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Abstract

The detection of scale invariant image features is a fun-
damental task for computer vision applications like object
recognition or re-identification. Features are localized by
computing extrema of the gradients in the Laplacian of
Gaussian (LoG) scale space. The most popular detector
for scale invariant features is the SIFT detector which uses
the Difference of Gaussians (DoG) pyramid as an approx-
imation of the LoG. Recently, the alternative interest point
(ALP) detector demonstrated its strength in fast computa-
tion on highly parallel architectures like the GPU. It uses
the LoG scale space representation for the localization of
interest points. This paper evaluates the localization accu-
racy of ALP in comparison to SIFT.

By using synthetic images, it is demonstrated that both
localization approaches show a systematic error which is
dependent on the subpixel position of the feature. The error
increases with the scale of the detected feature. However,
using the LoG instead of the DoG representation reduces
the maximum systematic error by 77 %. For the evaluation
with natural images, benchmark data sets are used. The
repeatability criterion evaluates the accuracy of the detec-
tors. The LoG based detector results in up to 16 % higher
repeatability. The comparisons are completed with a ref-
erence feature localization which uses a signal based ap-
proach for the gradient approximation. Based on this ap-
proach, a new feature selection criterion is proposed.

1. Introduction

Scale invariant features play an important role in many
computer vision applications and surveillance tasks, such
as scene reconstruction [13] or object re-identification [1].
Examples for scale invariant features detected by different
methods are shown in Fig. 1. The scale invariant feature
transform (SIFT) technique [10] provides very good results
for feature localization and matching. The detected features

Figure 1: Scale invariant features detected by SIFT, ALP,
and HALF SIFT (from left to right).

are robust to changes in illumination, rotation, scale, and to
surprisingly large viewpoint changes.

Scale invariant features are detected as scale space ex-
trema. The scale space [9] is represented by a Difference
of Gaussians (DoG) pyramid, which is an approximation of
the Laplacian of Gaussian (LoG) pyramid. The features are
localized by an approximation of the gradients in the scale
space using a 3D quadratic function [2]. However, the in-
terpolated gradient signal does not have the shape of a 3D
quadratic [3]. In [8], Lindeberg characterizes the neighbor-
hood of interest points as blob-like structures with the shape
of a Gaussian.

An alternative to SIFT, called alternative interest point
(ALP) detector [6], is designed for the usage in MPEG. An
important reason for its development is that the usage of
SIFT is restricted due to its patent [11]. Thus, the com-
mercial utilization is limited. The ALP detector follows a
similar approach, but uses different tools for scale invariant
feature extraction. Additionally, it is suited for highly par-
allel architectures like the GPU. The main application is the
identification of objects captured with a mobile device.

Although the processing pipeline is similar to SIFT, the
ALP detector changes the feature localization task slightly.
Instead of the DoG pyramid, the ALP detector builds the
LoG pyramid. This should lead to better localization ac-
curacy than using the DoG pyramid. An image feature is
localized with subpixel accuracy which is obtained by an in-



terpolation of the gradient values of the scale space. The lo-
calization accuracy is mainly determined by the subpixel lo-
calization scheme. SIFT uses a three-dimensional quadratic
function [2] for the gradient approximation. The subpixel
and subscale estimation of ALP differs from SIFT in two
attributes. Firstly, the scale estimation is decomposed from
the subpixel estimation. Secondly, the subscale is com-
puted as maxima of a polynomial of third degree which ap-
proximates the LoG scale space. The subpixel coordinates
are then determined as the maximum of a two-dimensional
quadratic. The question arises if the localization accuracy
is still comparable to the accuracy of the original SIFT
method. As shown in [3], the quadratic function is only
a coarse approximation of the gradient signal, which leads
to a systematic error. Instead of the 3D quadratic function,
a signal adapted approximation function for the DoG gradi-
ents is proposed. This approach, called HALF SIFT (highly
accurate localized features) eliminates the systematic error
for the input signal of Gaussian shaped features.

We evaluate the systematic error of the LoG based ALP
detector. The evaluation compares the systematic errors of
ALP and SIFT. For the evaluation, synthetic test signals as
well as natural image data are used. The synthetic images
consist of one Gaussian feature blob with a priori known
subpixel and subscale parameters. Gaussian features are in-
troduced by Lindeberg [8] for the analysis of scale invariant
feature detectors. For the comparison using natural images,
the repeatability criterion is used [12]. The repeatability
measure thresholds the overlap error to decide if detected
feature pairs in two images are correct and counts valid
feature pairs. In addition to the images from [12], a new,
highly accurate and high-resolution benchmark data set is
employed [5]. The contributions of this paper are:

• the analysis of the localization accuracies of DoG and
LoG based detectors

• the comparison of the localization accuracy using nat-
ural images from standard benchmarks

• the proposal of a new feature selection criterion

In the following Section 2, the evaluated localization
techniques are briefly explained. In Section 3, evaluation
methods and the data used for the experiments are derived.
Section 4 shows the results on synthetic and natural image
data. In Section 5, the paper is concluded.

2. Scale invariant Feature Detection

Methods for the detection of scale invariant features eval-
uate the scale space as proposed by Lindeberg [9]. A scale
space representation is determined by a sequence of Lapla-
cian of Gaussian (LoG) filters. While the ALP [6] detector

uses the LoG pyramid, the SIFT detector uses the Differ-
ence of Gaussian (DoG) approximation [10]. The deter-
mination of subpixel and subscale coordinates of these ap-
proaches are explained in the next sections. The SIFT and
ALP detectors can be downloaded from the internet 1. The
implementations are called TM7 (test model 7.0) for SIFT
and TM8 (test model 8.0) for ALP. The HALF SIFT (highly
accurate localized features) approach [3] extends SIFT with
a signal adapted localization procedure which assumes a bi-
variate Gaussian shape for the neighborhood of a feature.

2.1. Feature Localization of SIFT / TM7

The scale space maxima are detected by evaluating, if a
pixel value in each DoG scale is bigger or smaller that its 26
neighbors in the 3× 3× 3 neighborhood. The subpixel and
subscale coordinates x = (x, y, s) of a feature are found
by interpolation with a 3D quadratic [2] function DQUAD(x).
This function has the shape of a parabola in each of the three
dimensions:

DQUAD(x) = D(x0) +
∂D(x0)
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Here, D(x0) is the DoG value at the fullpixel sample point
x0 = (x0, y0, s0). The extremum of D(x) determines the
subpixel and subscale localization. It is calculated with the
inverse of the Hessian Matrix using the 27 sample points.

2.2. Feature Localization of HALF SIFT

The feature localization of HALF SIFT [3] incorporates
a signal model. With this model the neighborhood of an
input feature x = (x, y) is described by a bivariate Gaussian
distribution GΣf . Thus, the output DDoG of the Difference of
Gaussian (DoG) filter has again DoG shape,

DDoG(x) = l · (GΣσ (x)−GΣkσ (x)) ∗GΣf (x) , (2)

with Σσ =

(
σ2 0
0 σ2

)
and the standard deviation σ of the

current scale s. The a priori known k is the distance between
two scales. The function (2) of each feature is determined
with six parameters for spatial localization x = (x, y),
covariance Σσ , and amplitude l as the minimum of the
residuum εDoG:

εDoG =
∑
x∈N

(DDoG(x)−D(x))2 . (3)

As before, 27 sample points of the 3×3×3 neighborhoodN
are incorporated. The parameters are found by Levenberg-
Marquardt optimization. As shown in [3], this feature local-
ization approach eliminates the systematic error for features
with Gaussian shape.

1http://pacific.tilab.com/projects/mpeg-cdvs/

http://pacific.tilab.com/projects/mpeg-cdvs/


(a) Graffiti (b) Grace (c) Underground (d) Posters (e) There (f) Colors

Figure 2: First images of the benchmark image sequences [5, 12] presented in the results section.

2.3. Feature Localization of ALP / TM8

The ALP detector computes subpixel and subscale coor-
dinates of a feature in separated steps. The scale σ is deter-
mined by the initial feature detection procedure which com-
putes the maxima of a polynomial of third degree for each
pixel position in the LoG pyramid. The subpixel coordi-
nates x = (x, y) are estimated by approximating the spatial
gradients of this fixed scale with a 2D quadratic function
(cf. eq. (1)).

2.4. Feature Selection

After the detection of feature candidates, a number of
features is selected. This number is usually given by the
user. Thus, a sorted list using a quality measure is gener-
ated, and the best n features are selected. The quality mea-
sure used in the implementations SIFT / TM7 and ALP /
TM8 employs a set of predefined weights for scale, local-
ization, orientation, peak, and curvature [6].

For the HALF SIFT approach, we propose to select fea-
tures which provide the smallest values for the residuum (cf.
eq. (3)), such that those features are selected with maximum
similarity to a Gaussian function. The idea is to follow Lin-
deberg’s assumption [8] that the features which are detected
by a scale invariant feature detector have Gaussian shape.

3. Experimental Setup
The experiments are devided into two parts. The first

part evaluates the synthetic images to reveal the system-
atic error for the detectors SIFT (TM7 implementation) and
ALP (TM8 implementation). The second part uses natural
images to show the effect on the repeatability criterion for
the benchmarks [5] and [12]. As the latter proved to pro-
vide higher accuracy [4], we show the whole data set of [5]
(2048 × 1365) and the most prominent sequence Graffiti
(800× 640) of [12].

In addition to SIFT and ALP, the HALF SIFT method [3]
is evaluated in the repeatability comparison as a reference.
This approach shows no systematic error on Gaussian input
features and provides affine invariant features. It follows
that it should perform better for strong viewpoint changes
in comparison to SIFT and ALP.

The evaluated algorithms are listed in Tab. 1. The im-

plementations for SIFT and ALP are TM7 and TM8, re-
spectively [6]. The HALF SIFT approach extends the SIFT
detector [7] with a new signal adapted localization proce-
dure [3]. It exchanges the subpixel and subscale localiza-
tion procedure as described in Sect. 2.2. Here, the feature
selection scheme as proposed in Sect. 2.4 is used.

Table 1: The compared algorithms, their scale space repre-
sentation, and their gradient approximation approach.

Detector Scale Space Gradient Approx.
SIFT / TM7 [6] DoG 3D quadratic
ALP / TM8 [6] LoG separated spatial / scale
HALF SIFT [3] DoG DoG

3.1. Gaussian Feature Input Images

The synthetic images are constructed using a Gaussian
distribution with a varying localization in x-direction and
a varying standard deviation σf . The differences εx in x-
direction are within the interval [−2.0; 2.0] with a step dis-
tance of 0.04 px. The standard deviations σf of the Gaus-
sians are within the interval [2.6; 16.0] with a step distance
of 0.4. With these ranges, the first three pyramid octaves
are covered. The resulting error ξEx is defined as the dis-
tance between the ground truth εx-coordinate and the de-
tected x-coordinate of each feature: ξEx = εx − x. Here,
the coordinates are measured relative to an image coordi-
nate system with its origin in the center. Some input image
examples are shown in Fig. 3. The image size is 256× 256.

Figure 3: Image examples of the Gaussian features with
varying standard deviation σf = 3.0, 7.0, 11.0, and 15.0.
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(a) SIFT / TM7
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(b) ALP / TM8

Figure 4: Spatial systematic error ξEx in x-direction for Gaussian features. The axes in the ground plane show the ground
truth subpixel position εx and the standard deviation σf of the input feature (cf. Fig. 3). The contour lines in the ground plane
showcase the periodicity of the error.

Figure 5: Example benchmark sequence Grace.

3.2. Natural Input Images

For the evaluation with natural images, two reference
benchmark sets [5, 12] are used. The sets consist of se-
quences of images which show a planar scene captured
from a varying viewpoint with increasing angle relative to
the first image. An example sequence (Grace) is shown in
Fig. 5. For the mapping from the first image to the oth-
ers, ground truth homographies are provided. If the feature
which is detected in the first image is also detected in second
image, the feature pair is deemed correct. A threshold value
εO = 0.4 defines the maximally allowed distance between
two features. This distance is calculated by the overlap er-
ror [12]. The repeatability is the ratio of correctly detected
feature pairs to the maximally possible number of correct
feature pairs. It is calculated by the Matlab script provided
by the authors of [12].

A benchmark sequence consists of six images captur-
ing the same planar scene. The viewpoint perspective in-
creases with the image number. The repeatability is cal-
culated between the first image and each of the other im-
ages. The resulting diagram provides a common measure
for the localization accuracy of feature detectors [12]. The
benchmark [12] provides image resolution of 0.5 megapix-
els while the data set [5] provides high resolution images.

To avoid the initial down sampling of the images for the
natural data experiment, we set the parameter resizeMaxSize
in the ALP / TM8 and SIFT / TM7 detector to 2048. As the

ground truth data is prepared for the specific image sizes,
a down sampling of the images would make it unusable.
Furthermore, it would decrease the localization accuracy of
ALP and SIFT significantly.

4. Experimental Results
The results with synthetic images are shown in Sect. 4.1.

It demonstrates the systematic error of SIFT / TM7 and
ALP / TM8. The repeatability results on natural images are
shown in Sect. 4.2. It gives a comparison of SIFT / TM7
and ALP / TM8. Additionally, it shows the distance to the
reference results of HALF SIFT.

(a) SIFT / TM7 (b) ALP / TM8 (c) HALF SIFT

Figure 6: Results examples for a synthetic Gaussian blob
feature. If more than on feature is extracted by the feature
detector, the best of them is chosen for the evaluation.

4.1. Gaussian Feature Images

The resulting localization error in Fig. 4 shows the differ-
ence ξEx = εx−x between ground truth εx and the detected
x-position of the feature. Both localization approaches,
SIFT and ALP lead to a systematic error, which increases
with the octave of the input signal. The largest errors are
located exactly between two pixels in the respective octave.
For the first three octaves, the ALP method results in a max-
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(a) Graffiti: Repeatability

2 3 4 5 6
0

10

20

30

40

50

60

70

R
e

p
e

a
ta

b
ili

ty
 %

Viewpoint

 

 

HALF SIFT

ALP / TM8

SIFT / TM7

(b) Grace: Repeatability
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(c) Underground: Repeatability
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(d) Graffiti: Correspondences
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(e) Grace: Correspondences
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(f) Underground: Correspondences

Figure 7: Repeatability (top row) and absolute number of correct feature pairs (bottom row) for Graffiti (800 × 640) [12],
Grace, and Underground (2048× 1365) [5] with 1000 selected features in each of the 6 images.
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(a) Posters: Repeatability
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(b) There: Repeatability
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(c) Colors: Repeatability
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(d) Posters: Correspondences
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(e) There: Correspondences

2 3 4 5 6
0

50

100

150

200

250

300

350

400

N
b

 o
f 

c
o

rr
e

s
p

o
n

d
e

n
c
e

s

Viewpoint

 

 

HALF SIFT

ALP / TM8

SIFT / TM7

(f) Colors: Correspondences

Figure 8: Repeatability (top row) and absolute number of correct feature pairs (bottom row) for Posters, There, and Colors
(2048× 1365) [5] with 1000 selected features in each of the 6 images.

imum absolute error of 0.07 px (for σf = 10.4) while SIFT
shows a maximum error of 0.31 px (for σf = 12.8). The re-

sult verifies the systematic error of SIFT / TM7 found in [3]
for the implementation of Hess [7]. Using the LoG instead



of the DoG decreases the maximum error of the subpixel
localization significantly by 77 %.

4.2. Natural Images

The repeatability results for the benchmark sets as shown
in Fig. 2 are demonstrated in Fig. 7 and Fig. 8. The repeata-
bility rate (top row) of ALP is higher than for SIFT in all
image pairs except for There (cf. Fig. 8(b)). Here, SIFT
provides slightly better results. For the Colors sequence,
the strong scale change leads to a feature selection in the
images 4, . . . , 6, which is very different from the selection
in the first image. Thus, all detectors perform very poor for
these image pairs.

The repeatability rate of ALP is up to 16 % higher com-
pared to SIFT. The absolute number of correct feature pairs
is larger for most of the feature pairs (cf. Fig. 7 and Fig. 8,
bottom row). The gain is mostly visible for the image pairs
with smaller viewpoint changes. Overall, the best results are
achieved for the signal based localization approach HALF
SIFT, especially for large viewpoint changes. But, it re-
quires more computation time [3].

5. Conclusions
This paper evaluates and compares the localization ac-

curacies of the scale invariant feature detectors SIFT, ALP,
and HALF SIFT. While SIFT features are detected in the
Difference of Gaussian (DoG) scale space, ALP employs
the Laplacian of Gaussian (LoG) scale space. HALF SIFT
uses DoG like SIFT, but applies a signal based subpixel and
subscale localization technique. Although the detectors are
very similar, the evaluation shows significant differences.
The ALP detector performs better than SIFT. For Gaussian
shaped input features, it is shown that the maximum sys-
tematic error is reduced by 77 % compared to SIFT. For
natural images, ALP shows a gain of up to 16 % in repeata-
bility compared to SIFT. For large viewpoint changes, the
gain decreases. The reference detector HALF SIFT, which
shows no systematic error on Gaussian features, performs
best, especially for strong viewpoint changes, but requires
more computation time.

As the usage of the LoG scale space provides higher lo-
calization accuracy for scale invariant features compared to
DoG, our recommendation is to combine the signal based
localization approach with the LoG scale space for optimal
results. This approach will be evaluated in future works.
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