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Abstract

For a poset P = (X,≤P ), the strict-double-bound graph of P is
the graph sDB(P ) on V (sDB(P )) = X for which vertices u and v of
sDB(P ) are adjacent if and only if u 6= v and there exist elements
x, y ∈ X distinct from u and v such that x ≤P u ≤P y and x ≤P

v ≤P y. A poset P is a series parallel order if and only if it contains
no induced subposet isomorphic to N-poset.

In this paper, we deal with strict-double-bound graphs of series
parallel orders. In particular, we show that if P3 is contained as an
induced subgraph in a strict-double-bound graph of a series parallel
order, it is contained in either of C4, 3-pan, K1,3 or K4 − e. As a
consequence of this result, we can claim that a strict-double graph
of a series parallel order is P4-free. Furthermore, we study sufficient
conditions for a strict-double-bound graph of a series parallel order
to be an interval graph, difference graph or Meyniel graph.

1 Introduction

In this paper we consider finite undirected simple graphs and finite posets.
For a graph G and S ⊆ V (G), 〈S〉G is the induced subgraph on S of G.
For posets P and Q, Q is an induced subposet of P if V (Q) ⊆ V (P ) and
x, y ∈ V (Q), x ≤Q y if and only if x ≤P y. For a poset P and S ⊆ V (P ),
〈S〉P is the induced subposet on S of P . For a poset P and elements u and
v, u ‖ v denotes that u is incomparable with v.
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For a poset P = (X,≤P ), the strict-upper-bound graph of P is the graph
sUB(P ) on V (sUB(P )) = X for which vertices u and v of sUB(P ) are
adjacent if and only if u 6= v and there exists an element x ∈ X distinct
from u and v such that u ≤P x and v ≤P x. We say that a graph G is a
strict-upper-bound graph if there exists a poset whose strict-upper-bound
graph is isomorphic to G.

For a poset P = (X,≤P ), the strict-double-bound graph of P is the graph
sDB(P ) on V (sDB(P )) = X for which vertices u and v of sDB(P ) are
adjacent if and only if u 6= v and there exist elements x, y ∈ X distinct
from u and v such that x ≤P u ≤P y and x ≤P v ≤P y. We say that
a graph G is a strict-double-bound graph if there exists a poset whose
strict-double-bound graph is isomorphic to G.

McMorris and Zaslavsky [10] introduced concepts of strict-upper-bound
graphs and strict-double-bound graphs, and obtained some properties on
strict-upper-bound graphs and strict-double-bound graphs. Note that max-
imal elements of a poset P are isolated vertices of sUB(P ). So, a connected
graph with p ≥ 2 vertices is not a strict-upper-bound graph. McMorris
and Zaslavsky [10] showed as follows: any graph that is the disjoint union
of a non-trivial component and enough number of isolated vertices is a
strict-upper-bound graph.

In [2], [7] and [13] we see some kinds of posets as follows: A poset is a series
parallel order if and only if it contains no induced subposet isomorphic to
N -poset, show in Figure 1. A poset is an interval order if and only if it
contains no induced subposet isomorphic to 2 + 2-poset, show in Figure
1. A poset is a semiorder if and only if it contains no induced subposet
isomorphic to 2 + 2-poset and 1 + 3-poset, show in Figure 1.

✉
✉

✉
✉❅

❅
❅

N -poset

✉
✉

✉
✉

2 + 2-poset

✉ ✉✉
✉

1 + 3-poset

Figure 1: Forbidden subposets

In [6] Kim and Roberts gave a characterization of strict-upper-bound graphs
of semiorders and interval orders.
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Theorem 1.1 (Kim and Roberts [6]). Let G be a graph. Then the following
statements are equivalent.
(1) G is the strict-upper-bound graph of a semiorder,
(2) G is the strict-upper-bound graph of an interval order,
(3) G = Kr ∪Kq, where if r ≥ 2, then q ≥ 1.

In [7] Langley et al. gave some properties on strict-upper-bound graphs of
series parallel orders.

Proposition 1.2 (Langley et al. [7]). The strict-upper-bound graph of a
series parallel order contains no induced subgraph isomorphic P3.

Theorem 1.3 (Langley et al. [7]). The strict-upper-bound graph of a series
parallel order is an interval graph.

For a total order P with p elements, sUB(P ) = Kp−1 ∪K1. So, we obtain
the following result from Proposition 1.2.

Proposition 1.4. For a graph G, G is a strict-upper-bound graph of a
series parallel order if and only if G = Kr1 ∪Kr2 ∪ · · · ∪Krm ∪Kq, where
ri ≥ 2 (i = 1, 2, ..., m) and q ≥ m.

Proof. Let P be a union of total orders. Then P is a series parallel order and
sUB(P ) is Kr1 ∪Kr2 ∪· · ·∪Krm ∪Kq. Thus G = Kr1 ∪Kr2 ∪· · ·∪Krm ∪Kq

is a strict-upper-bound graph of a series parallel order.

We assume that there exist vertices x, y of V (G) such that xy /∈ E(G) and
x, y in same component C. Then there exists a x − y path in C. For a
minimal x− y path W : x, v1, v2, · · · , vk, y, 〈{x, v1, v2}〉G ∼= P3, which is a
contradiction. Thus, each component of G is a complete graph and G =
Kr1 ∪Kr2 ∪ · · · ∪Krm ∪Kq.

Sano [11] gave a characterization of strict-double-bound graphs of semi-
orders and interval orders.

Theorem 1.5 (Sano [11]). Let G be a graph. Then the following statements
are equivalent.
(1) G is the strict-double-bound graph of a semiorder,
(2) G is the strict-double-bound graph of an interval order,
(3) G = Kr ∪Kq, where if r ≥ 2, then q ≥ 2.
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In this paper we consider strict-double-bound graphs of series parallel or-
ders. We know that there exist strict-double-bound graphs of series parallel
orders without the union of complete graphs, for example, (K4 − e) ∪K3,
K1,3 ∪ K4 and so on. And we also know that there exist some types of
strict-double-bound graphs of series parallel orders contains P3 as an in-
duced subgraph. So, we consider several properties of induced subgraphs
of strict-double-bound graphs on series parallel orders and interval strict-
double-bound graphs on series parallel orders, as is the case with Proposi-
tion 1.2 and Theorem 1.3.

In particular, the following is our main theorem.

Theorem 1.6. Let P be a series parallel order and L be a connected com-
ponent of sDB(P ) with at least four vertices. If P3 is an induced subgraph
of L, then P3 is contained in either of C4, 3-pan, K1,3 or K4 − e, which
are shown in Figure 2, as an induced subgraph.

✉
✉

✉
✉

C4

✉
✉ ✉ ✉❍❍❍
✟✟✟

3-pan

✉
✉ ✉ ✉✔
✔

✔

❚
❚
❚

K1,3

✉
✉

✉
✉�

�
�

K4 − e

Figure 2: Graphs on Proposition 1.6

2 Strict-double-bound graphs of
series parallel orders.

We give a proof of Theorem 1.6 below.

Proof of Theorem 1.6. Let P be a series parallel order, G be the strict-
double-bound graph sDB(P ) and L be a connected component of G with
at least four vertices. Let a, b, c be vertices of L such that ab, bc ∈ E(G)
and ac /∈ E(G), that is, 〈{a, b, c}〉G is P3. Then a is not comparable with
c.
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Case 1: a ‖ b and b ‖ c.
Since ac /∈ E(G), ab ∈ E(G) and bc ∈ E(G), there exist elements α1 and
α2 such that α1 6= α2, α1 ‖ α2, a, b ≤P α1 and b, c ≤P α2 or there exists
α3 such that a, b, c ≤P α3. If a ≤P α2, that is, a, b, c ≤P α3 = α2, then
there exist elements β1 and β2 such that β1 6= β2, β1 ‖ β2, β1 ≤P a, b and
β2 ≤P b, c, because ac /∈ E(G). Since a ‖ α2 or a ‖ β2, 〈{a, α1, b, α2}〉P
is an N -poset or 〈{a, β1, b, β2}〉P is an N -poset, which is a contradiction.

Case 2: a ‖ b and b is comparable with c.
Since ab ∈ E(G), there exist common upper bounds and common lower
bounds of a and b.

Subcase 2-1: c ≤P b.
Then there exists an element β such that β ≤P a, b and β ‖ c. Thus
〈{a, β, b, c}〉P is an N -poset, which is a contradiction.

Subcase 2-2: b ≤P c.
Then there exists an element α such that a, b ≤P α and α ‖ c. Thus
〈{a, α, b, c}〉P is an N -poset, which is a contradiction.

Case 3: b is comparable with a and b ‖ c.
By similar way of Case 2, we have an N -poset as an induced subposet,
which is a contradiction.

Case 4: b is comparable with a and c.
Since a and c are incomparable, a, c ≤P b or b ≤P a, c. Since L has at
least four vertices and L is connected, we can choose d ∈ V (L)−{a, b, c}
such that d is adjacent to one of a, b, c.

Subcase 4-1: a, c ≤P b and d is comparable with c or a.
We consider the case d is comparable with c without loss of generality.

Subsubcase 4-1-1: c ≤P d.
If b ‖ d, then a ≤P d, because P does not contain N -posets as an
induced subposets. Then 〈{a, b, c, d}〉G ∼= K4 − e if there exists an
element α such that b, d ≤P α, or 〈{a, b, c, d}〉G ∼= C4 if there exist no
common upper bounds of b and d. If b ≤P d, then 〈{a, b, c, d}〉G ∼=
K4−e. If d ≤P b and a ≤P d, then 〈{a, b, c, d}〉G ∼= K4−e. If d ≤P b
and a ‖ d, then there exists an element β such that β ≤P a. Then
β ‖ c, because ac /∈ E(G). If β ‖ d, then 〈{a, b, c, d}〉G ∼= 3-pan. If
β ≤P d, then 〈{a, β, d, c}〉G is an N -poset, which is a contradiction.
If d ≤P β, then c ≤P a, which is a contradiction. If d ≤P b and
d ≤P a, then c ≤P a, which is a contradiction.

Subsubcase 4-1-2: d ≤P c.
Since ac /∈ E(G), a ‖ d. Then 〈{a, b, c, d}〉G is a 3-pan.
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Subcase 4-2: a, c ≤P b, c ‖ d and a ‖ d.

Subsubcase 4-2-1: d is comparable with b.
Then d ≤P b and there exist elements β1, β2 and β3 such that
β1 ≤P a, β2 ≤P c and β3 ≤P d. Since ac /∈ E(G), β1 6= β2. If β1

6= β3 and β2 6= β3, then 〈{a, b, c, d}〉G ∼= K1,3. If β1 = β3 and β2

6= β3 ( or β1 6= β3 and β2 = β3 ), then 〈{a, b, c, d}〉G ∼= 3-pan. If
there exist β3 and β′

3 such that β3, β
′
3 ≤P d, β3 = β1 and β′

3 = β2,
then β3 6= β′

3, β3 ‖ β′
3, a ‖ β′

3 and c ‖ β3, because ac /∈ E(G). Then
〈{a, β3, d, β

′
3}〉p is an N -poset, which is a contradiction.

Subsubcase 4-2-2: b ‖ d.
In the case cd ∈ E(L) (or ad ∈ E(L)), there exists an element β
such that β ≤P c, d (or β ≤P a, d). Then β ‖ a (or β ‖ c), because
ac /∈ E(G). Thus 〈{a, b, β, d}〉P (or 〈{c, b, β, d}〉P ) is an N -poset,
which is a contradiction. In the case cd /∈ E(L) and ad /∈ E(L), then
bd ∈ E(L) and there exist elements α and β such that β ≤P b, d ≤P

α. Then c ‖ β and c ‖ d, because cd /∈ E(L). Thus 〈{c, b, β, d}〉P is
an N -poset, which is a contradiction.

Subcase 4-3: b ≤P a, c and d is comparable with c or a.
By similar way of Subcase 4-1, we obtain C4, K4 − e or 3-pan, which
contains P3

∼= 〈{a, b, c}〉G, or we have an N -poset as an induced sub-
poset, which is a contradiction.

Subcase 4-4: b ≤P a, c, c ‖ d and a ‖ d.
By similar way of Subcase 4-2, we obtain K1,3 or 3-pan, which contains
P3

∼= 〈{a, b, c}〉G, or we have anN -poset as an induced subposet, which
is a contradiction.

The proof above also shows that if L contains four vertices a, b, c, d such
that ab, bc, cd ∈ E(G), the induced subgraph 〈a, b, c, d〉G contains either C4

or 3-pan. Hence, we have the following result.

Corollary 2.1. For a series parallel order P , sDB(P ) is a P4-free graph.

3 Interval graphs, Split graphs and

other graphs

In this section we consider interval graphs, split graphs, threshold graphs,
difference graphs and Meyniel graphs.
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First, we deal with interval graphs. Lekkerkerker and Boland [8] gave a
characterization of interval graphs as follows:
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Figure 3: Forbidden subgraphs of interval graphs.

Theorem 3.1 (Lekkerkerker and Boland [8]). Let G be a graph. Then G
is an interval graph if and only if G does not contain any of the graphs in
Figure 3 as an induced subgraph.

By Corollary 2.1 and Theorem 3.1, we obtain the following result.

Proposition 3.2. Let G be a strict-double-bound graph of a series parallel
order. If G is a C4-free graph, then G is an interval graph.

Proof. If G is not an interval graph, then G contains one of the graphs in
Figure 3 as an induced subgraph. These graphs without C4 contain P4 as
an induced subgraph.

Next we consider split graphs and threshold graphs.

A graph G is a split graph if its vertices can be partitioned into an indepen-
dent set and the vertex set of a complete subgraph. Földes and Hammer
[3] gave a characterization of split graphs.
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Theorem 3.3 (Földes and Hammer [3]). Let G be a graph. Then G is a
split graph if and only if G does not contain 2K2, C4 and C5 as induced
subgraphs.

A graph G is threshold graph if there exist a labeling f of vertices by non-
negative integers and an integer t such that for all X ⊆ V (G), X is an
independent set if and only if

∑
v∈X f(v) ≤ t. Chvátal and Hammer [1]

gave a characterization of threshold graphs.

Theorem 3.4 (Chvátal and Hammer [1]). Let G be a graph. Then G is a
threshold graph if and only if G does not contain 2K2, C4 and P4 as induced
subgraphs.

By Corollary 2.1, Theorem 3.3 and Theorem 3.4 we obtain the following
result.

Proposition 3.5. Let G be a strict-double-bound graph of a series parallel
order. If G does not contain 2K2 and C4 as induced subgraphs, then G is
a split graph and a threshold graph.

Next we consider difference graphs. A graph G is a difference graph if there
exist a real number t and an assignment a(v) of real numbers to vertices
v of G such that (1) |a(v)| < t for all vertices of G, (2) for u, v ∈ V (G),
uv ∈ E(G) if and only if |a(u)− a(v)| ≥ t. Mahadev and Peled [9] showed
a characterization of difference graphs.

Theorem 3.6 (Hammer, Peled and Sun [4]). Let G be a graph. Then G
is a difference graph if and only if G does not contain 2K2, C3 and C5 as
induced subgraphs.

Using this result and Corollary 2.1, we also obtain the following result.

Proposition 3.7. Let G be a strict-double-bound graph of a series parallel
order. If G does not contain 2K2 and C3 as induced subgraphs, then G is
a difference graph.

Finally, we consider Meyniel graphs. For a graph G, G is a Meyniel graph
if each cycle of odd length at least 5 has at least two chords. We already
knew the following result on Meyniel graphs.

Posets with series parallel orders

135



✉ ✉✉ ✉✉
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Figure 4: The house graph.

Theorem 3.8 (Hoàng [5]). Let G be a graph. Then G and Ḡ are Meyniel
graphs if and only if G does not contain C5, P5 and the house graph (see
Figure 4) as induced subgraphs.

Note that the house graph contains P4 as an induced subgraph. Using
Theorem 3.8 and Corollary 2.1, we also obtain the following result.

Proposition 3.9. Let G be a strict-double-bound graph of a series parallel
order. Then G and Ḡ are Meyniel graphs.

4 Tree posets

In this section we consider strict-double-bound graphs of tree posets. A
tree poset is a poset such that for x, y, z ∈ V (P ), if x, y ≤P z, then x
is comparable with y. Wolk [14], [15] dealt with comparability graphs of
tree posets and Scott [12] dealt with upper bound graphs of tree posets.
Rechecking the proof of Theorem 1.6, we know the following fact. For a
series parallel order P , if the strict-double-bound graph sDB(P ) contains
〈{a, b, c, d}〉G ∼= C4, then the induced subposet on {a, b, c, d} is a N2-poset
(see Figure 5). Then tree posets do not contains N -posets and N2-posets as
induced subposets. Thus, tree posets are series parallel orders and strict-
double-bound graphs of tree posets are C4-free. So, we obtain the following
result by Proposition 3.2. ✉

✉
✉
✉�

�
�

❅
❅

❅

Figure 5: N2-poset

Proposition 4.1. The strict-double-bound graphs of tree posets are interval
graphs.
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