A4 = e1, e0Ai = 0 for i 6= 0, 4,

e1A0 = e1A5 = e1A6 = 1
2
e1, e1A1 = e1A2 = e1A4 = 1

2
e0, e1A3 = −1

2
e1 and

e1A7 = −1
2
e0. It follows by induction that e0Aw|w|−1

· · ·Aw0
has the form 0,

±2−ke0 or ±2−ke1 for some 0 ≤ k < |w|. Since L = e0 and C =
(
1 1

)t,
it follows that the computation of lcc(w) = LAw|w|−1

· · ·Aw0
C can be de-

scribed by the following automaton.

start // GFED@ABCe0

0




4 //

1,2,3,5,6,7
��

GFED@ABCe1

0,3,5,6

hh

ECD@GF
1,2,4,7

��

?>=<89:;0

0,...,7

jj

(3.1)

If the automaton ends up in state 0, lcc(w) = 0. If the automaton ends up in
state e0 or e1, lcc(w) = ±2−k, where k is the number of transitions marked
by a solid arrow, and the sign is determined by the number of occurrences
of 3 + 7: lcc(w) > 0 if and only if the number of occurrences is even. For
example, when computing lcc(43620), we have the state transitions

GFED@ABCe0
4 // GFED@ABCe1

3 // GFED@ABCe1
6 // GFED@ABCe1

2 // GFED@ABCe0
0 // GFED@ABCe0
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and thus lcc(43620) = −2−3. Clearly, lcc(w) = 0 if and only if w has the
form

w =
(
0 + 4(0 + 3 + 5 + 6)∗(1 + 2 + 4 + 7)

)∗
(1 + 2 + 3 + 5 + 6 + 7)Σ∗ ,

where Σ = 0 + 1 + · · ·+ 7.
Let S0(n, k) and S1(n, k) denote the languages

S0(n, k) = {w | |w| = n, e0Awn−1
· · ·Aw0

= ±2−ke0} and

S1(n, k) = {w | |w| = n, e0Awn−1
· · ·Aw0

= ±2−ke1}

for n > 0. Then S0(n, k) + S1(n, k) is the set of words of length n > 0 with
lcc(w) = ±2−k. The languages are clearly given recursively by

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7) and
S1(n, k) = S0(n− 1, k)4 + S1(n− 1, k − 1)(0 + 3 + 5 + 6)

for all 0 ≤ k < n. The base cases are S0(1, 0) = 0 and S1(1, 0) = 4. If k < 0
or k ≥ n, S0(n, k) = S1(n, k) = ∅.

Theorem 3.2. For all nonempty words w, the correlation lcc(w) ∈ {0} ∪
{±2k | k ∈ {0, 1, . . . , |w|−1}}. The set of words of length n > 0 with corre-
lation±2−k is given by S0(n, k)+S1(n, k), where S0 and S1 are determined
recursively as follows. First, S0(1, 0) = 0, S1(1, 0) = 4 and S0(n, k) =
S1(n, k) = ∅ when k < 0 or k ≥ n. Second, when 0 ≤ k < n 6= 1,

S0(n, k) = S0(n− 1, k)0 + S1(n− 1, k − 1)(1 + 2 + 4 + 7) and
S1(n, k) = S0(n− 1, k)4 + S1(n− 1, k − 1)(0 + 3 + 5 + 6) .

For all words w ∈ S0(n, k)+S1(n, k), lcc(w) = 2−k if and only if w contains
an even number of occurrences of (3 + 7) and lcc(w) = −2−k otherwise.

From this result, it can be seen that there are 8(n − 1) words of length
n > 0 with lcc(w) = ± 1

2
. These are the words of the form

w = 0∗4(1 + 2 + 4 + 7)0∗(4 + λ) and w = 0∗4(0 + 3 + 5 + 6) ,

where λ denotes the empty word. Among these words, lcc(w) is negative if
and only if w contains a 3 or a 7.

The recursive description in Theorem 3.2 can easily be used to generate
all linear approximations with a given nonzero correlation. The straightfor-
ward algorithm uses O(n) space and is linear-time in the number of gener-
ated approximations. Clearly, this immediately generalises to the case when
some of the selection vectors are fixed. The result is also trivial to generalise
to addition and subtraction modulo 2n.

Corollary 3.1. The set of linear approximations of the carry function, addi-
tion and subtraction modulo 2n can be generated in optimal time (that is,
linear in the size of the output) and O(n) space in a standard RAM model of
computation. Moreover, one or two of the selection vectors can optionally
be fixed.
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Let S0(z, u) =
∑

n,k|S
0(n, k)|ukzn and S1(z, u) =

∑
n,k|S

1(n, k)|ukzn

be the ordinary generating functions associated to S0 and S1. By the re-
cursive description of the languages, S0(z, u) and S1(z, u) are given by the
linear system (see e.g. [22])

{
S0(z, u) = zS0(z, u) + 4uzS1(z, u) + z and
S1(z, u) = zS0(z, u) + 4uzS1(z, u) + z .

Let S(z, u) = S0(z, u)+S1(z, u)+1. Then the coefficient of ukzn in S(z, u),
[ukzn]S(z, u), gives the number of words of length n with |lcc(w)| = 2−k for
all n (the extra 1 comes from the case n = 0). By solving the linear system,
we get

S(z, u) = 1 +
2z

1− (1 + 4u)z
.

Since [zn]S(z, u) = 2[zn−1]
∑

m≥0(1 + 4u)mzm = 2(1 + 4u)n−1 for n > 0,
we see that [ukzn]S(z, u) = 2 · 4k

(
n−1

k

)
for all 0 ≤ k < n. The coefficient

of zn in S(z, 1) for n > 0, [zn]S(z, 1) = 2[zn−1] 1
1−5z

= 2 · 5n−1 gives the
number of words of length n > 0 with lcc(w) 6= 0.

Theorem 3.3. There are 2 · 5n−1 words of length n > 0 with lcc(w) 6= 0. Of
these, 22k+1

(
n−1

k

)
have correlation ±2−k for 0 ≤ k < n.

Note that

Pr
|w|=n

[lcc(w) 6= 0] =
1

4

(
5

8

)n−1

and that

Pr
|w|=n

[− log2|lcc(w)| = k | lcc(w) 6= 0] =

(
4

5

)k (
1

5

)n−1−k (
n− 1

k

)

for 0 ≤ k < n. Conditioned on lcc(w) 6= 0,− log2|lcc(w)| is thus binomially
distributed with mean 4

5
(n − 1) and variance 4

25
(n − 1) for words of length

n > 0.

3.3 COMPUTING lcc

The linear representation L, Ak, C of lcc immediately implies that lcc(x)
can be computed in time O(|x|). Due to the simplicity of the linear repre-
sentation, it can in fact be computed in time O(log|x|). For simplicity, we
assume that |x| is a power of 2 (if not, x can be padded with zeros, since
lcc(0x) = lcc(x)).

We will use a standard n-bit RAM model of computation consisting of n-
bit memory cells, and unit cost logical and arithmetic operations and condi-
tional branches. Specifically, we will use bitwise and (∧), or (∨), exclusive-or
(⊕) and negation (·), logical shifts (� and�), and addition and subtraction
modulo 2n (� and �). As a notational convenience, we allow our algorithms
to return values of the form s2−k, where s ∈ {0, 1,−1}. In our RAM model,
this can be handled by returning s and k in two registers.
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Let x be an octal word of length n, and let u←− v, w be the corresponding
linear approximation. We will modify the automaton (3.1) by merging states
e0 and 0. This give the following automaton.

start // GFED@ABCe0




4 // GFED@ABCe1

0,3,5,6

hh

ECD@GF
1,2,4,7

��

Let state(b, x) ∈ Fn
2 be such that state(b, x)i = 1 if and only if the last

transition of the modified automaton, when it has read the string xn−1 · · ·xi

starting from state eb, was from state e1. Let wh(z) = |{i | zi 6= 0}| denote
the Hamming weight of z. It is easy to see that lcc(x) = 0 if and only if
σ ∧ (v ∨ w) 6= 0, where σ = state(0, x). If lcc(x) 6= 0, lcc(x) = (−1)s2−k,
where s = wh(v ∧ w) mod 2 is the parity of v ∧ w and k = wh(σ) is the
Hamming weight of state(0, x). That is,

lcc(x) =

{
0 if σ ∧ (v ∨ w) 6= 0 and
(−1)wh(v∧w)2−wh(σ) otherwise ,

(3.2)

where σ = state(0, x). For example, when x = 4362045, and thus u =
1010011, v = 0111000 and w = 0100001, we have σ = state(0, x) =
0111001, σ ∧ (v ∨ w) = 0, wh(v ∧ w) = 1 and wh(σ) = 4. It follows that
lcc(4362045) = −2−4.

Note that state(b, x) can be recursively computed as follows. When |x| =
1, state(b, x) = b. When |x| > 1, write x = xLxR with |xL|, |xR| > 0. Then

state(b, x) = (state(b, xL), state(b′, xR)) , (3.3)

where b′ = 1 if and only if state(b, xL)0 = 0 and xL
0 = 4, or state(b, xL)0 = 1

and xL
0 ∈ {0, 3, 5, 6}. This observation leads to the following algorithm

for computing state(b, x). We will maintain two registers σ0 and σ1 for
state(0, ·) and state(1, ·), respectively. During the ith step of the algorithm,
σb, x (and hence u, v, w) are considered to consist of blocks of length 2i+1.
Let σ′

b and x′ be one of these blocks. At the end of the ith step, the algorithm
ensures that σ′

b = state(b, x′). This can be done inductively by combining
the upper half of σ′

b with the lower half of either σ′
0 or σ′

1 according to (3.3).
By applying this update rule to all blocks in parallel, we obtain the following
Θ(log n)-time algorithm.

Theorem 3.4. Let n be a power of 2, let mask(i) ∈ Fn
2 consist of blocks

of 2i ones and zeros starting from the least significant end (for example,
mask(1) = 0011 · · ·0011) and let u, v, w ∈ Fn

2 . The following algorithm
computes the correlation lcc(u, v, w) using Θ(log n) time and constant space
in addition to the masks mask(i).

1. Initialise m = 1010 · · ·1010, s0 = u ∧ v ∧ w, s1 = u⊕ v ⊕ w, σ0 = 0
and σ1 = 11 · · ·11.

2. For i = 0, . . . , log2 n− 1, do
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(a) Set tb ← ((σb ∧ s0) ∨ (σb ∧ s1)) ∧m for b = 0, 1.

(b) Set tb ← tb � (tb � 2i) for b = 0, 1.

(c) Set rb ← (σb ∧ mask(i)) ∨ (σ0 ∧ tb ∧ mask(i)) ∨ (σ1 ∧ tb) for
b = 0, 1.

(d) Set σb ← rb for b = 0, 1.

(e) Set m← (m� 2i) ∧mask(i + 1).

3. If σ0 ∧ (v ∨ w) 6= 0, return 0.

4. Otherwise, return (−1)wh(v∧w)2−wh(σ0).

Note that the masks mask(i) and the values of m in the algorithm only
depend on n.

Proof. Since the Hamming weight can be computed in time O(log n), the al-
gorithm clearly terminates in time Θ(log n) and uses constant space in addi-
tion to the masks mask(i). Let m(i) ∈ Fn

2 be such that m(i)` = 1 if and only
if ` − 2i is a nonnegative multiple of 2i+1 (e.g. m(1) = 0100 · · ·01000100),
and let

σb(i) = (state(b, xn/2i−1), . . . , state(b, x0)) ,

where x = xn/2i−1 · · ·x0 is the word associated to (u ←− v, w) and |x`| = 2i.
We show by induction on i that m = m(i) and σb = σb(i) at the start of
the ith iteration of the for-loop. For i = 0, this clearly holds, so let i ≥ 0.
Consider the words x and σb split into 2i+1-bit blocks and let x′ and σ′

b be one
of these blocks. After step 2a, tb,` = 1 if and only if ` − 2i is a nonnegative
multiple of 2i+1 and either σb,` = 0 and u`4 + v`2 + w` = 4 or σb,` = 1 and
u`4 + v`2 + w` ∈ {0, 3, 5, 6}. After step 2b, a block of the form χ00 · · · 0 has
been transformed to a block of the form 0χχ · · ·χ in tb. In step 2c, the upper
half of σ′

b is concatenated with the lower half of σ′
c, where c = 1 if and only if

σb,` = 0 and u`4+ v`2+w` = 4 or σb,` = 1 and u`4+ v`2+w` ∈ {0, 3, 5, 6}.
By induction and (3.3), we thus have σb = σb(i + 1) after step 2d. Finally,
m = m(i + 1) after step 2e. It follows that σ0 = state(0, x) after the for-loop.
By (3.2), the algorithm returns lcc(u, v, w).

3.4 GENERALISATIONS TO SOME OTHER MAPPINGS

The results on lcc can easily be generalised to more complex mappings.
In this section, we will focus on mappings h : (Fn

2 )2 → (Fn
2 )2 of the form

h(x, y) = (f(x, y), g(x, y)). The correlation of linear approximations of h,
C(t, u

h
←− v, w) can be seen as a function of hexadecimal words by writing the

linear approximation (t, u←− v, w) as the hexadecimal word x = xn−1 · · ·x0,
where xi = ti8+ui4+vi2+wi. When n varies, we obtain a function from all
hexadecimal words to [−1, 1]. We will show that C(t, u h

←− v, w) is a rational
series whenever C(t

f
←− v, w) and C(u

g
←− v, w) are.

Let S and T be rational series over the octal words with the linear repre-
sentations L, (Ak)k, C and L′, (A′

k)k, C ′ of dimensions d and d′, respectively.
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We define the convolution of the linear representations to be the linear rep-
resentation L∗, (A∗

k)k, C∗ of dimension dd′, where L∗
ij = LiL

′
j ,

(A∗
k)ij,k` =

∑

p,q∈{0,1}

(Ak34+p2+q)i,k(A
′
k24+(k1⊕p)2+(k0⊕q))j,` ,

k = k38 + k24 + k12 + k0 and C∗
ij = CiC

′
j. Note that the convolution of the

linear representations defines a rational series over the hexadecimal words.

Theorem 3.5. Let f, g : Fn
2 × Fn

2 → Fn
2 be Boolean functions, such that

C(t
f
←− v, w) and C(u g

←− v, w) are rational series over the octal words
with linear representations L, (Ak)k, C and L′, (A′

k)k, C ′ of dimensions
d and d′, respectively. Let h : (Fn

2 )2 → (Fn
2 )2 be the Boolean function

h(x, y) = (f(x, y), g(x, y)). Then C(t, u h
←− v, w) is a rational series over

the hexadecimal words. A linear representation of dimension dd′ is given by
the convolution of the linear representations L, (Ak)k, C and L′, (A′

k)k, C ′.

Proof. Let L∗, (A∗
k)k, C∗ be the convolution of the two linear representa-

tions. Fix t, u in Fn
2 , and denote

F̂ m
i (v, w) = (Axm−1

· · ·Ax0
C)i and

Ĝm
j (v, w) = (A′

ym−1
· · ·A′

y0
C ′)j ,

where x and y are the octal words associated to the linear approximations
(t←− v, w) and (u←− v, w), respectively. Let z = zn−1 · · · z0 be the hexadec-
imal word zi = ti8 + ui4 + vi2 + wi, and let ξ = ξn−1 · · · ξ0 be the word
ξi = vi2 + wi. We will express F̂ m+1

i ∗ Ĝm+1
j in terms of of F̂ m

k ∗ Ĝm
` . By

some abuse of notation,

(F̂ m+1
i ∗Gm+1

j )(v, w) =
∑

r,s∈F
m+1
2

F̂ m+1
i (r, s)Ĝm+1

j (r + v, s + w)

=

3∑

p=0

∑

r,s∈F
m
2

∑

k,`

(Atm4+p)ikF̂
m
k (r, s)(A′

um4+(p⊕ξm))j`Ĝ
m
` (r + v, s + w)

=
∑

k,`

∑

p

(Atm4+p)ik(A
′
um4+(p⊕ξm))j`

∑

r,s

F̂ m
k (r, s)Ĝm

` (r + v, s + w)

=
∑

k,`

(∑

p

(Atm4+p)ik(A
′
um4+(p⊕ξm))j`

)
(F̂ m

k ∗ Ĝm
` )(v, w)

=
∑

k,`

(A∗
zm

)ij,k`(F̂
m
k ∗ Ĝm

` )(v, w) .

It follows by induction that (F̂ n
i ∗ Ĝn

j )(v, w) = A∗
zn−1
· · ·A∗

z0
C∗. Since

C(t, u
h
←− v, w) = ((LF̂ n) ∗ (L′Ĝn))(v, w) = L∗(F n ∗ Gn)(v, w), the re-

sult follows.

This result and its proof can easily be generalised to functions of the form
f : (Fn

2 )m → (Fn
2 )k and g : (Fn

2 )m → (Fn
2 )` for k, m, ` > 0.

Since the mapping (x, y) 7→ (2kx, 2`y) (mod 2n), k, ` ≥ 0, is F2-linear,
the results on lcc are easy to generalise to mappings of the form (x, y) 7→
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2kx ± 2`y mod 2n. Using Theorem 3.5 we can then obtain linear represen-
tations of the correlation of linear approximations of all functions of the form

(x, y) 7→

(
2k11 ±2k12

2k21 ±2k22

)(
x
y

)
(mod 2n) ,

where kij ≥ 0 and the signs are independent, although the dimensions of the
straightforward linear representations will be large. This class of functions in
particular includes the Pseudo-Hadamard transform (PHT) pht : (Fn

2 )2 →
(Fn

2 )2 defined by the expression

pht(x, y) =

(
2 1
1 1

)(
x
y

)
= (2x + y, x + y) (mod 2n)

over Z2n . The Pseudo-Hadamard transform is used e.g. in the block ci-
phers [32, 33, 47].
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4 THE ADDITIVE DIFFERENTIAL PROBABILITY OF XOR

When studying the additive differential probability of exclusive-or, we ex-
clusively deal with the set {0, 1, . . . , 2n − 1} equipped with two group op-
erations. On one hand, we use the usual addition modulo 2n, which we
denote by +. On the other hand, we identify {0, 1, . . . , 2n − 1} and the
set Fn

2 of binary vectors using the natural correspondence that identifies
xn−12

n−1 + · · · + x12 + x0 ∈ Z2n with (xn−1, . . . , x1, x0) ∈ Fn
2 . In this

way the usual componentwise addition ⊕ in Fn
2 (or bitwise exclusive-or) car-

ries over to a group operation in {0, 1, . . . , 2n − 1}. We call the differential
probability of the resulting mapping⊕ : Z2n×Z2n → Z2n the additive differ-
ential probability of exclusive-or and denote it by adp⊕. In this chapter, we
analyse this mapping adp⊕ : Z3

2n → [0, 1] defined by

adp⊕(α, β −→ γ) = Pr
x,y

[((x + α)⊕ (y + β))− (x⊕ y) = γ] . (4.1)

This concrete problem has been addressed (and in a rather ad hoc manner)
in a few papers, including [5], but it has never been addressed completely—
probably because of its “apparent complexity”.

We show that adp⊕ can be expressed as a formal series in the sense of
formal language theory with a linear representation in base 8. That is, if we
write the differential (α, β −→ γ) as an octal word w = wn−1 · · ·w1w0 in a
natural way, there are eight square matrices Ai, a column vector C and a row
vector L, such that

adp⊕(α, β −→ γ) = adp⊕(w) = LAwn−1
· · ·Aw1

Aw0
C .

This representation immediately gives us a linear-time algorithm for comput-
ing adp⊕. A few additional properties (like the fraction 3

7
+ 4

7
8−n of differen-

tials with nonzero probability) can also be derived from it.
In order to study the average behaviour of adp⊕, we introduce a sequence

sbs (for side-by-side), by putting side-by-side the values of adp⊕(w) according
to the length and rank in the lexicographic order of the octal word w. Using
tools from analytic number theory, we derive an asymptotic expression for
the sum of the first order,

∑

1≤n<ν

sbs(n) = ν2/3G2/3(log8 ν) + o(ν2/3) ,

where G2/3 is a 1-periodic continuous function. The first terms of the Fourier
series of G2/3 can be numerically computed.

Our analysis proceeds as follows. We first show that adp⊕ is a rational se-
ries and derive a linear representation for it. This gives an efficient algorithm
that computes adp⊕(w) in time O(|w|). We then briefly discuss the distribu-
tion of adp⊕. Section 4.3 provides an overview of the method we follow to
put light on the asymptotic behaviour of adp⊕. The rest of the chapter is a
mere application of the method. The results in this chapter is joint work with
Philippe Dumas and Helger Lipmaa.
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4.1 THE RATIONAL SERIES adp⊕

We will consider adp⊕ as a function of octal words by writing the differential
(α, β −→ γ) as the octal word w = wn−1 · · ·w0, where wi = 4αi + 2βi +
γi. This defines adp⊕ as a function from the octal words of length n to the
interval [0, 1]. As n varies in the set of nonnegative integers, we obtain a
function from the set of all octal words to [0, 1].

In the terminology of formal language theory, the additive differential
probability adp⊕ is a formal series over the monoid of octal words with co-
efficients in the field of real numbers. A remarkable subset of these series is
the set of rational series [6]. One possible characterisation of such a rational
series S is the following: there exists a square matrix Ax of size d× d for each
letter x in the alphabet, a row matrix L of size 1× d and a column matrix C
of size d× 1 such that for each word w = w1 · · ·w`, the value of the series is

S(w) = LAw1
· · ·Aw`

C .

The family L, (Ax)x, C is called a linear representation of dimension d of the
rational series. In our case, the alphabet is the octal alphabet {0, 1, . . . , 7}.

Theorem 4.1 (Linear representation of adp⊕). The formal series adp⊕ has
the 8-dimensional linear representation L, (Ak)

7
k=0 and C, where the matri-

ces are L =
(
1 1 1 1 1 1 1 1

)
, C =

(
1 0 0 0 0 0 0 0

)t,

A0 =
1

4




4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




and Ak is obtained from A0 by permuting row i with row i⊕ k and column
j with column j ⊕ k: (Ak)ij = (A0)i⊕k,j⊕k. (For completeness, the matrices
A0, . . . , A7 are given in Table 4.1 on page 33.) Thus, adp⊕ is a rational series.

For example, if (α, β −→ γ) = (00110, 10100 −→ 01110), w = 21750
and adp⊕(α, β −→ γ) = adp⊕(w) = LA2A1A7A5A0C = 5

32
. The linear

representation immediately implies that adp⊕(w) can be computed using
O(|w|) arithmetic operations. Since the arithmetic operations can be carried
out using 2|w|-bit integer arithmetic, which can be implemented in constant
time on a |w|-bit RAM model, we have

Proposition 4.1. The additive differential probability adp⊕(w) can be com-
puted in time O(|w|) on a standard unit cost |w|-bit RAM model of compu-
tation.

This can be compared with the O(log|w|)-time algorithm for computing
xdp+ from [30].
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Note that the matrices A0, . . . A7 in the linear representation for adp⊕

are substochastic . Thus, we could view the linear representation as a nonho-
mogenous Markov chain (see e.g. [11]) by adding a dummy state and dummy
state transitions.

The rest of this section is devoted to the technical proof of Theorem 4.1.
To prove this result, we will first give a different formulation of adp⊕. For
x, y ∈ {0, . . . , 2n − 1}, let xy denote their componentwise product in Fn

2

(or bitwise and). Let borrow(x, y) = x ⊕ y ⊕ (x − y) denote the borrows,
as an n-tuple of bits, in the subtraction x − y. Alternatively, borrow(x, y)
can be recursively defined by borrow(x, y)0 = 0 and borrow(x, y)i+1 = 1 if
and only if xi − borrow(x, y)i < yi as integers. This can be used to define
borrow(x, y)n = 1 if and only if xn−1 − borrow(x, y)n−1 < yn−1 as integers.
The borrows can be used to give an alternative formulation of adp⊕.

Lemma 4.1. For all α, β, γ ∈ Z2n ,

adp⊕(w) = Pr
x,y

[a⊕ b⊕ c = α⊕ β ⊕ γ] ,

where a = borrow(x, α), b = borrow(y, β) and c = borrow(x⊕y, (x−α)⊕
(y − β)).

Proof. By replacing x and y with x − α and y − β in the definition (4.1)
of adp⊕ on page 30, we see that adp⊕(α, β −→ γ) = Prx,y[(x ⊕ y) − ((x −
α) ⊕ (y − β)) = γ]. Since (x ⊕ y) − ((x − α) ⊕ (y − β)) = γ if and only
if γ = c ⊕ x ⊕ y ⊕ (x − α) ⊕ (y − β) = a ⊕ b ⊕ c ⊕ α ⊕ β if and only if
a⊕ b⊕ c = α⊕ β ⊕ γ, the result follows.

We furthermore need the following technical lemma.

Lemma 4.2. For all x, y, α, β, γ,

ai+1 = (aa′ ⊕ α⊕ a′x)i ,

bi+1 = (bb′ ⊕ β ⊕ b′y)i and
ci+1 = [c⊕ a′ ⊕ b′ ⊕ c(a′ ⊕ b′)⊕ (a′ ⊕ b′)(x⊕ y)]i ,

where a = borrow(x, α), b = borrow(y, β), c = borrow(x ⊕ y, (x − α) ⊕
(y − β)), a′ = a⊕ α and b′ = b⊕ β.

Proof. By the recursive definition of borrow(x, y), borrow(x, y)i+1 = 1
if and only if xi < yi + borrow(x, y)i as integers. The latter event oc-
curs if and only if either yi = borrow(x, y)i and at least two of xi, yi and
borrow(x, y)i are equal to 1, or yi 6= borrow(x, y)i and at least two of xi, yi

and borrow(x, y)i are equal to 0. That is, borrow(x, y)i+1 = 1 if and only
if yi ⊕ borrow(x, y)i ⊕ maj(xi, yi, borrow(x, y)i) = 1, where maj(u, v, w)
denotes the majority of the bits u, v, w. Since maj(u, v, w) = uv⊕uw⊕ vw,
we have borrow(x, y)i+1 = [y ⊕ borrow(x, y) ⊕ xy ⊕ x borrow(x, y) ⊕
y borrow(x, y)]i.

For a, we thus have ai+1 = (α⊕a⊕xα⊕xa⊕αa)i = (a′⊕aα⊕a′x)i =
[a′⊕ a(a′⊕ a)⊕ a′x]i = (aa′⊕α⊕ a′x)i. The formula for bi+1 is completely
analogous. For c, we have ci+1 = [(x−α)⊕(y−β)⊕c⊕(x⊕y)((x−α)⊕(y−
β))⊕(x⊕y)c⊕((x−α)⊕(y−β))c]i = [x⊕a′⊕y⊕b′⊕c⊕(x⊕y)(x⊕a′⊕y⊕
b′)⊕(x⊕y)c⊕(x⊕a′⊕y⊕b′)c]i = [c⊕a′⊕b′⊕c(a′⊕b′)⊕(a′⊕b′)(x⊕y)]i.
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Table 4.1: All the eight matrices Ak in Theorem 4.1.

A0 =
1
4




4 0 0 1 0 1 1 0

0 0 0 1 0 1 0 0

0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0




A1 =
1
4




0 0 1 0 1 0 0 0

0 4 1 0 1 0 0 1

0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1




A2 =
1
4




0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 1 4 0 1 0 0 1

0 1 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1




A3 =
1
4




1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0

1 0 0 0 0 0 1 0

1 0 0 4 0 1 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 0




A4 =
1
4




0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 1 0 4 0 0 1

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 1




A5 =
1
4




1 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 1 0

1 0 0 1 0 4 1 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 1 0




A6 =
1
4




1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

1 0 0 1 0 1 4 0

0 0 0 1 0 1 0 0




A7 =
1
4




0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0

0 1 1 0 1 0 0 4



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Proof (of Theorem 4.1). Let (α, β −→ γ) be the differential associated with
the word w. Denote n = |w| and let x, y be uniformly distributed random
variables in Z2n . Denote a = borrow(x, α), b = borrow(y, β) and c =
borrow(x⊕ y, (x− α)⊕ (y − β)). Let ξ be the octal word of borrow triples,
ξi = 4ai +2bi + ci. We define ξn in the natural way using borrow(u, v)n = 1
if and only if un−1 − borrow(u, v)n−1 < vn−1 as integers. For compactness,
denote xor(w) = α⊕β⊕γ and xor(ξ) = a⊕ b⊕ c. Let P (w, k) be the 8×1
substochastic matrix

Pj(w, k) = Pr
x,y

[xor(ξ) ≡ xor(w) (mod 2k), ξk = j]

for 0 ≤ k ≤ n. Let M(w, k) be the 8× 8 substochastic transition matrix

Mij(w, k) = Pr
x,y

[xor(ξ)k = xor(w)k, ξk+1 = i |

xor(ξ) ≡ xor(w) (mod 2k), ξk = j]

for 0 ≤ k < n. Then Pi(w, k + 1) =
∑

j Mij(w, k)Pj(w, k) and thus
P (w, k + 1) = M(w, k)P (w, k). Note furthermore that P (w, 0) = C,
since a0 = b0 = c0 = 0, and that LP (w, n) =

∑
j Prx,y[xor(ξ) ≡ xor(w)

(mod 2n), ξn = j] = Prx,y[xor(ξ) ≡ xor(w) (mod 2n)] = adp⊕(w), where
the last equality is due to Lemma 4.1. We will show that M(w, k) = Awk

for all k. By induction, it follows that adp⊕(w) = LP (w, n) = LM(w, n −
1) · · ·M(w, 0)C = LAwn−1

· · ·Aw0
C.

It remains to show that M(w, k) = Awk
for all k. Towards this end, let

x, y be such that xor(ξ) ≡ xor(w) (mod 2k) and ξk = j. We will count
the number of ways we can choose (xk, yk) such that xor(ξ)k = xor(w)k and
ξk+1 = i.

Denote a′ = a⊕α, b′ = b⊕β and c′ = c⊕γ. Note that xor(ξ)k = xor(w)k

if and only if c′k = (a′ ⊕ b′)k. Under the assumption that xor(ξ)k = xor(w)k

we have (cc′ ⊕ γ)k = [c(a′ ⊕ b′) ⊕ c ⊕ a′ ⊕ b′]k. By Lemma 4.2, (xk, yk)

must thus be a solution to V
(
xk yk

)t
= U in Z2, where U and V are the

matrices

U =




(aa′ ⊕ α)k ⊕ ak+1

(bb′ ⊕ β)k ⊕ bk+1

(cc′ ⊕ γ)k ⊕ ck+1


 and V =




a′
k 0
0 b′k

(a′ ⊕ b′)k (a′ ⊕ b′)k




over Z2. If this equation has a solution, the total number of solutions is
22−rank(V ). But rank(V ) = 0 if and only if a′

k = b′k = 0 (then there are 4
solutions) and rank(V ) = 2 otherwise (then there is 1 solution).

The equation has a solution precisely when rank(V ) = rank(V U). From
this and from the requirement that c′k = (a′ ⊕ b′)k, we see that there is a
solution exactly in the following cases.

• If a′
k = b′k = 0, then c′k = 0 and rank(V ) = 0. There are solutions (4

solutions) if and only if ak+1 = αk, bk+1 = βk and ck+1 = γk.

• If a′
k = 0 and b′k = 1 then c′k = 1 and rank(V ) = 2. There is a single

solution if and only if ak+1 = αk.
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• If a′
k = 1 and b′k = 0, then c′k = 1 and rank(V ) = 2. There is a single

solution if and only if bk+1 = βk.

• If a′
k = 1 and b′k = 1 then c′k = 0 and rank(V ) = 2. There is a single

solution if and only if ck+1 = γk.

Since j = ξk = 4ak + 2bk + ck and i = ξk+1 = 4ak+1 + 2bk+1 + ck+1, the
derivation so far can be summarised as

Mij(w, k) =





1 , j = (αk, βk, γk) , i = (αk, βk, γk) ,

1/4 , j = (αk, βk ⊕ 1, γk ⊕ 1) , i = (αk, ∗, ∗) ,

1/4 , j = (αk ⊕ 1, βk, γk ⊕ 1) , i = (∗, βk, ∗) ,

1/4 , j = (αk ⊕ 1, βk ⊕ 1, γk) , i = (∗, ∗, γk) ,

0 , otherwise ,

where we have identified the integer 4r2 + 2r1 + r0 with the binary tuple
(r2, r1, r0) and ∗ represents an arbritrary element of {0, 1}. From this, we see
that M(w, k) = A0 if wk = 0 and Mi,j(w, k) = Mi⊕wk,j⊕wk

(0, k). That is,
M(w, k) = Awk

for all w, k. This completes the proof.

4.2 DISTRIBUTION OF adp⊕

We will use notation from formal languages to describe octal words. For
example, (3+5+6)0∗ denotes the set of words with one of {3, 5, 6} followed
by any number of zeros. We first consider words of the form w0∗ and 0∗w.

Corollary 4.1. For all octal words w, adp⊕(w0∗) = adp⊕(w).

Proof. Follows from A0C = C.

Corollary 4.2. Let w be a word and a =
(
a0 · · · a7

)t
= A|w|−1 · · ·Aw0

C.
Let α = a0 and β = a3 + a5 + a6. Let w′ be a word of the form w′ = 0∗w.
Then adp⊕(w′) = α + β

3
+ 8

3
· β · 4−(|w′|−|w|).

Proof. Using a Jordan form J = P−1A0P of A0, it is easy to see that

Ak
0 = 4−k




4k 0 0 4k−1
3

0 4k−1
3

4k−1
3

0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0




.

If we let j = |w′| − |w|, we see that LAj
0a = a0 + 4j−1

3·4j (a3 + a5 + a6) +
3
4j (a3 + a5 + a6) = α + β

3
+ 8

3
· β · 4−(|w′|−|(|w)).

This means that adp⊕(0nw) decreases with n and that adp⊕(0nw)→ α+β/3
when n → ∞. This can be compared to [30], where it was shown that
xdp+(00w) = xdp+(0w) for all w.
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Proposition 4.2. The additive differential probability adp⊕(w) is nonzero if
and only if w has the form w = 0∗ or w = w′(3 +5 +6)0∗ for any octal word
w′.

Proof. Since A1C = A2C = A4C = A7C = 0, adp⊕(w′(1+2+4+7)0∗) =
0. Conversely, let w be a word of the form w = w′(3 + 5 + 6)0∗. Let ei be
the canonical (column) basis vector with a 1 in the ith component and 0 in
the others. By direct computation, ker A0 = ker A3 = ker A5 = ker A6 =
〈e1, e2, e4, e7〉 and ker A1 = ker A2 = ker A4 = ker A7 = 〈e0, e3, e5, e6〉.
For all i and j 6= i, ej 6∈ ker Ai, it can be seen that Aiei = ei and that
Aiej has the form Aiej = (ek + e` + em + en)/4, where k 6= `, m 6= n,
ek, e` ∈ ker A0 and em, en ∈ ker A1. Since C = e0, we see by induction that
Awi
· · ·Aw0

C 6∈ ker Awi+1
for all i. Thus, adp⊕(w) 6= 0.

A complete determination of the distribution of adp⊕ falls out of scope of
this chapter. We will restrict ourselves to some of the most important results.
First, we turn to the fraction of possible differentials—that is, differentials
with adp⊕(w) 6= 0.

Proposition 4.3. For all n ≥ 0, Pr|w|=n[adp⊕(w) 6= 0] = 3
7

+ 4
7
· 1

8n .

Proof. According to Proposition 4.2, adp⊕(w) 6= 0 if and only if it is the
zero word or has form w = w′ξ0k, where w′ is an arbritrary word of length
n − k − 1 and ξ ∈ {3, 5, 6}. For a fixed value of k, we can choose w ′ and ξ
in 3 · 8n−k−1 ways. Thus, there are 1 +

∑n−1
k=0 3 · 8n−k−1 = 4

7
+ 3

7
· 8n words

with adp⊕(w) 6= 0 in total.

This result can be compared with [30, Theorem 2], which states that the
corresponding probability for xdp+ is Pr|w|=n[xdp+(w) 6= 0] = 4

7

(
7
8

)n. This
means, in particular, that

Pr
|w|=n

[adp⊕(w) 6= 0]→
3

7
while Pr

|w|=n
[xdp+(w) 6= 0]→ 0

as n→∞. Since the number of possible differentials is larger for adp⊕ than
for xdp+, then the average possible differential will obtain a smaller value.

Finally, note that if w = (0 + 3 + 5 + 6)0∗ then clearly adp⊕(w) = 1.
On the other hand, for any ξ ∈ {0, . . . , 7}, adp⊕(ξw) ≤ 1/2. Therefore,
Pr|w|=n[adp⊕(w) = 1] = 4 · 8−n, and Pr|w|=n[adp⊕(w) = k] = 0 if k ∈
]1/2, 1[. One can further establish easily that adp⊕(w) = 1/2 if and only if
w = Σ(0 + 3 + 5 + 6)0∗, where Σ = 0 + 1 + · · ·+ 7.

4.3 THE AVERAGE BEHAVIOUR OF adp⊕
: OVERVIEW

We will give a detailed analysis of the asymptotic average behaviour of the
formal series adp⊕(w). Towards this end, we study the rational sequence
sbs(n) (for side-by-side) obtained by putting the values of adp⊕(w) side-by-
side. Next, we derive an asymptotic expression for the sum

∑
n<ν sbs(n).

This will give detailed information about the average behaviour of sbs(n)
and thus of adp⊕(w). The analysis proceeds as follows.
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We first view the family (adp⊕(w)/4n)|w|=n as a probability distribution
on the real segment [0, 1] by interpreting the word w as the real number
whose octal expansion is (0.w)8. For each n, we have an associated distribu-
tion function Fn. Using the linear representation for adp⊕(w), we prove a
limit theorem stating that the sequence of distribution functions converges
to a continuous distribution function F . This limit theorem translates to a
formula ∑

n<ν

sbs(n) = ν2/3G2/3(log8 ν) + o(ν2/3) , (4.2)

where G2/3 is a 1-periodic continuous function. The important thing here is
the existence of G2/3. (Section 4.4.)

Second, the linear representation of adp⊕(w) gives a 17-dimensional lin-
ear representation of the 8-rational sequence sbs(n). We take the 17 se-
quences associated with the linear representation for sbs(n) by taking each
canonical basis vector of Q17 as the column vector. Let Un be the row vec-
tor of these sequences and let U(s) be its Dirichlet series. Each sequence
is bounded and the Dirichlet series have abscissa of convergence not greater
than 1. The function U(s) is analytic for σ > 1 and satisfies the functional
equation

U(s)(I17 − 8−sQ) = ∇U(s) ,

where Q is the sum of the square matrices in the linear representation for
sbs(n) and the function∇U(s) is analytic for σ > 0. This formula provides a
meromorphic extension of U(s) to σ > 0. The rightmost (possible) singulari-
ties have σ = 2/3. A change of coordinates using a Jordan form J = P−1QP
transforms Un and U(s) to the sequence Vn and its Dirichlet series V (s).
This allows us to show that 2/3 indeed is a singularity for the first component
v1(s) of V (s). The singularities of the other components have σ ≤ 1/3. Fi-
nally, the order of growth for U(s) is at most 1 − σ for 0 < σ < 1 and 0 for
σ > 1. (Section 4.5.)

Third, we apply a Mellin-Perron formula to get an integral expression for
the sums of the second order of sbs(n). The integral is evaluated using the
residue theorem by pushing the vertical line of integration to the left. This
gives the asymptotic expansion

∑

1≤n<ν

n−1∑

k=1

sbs(k) =
ν→∞

ν5/3H5/3(log8 ν) + ν4/3H4/3(log8 ν) + O(ν1+ε) ,

where H5/3 and H4/3 are 1-periodic continuous functions and ε ∈]0, 1/3[. A
pseudo-Tauberian theorem combined with (4.2) gives the Fourier series

G2/3(λ) =
1

ln 8

∑

k∈Z

∇v1(2/3 + kχ)

2/3 + kχ
e2πikλ .

The first terms of the series can be numerically computed. The Fourier series
converges in the sense of Cesàro. (Section 4.6.)
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4.4 LIMIT THEOREM AND PERIODICITY

Let L, C, and A0, . . . , A7 be the linear representation of adp⊕(w), and let
Br = Ar/4 for r = 0, . . . , 7. For compactness, we will denote Bw =
Bw|w|−1

· · ·Bw0
. For each integer n > 0, we define a probability distribu-

tion on the real segment [0, 1] by its distribution function

Fn(x) = 4−n
∑

|w|=n
(w)8<8nx

adp⊕(w) =
∑

|w|=n
(w)8<8nx

LBwC ,

where (w)8 = w|w|−18
|w|−1 + w|w|−28

|w|−2 + · · · + w0 is the octal integer
represented by w. This is indeed a probability distribution, since

∑

|w|=n

adp⊕(w) =
∑

α,β

∑

γ

adp⊕(α, β −→ γ) =
∑

α,β

1 = 4n .

Recall that the characteristic function φ : R → C of a (probability) dis-
tribution function F is its Fourier transform defined by φ(t) =

∫
eitxdF (x),

where the integral is an Lebesgue-Stieltjes integral. For a discrete probability
distribution, this reduces to φ(t) =

∑
x eitx Pr[X = x]. The characteristic

function φn of Fn is given by

φn(t) =
∑

|w|=n

exp

(
it(w)8

8n

)
LBwC = LΦn(t)C ,

where the 8× 8 matrix Φn(t) is defined by Φn(t) =
∑

|w|=n exp
(

it(w)8
8n

)
Bw.

If we write the word w of length n + 1 as w = w′r with r ∈ {0, . . . , 7}, we
have

Φn+1(t) =
7∑

r=0

∑

|w′|=n

exp

(
it(8(w′)8 + r)

8n+1

)
Bw′Br

= Φn(t)
7∑

r=0

exp

(
itr

8n+1

)
Br .

Let Q(t) to be the 8×8 matrix Q(t) =
∑7

r=0 eitrBr. Then Φ1(t) = Q
(

t
8

)

and Φn+1(t) = Φn(t)Q
(

t
8n+1

)
. Thus,

Φn(t) = Q

(
t

8

)
Q

(
t

82

)
· · ·Q

(
t

8n

)
. (4.3)

Proposition 4.4. The sequence of matrices (Φn) defined by (4.3) converges
uniformly for t ∈ [−τ, τ ] for all τ > 0.

Proof. Note that Q(0) is similar to the diagonal matrix

D = diag(1, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4) .

Hence it is sufficient to consider the following situation. We have a matrix
D(t) =

∑7
r=0 eirtCr for some fixed 8 × 8 matrices C0, . . . , C7 such that

D(0) = D. We want to prove that the sequence of matrices

Ψn(t) = D

(
t

8

)
D

(
t

82

)
· · ·D

(
t

8n

)
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is uniformly convergent for |t| ≤ τ .
Let ‖·‖ denote the matrix norm ‖A‖ = ‖A‖1 = maxj

∑
i|aij|. We divide

D(t) and Ψn(t) into blocks as

D(t) =

(
p(t) q(t)
r(t) s(t)

)
and Ψn(t) =

(
Pn(t) Qn(t)
Rn(t) Sn(t)

)
,

where p(t) and Pn(t) are complex numbers, q(t) and Qn(t) are row vectors
of size 1 × 7, r(t) and Rn(t) are column vectors of size 7 × 1, and s(t) and
Sn(t) are square matrices of size 7× 7. Since |eiu− 1| ≤ |u| for all real u, we
obtain the bound

‖D(t)‖ ≤ ‖D(0)‖+ ‖D(t)−D(0)‖ ≤ 1 + γ|t|

for some constant γ. From this inequality, we see that

‖Ψn(t)‖ ≤
n∏

k=1

(
1 + γ

|t|

8k

)
.

Since the last product is a partial product of a convergent infinite product, it
follows that all the matrices Ψn(t) are uniformly bounded for |t| ≤ τ . As a
consequence, there is a constant Γ such that

‖Pn(t)‖ , ‖Qn(t)‖ , ‖Rn(t)‖ , ‖Sn(t)‖ ≤ Γ

for all n and |t| ≤ τ .
Using the formula Ψn+1(t) = Ψn(t)D(t/8n+1), we obtain the recurrence

Pn+1(t) = Pn(t)p(t/8n+1) + Qn(t)r(t/8n+1) ,

Rn+1(t) = Rn(t)p(t/8n+1) + Sn(t)r(t/8n+1) ,

Qn+1(t) = Pn(t)q(t/8n+1) + Qn(t)s(t/8n+1) ,

Sn+1(t) = Rn(t)q(t/8n+1) + Sn(t)s(t/8n+1) .

Since ‖q(t)‖ is uniformly bounded, we may assume that γ is large enough
so that ‖q(t)‖ ≤ γ|t|. Since s(u) is continuous at u = 0, there is a constant
1/2 ≤ ρ < 1 such that ‖s(t/8n+1)‖ ≤ ρ for all sufficiently large n. From the
recurrence for Sn+1(t), we thus have

‖Sn+1(t)‖ ≤ Γγ
|t|

8n+1
+ ‖Sn(t)‖ ρ ≤ ‖Sn(t)‖

1 + ρ

2

for all sufficiently large n. Since 1+ρ
2

< 1, we conclude that the sequence
Sn(t) converges towards the 7 × 7 0-matrix. Moreover, the convergence is
uniform for |t| ≤ τ . By an analogous argument, we see that the sequence
Qn(t) converges uniformly to the 1× 7 0-matrix for |t| ≤ τ .

Note that p(u) = 1 + O(u) and thus

p(t/8n) =
n→∞

1 + O(1/8n)
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uniformly for |t| ≤ τ . It follows that the infinite product
∏∞

k=1 p(t/8k) is
uniformly convergent for |t| ≤ τ . Denote

πn(t) =

n∏

k=n0

p(t/8k) ,

where n0 is such that all πn(t) 6= 0 for |t| ≤ τ . Then

1

β
≤ ‖πn(t)‖ ≤ β

for some positive constant β. Write Pn(t) = πnδn(t). Then the recurrence
for Pn+1(t) becomes

πn+1(t)δn+1(t) = πn+1(t)δn(t) + Qn(t)r(t/8n+1) .

This gives

δn+1(t)− δn(t) =
Qn(t)r(t/8n+1)

πn+1(t)

and hence

‖δn+1(t)− δn(t)‖ ≤ Γγ
|t|

8n+1
β .

It follows that the series of general term δn+1(t)− δn(t) converges uniformly
and hence the sequence Pn(t) converges uniformly for |t| ≤ τ . An analogous
argument shows that the sequence Rn(t) converges uniformly for |t| ≤ τ .

We conclude that the sequence Ψn(t) converges uniformly for |t| ≤ τ for
all τ > 0. It follows that the same result holds for the sequence Φn(t).

Since φn(t) = LΦn(t)C, Proposition 4.4 implies that the sequence of
characteristic functions φn(t) converges uniformly for t ∈ [−τ, τ ] for all τ .
As a consequence, the limit function is continuous at t = 0.

We will next show that (Fn) converges to a continuous distribution func-
tion F . For this, we need the following result on characteristic functions [31,
Theorem 3.6.1].

Fact 4.1. Let (Fn) be a sequence of distribution functions and let (φn) be the
sequence of corresponding characteristic functions. Then the sequence (Fn)
converges weakly to a distribution function F (x) if and only if the sequence
(φn) converges to a function φ(t) that is continuous at t = 0. The limiting
function φ is then the characteristic function of F (x). (Weak convergence
means that limn→∞ Fn(x) = F (x) for all continuity points x of F (x).)

Recall that the maximum jump or saltus of a function f is the maximum
(if it exists) of limx→x+

0
f(x)−limx→x−

0
f(x) taken over all discontinuity points

x0 of f . The following result follows from [31, Theorem 3.7.6].

Fact 4.2. Let (Fn) be a sequence that converges weakly to a distribution
function F . Let pn denote the maximum jump (saltus) of Fn. If the infinite
product

∏∞
n=1 pn diverges to zero, then F is continuous.
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By Fact 4.1, (Fn) converges weakly to a distribution function F . Let pn

denote the maximum jump of Fn. Note that adp⊕(w) is 0 for the word w1 =
27n−1 and is 1 for the word w2 = 30n−1. Since w1 and w2 are consequent,
they give a maximum jump of pn = 4−n for Fn. Thus,

∏∞
n=1 pn diverges

to 0 and Fact 4.2 implies that the limit function F is continuous. We have
obtained

Proposition 4.5. There exists a continuous distribution function F such that
the summation function of adp⊕ for word lengths n satisfies

∑

|w|=n
(w)8<8nx

adp⊕(w) =
n→∞

4n · (F (x) + o(1))

for all x.

Let sbs(n) (for side-by-side) be the sequence obtained by putting side-by-
side the values of adp⊕(w) according to their length and rank in the lexico-
graphic order of the octal word w. Note that the words of length n corre-
sponds to the integer interval from (8n − 1)/7 to (8n+1 − 1)/7 − 1, since∑n−1

n=0 8n = (8n − 1)/7. For all real x ∈ [0, 1[, we thus have

∑

k< 8n−1

7
+8nx

sbs(k) =

n−1∑

k=0

∑

|w|=k

adp⊕(w) +
∑

|w|=n
(w)8<8nx

adp⊕(w)

=

n−1∑

k=0

4k +
∑

|w|=n
(w)8<8nx

adp⊕(w)

=
n→∞

4n − 1

3
+ 4n(F (x) + o(1))

= 4n

(
1

3
+ F (x) + o(1)

)
.

Let ν = 8n−1
7

+ 8nx. Since

ν2/3 =
4n

72/3

(
1 + 7x−

1

8n

)2/3

=
n→∞

4n

72/3
(1 + 7x)2/3 + O

(
1

2n

)
,

we obtain
1

ν2/3

∑

k<ν

sbs(k) =
n→∞

72/3
1
3

+ F (x)

(1 + 7x)2/3
+ o(1) .

Note that this also can be written as
∑

k<ν

sbs(k) =
ν→∞

(7ν)2/3
1
3

+ F (x)

(1 + 7x)2/3
+ o(ν2/3)

where log8 7ν = n + log8(1 + 7x) + O
(

1
8n

)
.

Let {z} = z − bzc denote the fractional part of z. Since 0 ≤ x < 1, we
have 1 ≤ 1 + 7x < 8 and asymptotically {log8 7ν} =ν→∞ log8(1 + 7x). We
conclude that

∑

n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + o(v2/3) ,
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Figure 4.1: Rough plot of 1
ν2/3

∑
n<ν sbs(n) (y-axis) against log8 ν (x-axis).

Note the clear periodic behaviour already for small values of ν.

where G2/3 is a 1-periodic continuous function. Moreover, G2/3(0) = 72/3

3
,

since F (0) = 0, and 72/3/12 ≤ G2/3(z) ≤ 4 · 72/3/3 for all z, since F takes
values in [0, 1].

Theorem 4.2. There exists a strictly positive 1-periodic continuous function
G2/3 such that

∑

n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + o(ν2/3) .

The result is illustrated in Figure 4.1. In the following, we will give a
quantitative version of this qualitative result.

4.5 DIRICHLET SERIES

The precise study of the summation function of sbs(n) relies on the use of
its Dirichlet series. Recall that the Dirichlet series f(s) of a sequence (an) is
defined by

f(s) =

∞∑

n=1

an

ns

for s ∈ C. Following tradition, we will write s = σ+ it where σ, t ∈ R. Each
Dirichlet series has an abscissa of convergence σc such that f(s) converges
for σ > σc and diverges for σ < σc. If f(s) diverges or converges for all s,
σc = ±∞. The following result [3, Theorem 8.2] can be used for computing
the abscissa of convergence.
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Fact 4.3. If the abscissa of convergence of the Dirichlet series for a sequence
(an) is positive, it is given by

σc = lim sup
n→∞

log |
∑n

k=1 an|

log n
.

Combined with Theorem 4.2, this shows that the abscissa of convergence
σc of the Dirichlet series for sbs(n) is σc = 2

3
.

The sequence sbs(n) does not exist alone, but is part of a family of se-
quences linked by a linear representation, like in the case of rational se-
ries [1]. A sequence (Sn) is called k-rational if and only if there exists k
d× d square matrices Ai, i = 0, . . . , k− 1, a 1× d row matrix L and a d× 1
column matrix C such that if we write n in base k as n = n` · · ·n0 with
n` 6= 0, the value of Sn is given by

Sn = LAn`
· · ·An0

C .

By convention, S0 = LC. The family L, (Ai), C is called a linear represen-
tation of dimension d of the sequence.

Fact 4.4. Let T be a rational series over the alphabet {0, . . . , k − 1}. The
sequence S obtained by putting side-by-side the values of T according to the
length and rank in the lexicographic order of words is a k-rational sequence.
Moreover, if L, (Ai)

k−1
i=0 , C is a linear representation of T of dimension d,

the following is a linear representation of S with dimension 2d + 1: L′ =(
1 L 0 · · · 0

)
, C ′ =

(
0 C 0 · · · 0

)t,

A′
0 =




1 L 0
0 0 0
0 Ak−1 Ak−2


 , A′

1 =




0 0 L
0 A0 0
0 0 Ak−1


 and

A′
r =




0 0 0
0 Ar−1 Ar−2

0 0 0




for 1 < r < k.

Proof. Let w be a word in base k and let n be the rank of w in the side-
by-side ordering of the words. Then n =

∑|w|−1
i=0 +(w)k, where (w)k =

w|w|−1k
|w|−1 + · · ·+ w1k + w0 is the integer represented by w in base k, and

Sn = T (w). The base k representation of n has the form n = n|w|k
|w| +

· · · + n1k + n0, where n|w| ∈ {0, 1}. Define the carries ci by c0 = 0 and
ci+1 = 1 if and only if wi + ci + 1 ≥ k (so we have ni = wi + 1 + ci mod k).
Denote Pi = Awi−1

· · ·Aw0
C and P ′

i = A′
ni+1
· · ·A′

n0
C ′. It is easy to see by

induction that rows 2 to d + 1 of P ′
i contains Pi when ci = 0 and all zeros

otherwise, and that rows d + 2 to 2d + 1 of P ′
i contains Pi when ci = 1 and

all zeros otherwise. In the case n|w| = 1, row 1 of P ′
|w|+1 will contain LP|w|

and c|w| = 1. In the case n|w| = 0, rows 2 to d + 1 of P ′
|w| will contain P|w|

and c|w| = 0. It follows that L′A′
n`
· · ·A′

n0
C ′ = Sn.

Applying Fact 4.4 to the linear representation of adp⊕(w) gives a linear
representation L, A0, . . . , A7, C of dimension 17 of the 8-rational sequence
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sbs(n). We consider the 17 rational sequences u1, u2, . . . , u17 that arise from
the linear representation L, A0, . . . , A7 and each vector from the canonical
basis of Q17. Note that u2 = sbs. Let ui(s) be the Dirichlet series of ui, and
let U(s) be the row vector of the series ui(s). Since the norm of the linear
representation of sbs is 1, each sequence under consideration is bounded,
and each ui(s) has an abscissa of convergence ≤ 1. Thus, U(s) has abscissa
of convergence σc ≤ 1.

4.5.1 Meromorphicity

Our next goal is to show that the analytic function U(s), defined in the half-
plane σ > σc admits an meromorphic extension. Let Un = (u1

n, . . . , u
17
n ).

Then

U(s) =

∞∑

n=1

Un

ns
=

∞∑

n=1

U8n

(8n)s
+

7∑

r=1

(
Ur

rs
+

∞∑

n=1

U8n+r

(8n + r)s

)

=

∞∑

n=1

UnA0

(8n)s
+

7∑

r=1

(
Ur

rs
+

∞∑

n=1

UnAr

(8n + r)s

)

=

7∑

r=0

∞∑

n=1

UnAr

(8n + r)s
+

7∑

r=1

Ur

rs
.

Denote Q =
∑7

r=0 Ar and

∇U(s) =

7∑

r=1

Ur

rs
+

7∑

r=1

∞∑

n=1

UnAr

(
1

(8n + r)s
−

1

(8n)s

)
. (4.4)

Then we have U(s)(I17−8−sQ) = ∇U(s). Let ∆h be the difference operator
∆hu(n) = u(n + h)− u(n). Then we can write ∇U(s) as

∇U(s) =
7∑

r=1

Ur

rs
+

1

8s

7∑

r=1

∞∑

n=1

UnAr∆r/8
1

ns
. (4.5)

Since ∆r/8
1
ns = 1

(n+r/8)s −
1
ns = −s

∫ n+r/8

n
du

us+1 ,

∣∣∣∣∆r/8
1

ns

∣∣∣∣ ≤ |s|
∫ n+r/8

n

du

uσ+1
=
|s|

σ
∆r/8

1

nσ
. (4.6)

For fixed s with σ > 1/3, we have ∆r/8
1

nσ ∼n→∞
σ

nσ+1 . Since the compo-
nents of Un are bounded sequences, it follows that

1

8s
UnAr∆r/8

1

ns
=

n→∞
O

(
1

nσ+1

)
.

We conclude that the series (4.4) converges absolutely in the half-plane σ >
0. Thus, the function ∇U(s) is analytic in this half-plane.
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Table 4.2: The Jordan form J = P−1QP of Q.

J =




4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1/4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

4.5.2 Poles

The poles of U(s) come from the term I17− 8−sQ. The eigenvalues of Q are
4, 2, 1, 1/4 and 0, with multiplicities 1, 3, 6, 3 and 4, respectively. Let J =
P−1QP be the Jordan form of Q, where J is the quasi-diagonal matrix given
in Table 4.2. We make a change of coordinates to get a new sequence Vn

with Un = VnP−1 and U(s) = V (s)P−1. More precisely, if L, C, A0, . . . , A7

is the linear representation of Un, we get the linear representation L′ = LP ,
C ′ = P−1C, A′

0 = P−1A0P , . . . , A′
7 = P−1A7P . Applying this change of

coordinates to (4.4) gives ∇V (s) = V (s)(I17 − 8−sJ), where

∇V (s) =

7∑

r=1

Vr

rs
+

7∑

r=1

∞∑

n=1

VnA′
r

(
1

(8n + r)s
−

1

(8n)s

)
.

The function ∇V (s) is analytic for σ > 0.
The equation ∇V (s) = V (s)(I17 − 8−sJ) gives a system of equations of

the form ∇vj(s) = vj(s)(1− Jjj8
−s), j = 1, . . . , 17. From these equations

we see, with χ = 2πi/ ln 8, that

• The function v1(s) is meromorphic in the half plane σ > 0, with
possible poles as 2/3 + kχ, k ∈ Z.

• The functions v2(s), . . . , v4(s) are meromorphic in the half plane σ >
0, with possible poles as 1/3 + kχ, k ∈ Z.

• The functions v5, . . . , v17(s) are analytic in the half plane σ > 0.

Recall that the Dirichlet series u2(s) of sbs(n) has abscissa of convergence
2/3, and U(s) = V (s)P−1. Hence, u2(s) extends to a meromorphic func-
tion in σ > 0. Since sbs(n) is nonnegative, 2/3 is a singularity of u2(s).
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If 2/3 would not be a pole of v1(s), the argument above would show that
u2(s) is analytic in σ > 1/3—a contradiction. Thus, 2/3 indeed is a pole
for v1(s). For the other Dirichlet series uj(s), we do not know exactly their
abscissa of convergence, but since the Dirichlet series have nonnegative co-
efficients, and the rightmost possible singularity are at 2/3, we know that all
the Dirichlet series have abscissa of convergence no greater that 2/3.

4.5.3 Order of Growth

Recall that the order of growth µg(σ) [49, 48] of a function g(s) along the
line σ = c is

µg(σ) = inf

{
λ | g(σ + it) =

|t|→∞
O(|t|λ)

}
.

Since the Dirichlet series defining uj(s) have nonnegative coefficients and
abscissae of convergence ≤ 2/3, their order of growth is µuj(s) = 0 for
σ > 2/3.

From (4.5) and (4.6) on page 44, we get the inequality |∇U(s)| ≤ A +

B |s|
σ

ζ(σ+1)
8σ for some constants A and B, where ζ(s) is the Riemann zeta

function. It follows that µ∇uj(σ) ≤ 1 for 0 < σ < 1. Since the functions
s 7→ 1−Jjj8

−s are periodic with respect to t, this is valid also for the functions
uj. According to Lindelöf’s theorem [23, Theorem 14], µ(σ) is a convex
function, and thus

µuj(σ) ≤ 1− σ for 0 < σ < 1 and µuj(σ) = 0 for σ > 1 .

Since the functions vj(s) are linear combinations of the uj(s), the same
result holds for all the vj(s).

4.6 FOURIER SERIES

4.6.1 Mellin-Perron Formula

We now apply the following Mellin-Perron formula [48].

Fact 4.5 (Mellin-Perron formula). Let f(s) =
∑∞

k=1 fkk
−s be the Dirichlet

series of the sequence (fk). Let the line σ = c > 0 lie inside the half-plane
of absolute convergence of f(s). Then for m > 0,

1

m!

∑

1≤k<ν

fk

(
1−

k

ν

)m

=
1

2πi

∫ c+i∞

c−i∞

f(s)νs ds

s(s + 1) · · · (s + m)
. (4.7)

Note that when m = 1, the left hand side of (4.7) can be written as

∑

1≤k<ν

fk

(
1−

k

ν

)
=

1

ν

∑

1≤k<ν

∑

1≤`≤k

f` =
1

ν

∑

1≤k≤ν

∑

1≤`<k

f` .

We apply the formula with m = 1 to the row vector V (s), and push the
line of integration to the left, taking the residues of the function into account.
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Let 0 < ε < 1/3 and χ = 2πi/ ln 8. Let (ε) denote the line of integration
σ = ε± i∞. For v1(s), we get

1

ν

∑

1≤n<ν

n−1∑

k=1

v1
k =

∑

k∈Z

Res
s= 2

3
+kχ

∇v1(s)νs

(1− 4 · 8−s)s(s + 1)

1

2πi

+

∫

(ε)

∇v1(s)νs

1− 4 · 8−s

ds

s(s + 1)
.

For j = 2, 3, 4, we get

1

ν

∑

1≤n<ν

n−1∑

k=1

vj
k =

∑

k∈Z

Res
s= 1

3
+kχ

∇vj(s)νs

(1− 2 · 8−s)s(s + 1)

+
1

2πi

∫

(ε)

∇vj(s)νs

1− 2 · 8−s

ds

s(s + 1)
.

For j = 5, . . . , 17, we get

1

ν

∑

1≤n<ν

n−1∑

k=1

vj
k =

1

2πi

∫

(ε)

∇vj(s)νs

1− Jjj · 8−s

ds

s(s + 1)
.

All the integrals above can be bounded as

νε

∣∣∣∣
1

2πi

∫

(ε)

∇vj(s)νit

1− Jjj · 8−s

ds

s(s + 1)

∣∣∣∣ =
ν→∞

O(νε) .

By computing the residues, we obtain

1

ν

∑

1≤n<ν

n−1∑

k=1

v1
k =

ν→∞

ν2/3

ln 8

∑

k∈Z

∇v1(2/3 + kχ)

(2/3 + kχ)(5/3 + kχ)
exp(2πik log8 ν)

+ O(νε) .

For j = 2, 3, 4, we obtain

1

ν

∑

1≤n<ν

n−1∑

k=1

vj
k

=
ν→∞

ν1/3

ln 8

∑

k∈Z

∇vj(1/3 + kχ)

(1/3 + kχ)(4/3 + kχ)
exp(2πik log8 ν)

+ O(νε) .

Finally, for j = 5, . . . , 17, we have

1

ν

∑

1≤n<ν

n−1∑

k=1

vj
k

=
ν→∞

O(νε) .

Since∇v1(2/3+ it) =|t|→∞ O(|t|1/3) and∇vj(1/3+ it) =|t|→∞ O(|t|2/3),
the series above converge absolutely. It follows that the trigonometric series
define 1-periodic continuous functions. Since the sequence sbs(n) is a linear
combination of the sequences v1, . . . , v17, we obtain the following result.

Theorem 4.3. For all 0 < ε < 1/3,

∑

1≤n<ν

n−1∑

k=1

sbs(k) =
ν→∞

ν5/3H5/3(log8 ν) + ν4/3H4/3(log8 ν) + O(ν1+ε) ,

where H5/3 and H4/3 are 1-periodic continuous functions.
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4.6.2 From Double to Simple Sums

By Theorem 4.2 on page 42,
∑

1≤n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + o(v2/3) ,

where G2/3 is a 1-periodic continuous function. We will use the following
pseudo-Tauberian result to derive a Fourier series expansion for G2/3.

Fact 4.6 ([21, Proposition 6.4]). Let f be a 1-periodic continuous function
and let τ be a complex number with positive real part. Then there exists a
1-periodic continuously differentiable function g such that

1

ντ+1

∑

1≤n<ν

nτf(log8 n) = g(log8 ν) + o(1) .

Moreover, the function g(u), which depends on f(t) and τ , satisfies

∫ 1

0

g(u) du =
1

τ + 1

∫ 1

0

f(u) du

and

g

(
f(t)e−2πit, τ +

2πi

ln 8
; u

)
= g(f(t), τ ; u)e−2πiu .

Fact 4.6 (with τ = 2/3) implies that there exists a 1-periodic and conti-
nously differentiable function G5/3 such that

∑

1≤n<ν

n−1∑

k=1

sbs(k) =
ν→∞

ν5/3G5/3(log8 ν) + o(ν5/3) .

The uniqueness of asymptotic expansion with variable coefficients [10, Chap-
ter V] shows that G5/3 = H5/3.

Let ck(F ) denote the Fourier coefficients of the periodic function F . By
Fact 4.6, we get with χ = 2πi/ ln 8

ck(H5/3) =

∫ 1

0

H5/3(u)e−2πikudu =

∫ 1

0

g(G2/3(t)e
−2πikt, 2/3 + χk)(u) du

=
1

2/3 + χk + 1

∫ 1

0

G2/3(t)e
−2πiktdt =

1

5/3 + χk
ck(G2/3) .

This shows that the Fourier coefficients of G2/3 are given by

ck(G2/3) =

(
5

3
+ kχ

)
ck(H5/3) =

1

ln 8

∇v1(2/3 + kχ)

2/3 + kχ
.

Theorem 4.4. The summation function of the first order for sbs satisfies
∑

1≤n<ν

sbs(n) =
ν→∞

ν2/3G2/3(log8 ν) + o(ν2/3) ,
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where G2/3 is a 1-periodic continuous function. The function G2/3 has the
Fourier series

G2/3(ξ) =
1

ln 8

∑

k∈Z

∇v1(2/3 + kχ)

2/3 + kχ
e2πikξ ,

where χ = 2πi/ ln 8. The series is not absolutely convergent, but it is a
Fourier series of a continuous function. According to Fejér’s theorem, the
series thus converges uniformly towards the function in the sense of Cesàro.

The Fourier coefficients can be numerically computed. In particular, the
mean is approximately c0(G2/3) ≈ 1.131362078.
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5 CONCLUSIONS

In this thesis, we have brought together results on the differential and lin-
ear properties of addition modulo 2n from several sources into one coherent
framework. This framework based on rational series gives straightforward
and intuitive derivations of complete characterisations of the differential and
linear properties of addition modulo 2n. Within the framework, we can also
conveniently study the differential properties of bitwise exclusive-or when dif-
ferences are expressed using addition modulo 2n, although a complete char-
acterisation in this case seems difficult. As we have illustrated, the approach
can be generalised to more complex functions built from addition.

We would like to point out three natural lines of further research: the
classification of the differential and linear properties of other (more com-
plex) functions, cryptanalytic applications to existing ciphers and the design
of ciphers resistant against differential and linear cryptanalysis based on our
results.

A crucial property of addition modulo 2n and the other functions con-
sidered in this thesis is that the ith output only depends on the inputs in
position lower than i. In particular, the functions under consideration are
of the form F : An → Bn, where F can be expressed using two functions
f : S × A → B and g : S × A → S such that F (xn−1, . . . , x0)i = f(si, xi),
where si+1 = g(si, xi). These are exactly the functions computed by Mealy
machines [46]. For addition, si is simply the ith carry bit. One would expect
that the differential and linear properties of these types of functions could be
studied using rational series. A complete characterisation of the differential
and linear properties of other arithmetic operations such as multiplication
modulo 2n would also be highly desirable, but this probably requires differ-
ent methods.

We have completely left open the application of our results to existing
ciphers. Given the generation algorithms, it would be natural to attempt
to find the best differentials and linear approximations of existing ciphers,
thus either obtaining improved attacks or proofs that the ciphers are resistant
against basic differential and linear cryptanalysis. Due to the abundance
of differentials or approximations of addition with nontrivial probability or
correlation, this will probably require the development of improved search
algorithms for finding optimal trails, or for upper bounding the differential
probability or correlation.

Finally, we propose the challenge to design a simple and efficient cipher
that uses only addition modulo 2n and F2-affine functions, and that is prov-
ably resistance against basic differential and linear cryptanalysis. If the octal
word x corresponds to a differential or linear approximation of addition mod-
ulo 2n, xdp+(x) is upper bounded by 2−k, where k = |{i < n − 1 | xi 6=
0, 7}| (see Theorem 2.2 on page 14), whereas |lca(x)| is upper bounded by
2−`, where ` = |{i | xi 6= 0, 7}| (see the automaton (3.1) on page 23). That
is, both the differential probability and correlation drops exponentially with
the number of bit positions where the input differences or input selection
vectors differ. The affine parts of the cipher could thus be designed to max-
imise the sum of the number of bit positions where the input differences or
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selection vectors differ for the addition operations in consequent rounds.
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